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Manifestation of pointer-state correlations in complex weak values of quantum observables
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In the weak measurement (WM) scenario involving weak interaction and postselection by projective
measurement, the empirical significance of weak values is manifested in terms of shifts in the measurement
pointer’s mean position and mean momentum. In this context, a general quantitative treatment is presented in this
paper by taking into account the hitherto unexplored effect of correlations among the pointer degrees of freedom
which pertain to an arbitrary multidimensional preselected pointer state. This leads to an extension of the earlier
results, showing that, for complex weak values, the correlations among different pointer degrees of freedom can
crucially affect the way the imaginary parts of the weak values are related to the observed shifts of the mean
pointer position and momentum. The particular relevance of this analysis is discussed in the case of sequential
weak interactions followed by a projective measurement enabling postselection (called sequential WM) which, in
the special case, reduces to the usual WM scheme (involving a single weak interaction and postseletion) modified
by the effect of pointer-state correlations.
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I. INTRODUCTION

Formulation of the seminal idea of weak measurement
(WM) in quantum mechanics by Aharanov, Albert, and
Vaidmann (AAV) [1] and its subsequent clarifications as well
as elaborations [2–11] over the years have given rise to a
plethora of investigations, theoretical as well as experimental
[for a recent comprehensive review see, for example, J. Dressel
et al. [12]. This ranges from the use of WM in the analyses of
intriguing quantum effects such as Hardy’s paradox [13], the
three-box paradox [14], and the quantum Cheshire Cat [15], to
the application of WM in the context of quantum entanglement
[16], for verifying the “error-disturbance uncertainty relations”
[17], for observing the evolution of a quantum system in the
semiclassical regime [18], for avoiding loopholes in showing
quantum violation of hybrid Bell-Leggett-Garg inequalities
[19], for experimentally verifying Bell’s inequality in time
[20], for shedding light on quantum discord [21], for demon-
strating quantum contextuality [22], and for studying tunneling
[23] arrival time [24], as well as for revealing interesting effects
in the physics of telecommunication fibers [25]. Further, WM
has been studied using neutron interferometry [26] and has
been invoked for high precision measurements concerning
quantum metrology [27], such as for identifying a tiny spin
Hall effect [28] and for detecting very small transverse beam
deflections [29,30] and tiny temporal delay [31]. Interestingly,
it has also been used for directly measuring the quantum wave
function [32] and for discerning signatures of the average
quantum trajectories for photons [33]. Against this backdrop,
in order to motivate our work, it will be useful to recapitulate
the essence of the standard WM scenario.

Let us consider the preparation of a given system in
an appropriate preselected state |ψi〉, with the state being
subjected to a von Neumann type interaction described by
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the Hamiltonian Ĥ = g(t)Â ⊗ q̂, where Â is the system
observable, q̂ is the measurement pointer observable, and g(t)
is the coupling parameter given by the normalized compact
support around the time of measurement [5]; here the von
Neumann coupling is assumed to be “weak” in the following
sense. Taking the initial pointer state to be, say, a Gaussian
wave function, the interaction involved is said to be weak
if it results in the pointer state being a superposition of
Gaussian wave functions which are substantially overlapping.
Subsequently, this interaction is followed by an appropriate
postselection pertaining to the projective measurement of
any system observable other than Â which is involved in
the preceding weak interaction. Then the superposition of
overlapping Gaussian wave functions, in effect, gives rise to
a single slightly shifted Gaussian wave function [5,10]. The
net effect is manifested in terms of the shifted probability
distribution of the pointer variable corresponding to the
postselected system state |ψf 〉 which is an eigenstate of one of
the outcomes of the projective measurement in question. The
key result shown by AAV is that the weak interaction involving
the system observable Â, combined with postselection, results
in the final shift of the postselected pointer variable distribution
that turns out to be proportional to a quantity called the “weak
value” of the observable Â, which is defined as

(A)w = 〈ψf |Â|ψi〉
〈ψf |ψi〉 . (1)

Note that the weak value (A)w is, in general, a complex
quantity. Its empirical significance was first pointed out in
footnote 4 of the paper by Aharonov, Albert, and Vaidman [1]
as well as in the paper by Aharonov and Vaidman [7] using
the Gaussian function for the pointer state. later, the more
general quantitative relations linking the shifts of the mean
pointer position and momentum with the real and imaginary
parts of the weak value were formulated by Jozsa [34]. To
put it precisely in the context of weak interaction involving
the Hamiltonian H = g(t)Â ⊗ q̂, the final and the initial
expectation values of pointer position (〈q̂〉f ,〈q̂〉in) and pointer
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momentum (〈p̂〉f ,〈p̂〉in) are respectively mutually related as
follows:

〈q̂〉f = 〈q̂〉in + 2λ[Im(A)w]var(q) (2)

〈p̂〉f = 〈p̂〉in − λRe(A)w + mλ[Im(A)w]
∂var(q)

∂t
(3)

where the variance var(q) = 〈q̂2〉in − 〈q̂〉2
in,

∫
g(t)dt = λ,

and m is the mass of the system in question. It is the
above results that constitute the specific starting point of this
work.

Before proceeding further, an important basic point to
stress is that since a typical WM scheme uses at least two
von Neumann interactions involving, in general, two different
pointer degrees of freedom (one for weak interaction and the
other for projective measurement leading to the postselection),
the scenario in general involves the use of multidimensional
pointer variable distribution.

Here it is relevant to emphasize that, given any covariance
matrix, it is possible to generate a multivariate distribution
embodying the correlations given by the covariance matrix
(Cholesky decomposition). Now, note that while the effects
of multivariate pointer-state distribution without correla-
tions have already been discussed in the context of weak
measurement [18,35–38], curiously, the possible effects of
multidimensionality embodying correlations among different
pointer degrees of freedom have remained largely unexplored.
This holds apart from a couple of works probing the effects
of multidimensionality of pointer states in the special case
of two-dimensional Hermite-Gaussian and Laguerre-Gaussian
optical modes as pointer states [39]. Against this backdrop,
in this paper we seek to provide a hitherto unexplored
general framework for treating the effects of correlations
among different pointer degrees of freedom, which has a
special significance, for example, in the context of continuous
variable entanglement as discussed in the final section of this
paper.

Note that, in the usual treatments, including in Jozsa’s
derivation of Eqs. (2) and (3) [34], the underpinning assump-
tion is either that the multidimensional pointer wave function
is factorizable, or that the same pointer degree of freedom
which is weakly coupled to the system degree of freedom is
used for projective measurement enabling postselection. A key
aspect of our treatment is that, by taking into account a general
preselected multidimensional pointer state, we consider the
case where the pointer degree of freedom involved in the
final projective measurement is different from that used in
the preceding weak interaction or weak interactions in the
case of sequential WM. The key feature arising from the latter
aspect, as shown in our paper for the case of sequential WM
(Sec. II), as well as for the usual WM scenario (Sec. III), is
that if the initial pointer state involves correlations between
the pointer degrees of freedom which are involved in weak
interaction(s) and postselection, the final expectation values
of the pointer degrees of freedom will contain contributions
from these nonzero correlations, depending upon whether the
relevant non-vanishing weak value(s) are complex or not.
The essential result demonstrated is the way the quantitative
relations between mean pointer position (momentum) and

weak values given by Eqs. (2) and (3) get significantly
modified in the presence of correlations between different
pointer degrees of freedom.

Here we may observe that a noteworthy work using the
initial pointer wave function as a multidimensional function
is that by Mitchison [37]. In this work he considered the
joint expectation values of postselected pointer degrees of
freedom in terms of joint weak values and generalized the
treatment for weak measurement involving arbitrary number
of weak interactions. However, the multidimensional initial
pointer wave function considered by Mitchison is factorizable.
On the other hand, in this paper, we consider essentially
the effect of nonfactorizability embodying correlations in
the initial pointer wave function including all the pointer
degrees of freedom. Another interesting line of works using
multidimensional pointer wave function involves extracting
joint weak value involving a product of two single-particle
operators [35] and subsequently extending it for joint weak
values of the product of N single-particle operators [36].
Again, these studies also essentially use factorizable initial
pointer wave function and hence the possible effect of corre-
lations in the multidimensional pointer wave function remains
unanalyzed.

Now, for outlining our scheme, considering sequential
WM, we use a weak interaction involving a system variable
(Â1) coupled with a pointer degree of freedom (q̂1 or p̂1),
followed by another weak interaction involving a system
variable (Â2) coupled with a pointer degree of freedom (q̂2

or p̂2). It is then found that the postselection using a projective
measurement involving the pointer variable (q̂3 or p̂3) results in
the individual shifts along different axes (denoted by the lower
index i = 1,2,3) of the postselected three-dimensional pointer
variable distribution. Each of these shifts has contributions
from both the weak values [(Â1)w and (Â2)w], arising from
the two successive weak interactions considered, apart from
being dependent on the correlations between the pointer
degrees of freedom. To compute these shifts, we evaluate the
final expectation values of the respective degrees of freedom
[〈q̂1,2,3〉f or 〈p̂1,2,3〉f ] pertaining to the postselected pointer
state, relating each of these expectation values to both the
weak values [(A1)w and (A2)w], along with the correlation
terms involving the pointer degrees of freedom. For this
demonstration, it suffices to consider the strength of each weak
interaction up to first order. An important significance of the
aforementioned extension is that the correlation terms appear
on the final shifts of the pointer degrees of freedom only when
the imaginary parts of the respective weak values are nonzero.
Here we may stress that, as in Jozsa’s result, we do not consider
the effect of the time evolution of the probe state that may
occur before detection, which has been taken into account by
Lorenzo and Egues [40]

The archetypal investigation to date concerning the se-
quential WM by Mitchison et al. [41], while considering
the strength of each weak interaction up to second order,
has essentially calculated the expectation value of a product
of pointer variables pertaining to the postselected pointer
state without taking into account the possible effects of
correlations among the pointer degrees of freedom. To be
precise, Mitchison et al. [41] obtained the joint expectation
value of q̂1q̂2 in terms of the joint weak value (A1A2)w and
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the product of the individual weak values (A1)w and (A2)w.
The fundamental difference between their work and ours as
discussed in this paper is, thus, easily evident.

In the following Sec. II we proceed to delineate the
mathematical details of our treatment in the case of sequential
WM showing explicitly the way the empirical signature of
weak values in terms of the observed shifts along different
axes of the pointer variable distribution involves correlations
among the pointer degrees of freedom. Then, in Sec. III,
we discuss how in the special case of the vanishing strength
of one of the two weak interactions, i.e., in the usually
considered WM scenario, our treatment reveals the effects of
the pointer-state correlations on the individual shifts along
different axes pertaining to the multidimensional pointer
variable distribution, thereby affecting their relation with the
weak value in question. In the concluding Sec. IV, we indicate
some implications of this work as well as a few directions
for further studies, including possibilities of future empirical
probing.

II. THE TREATMENT OF SEQUENTIAL WM IN THE
PRESENCE OF CORRELATIONS BETWEEN POINTER

DEGREES OF FREEDOM

Let the initial joint state of the system and the measurement
pointer be given by

|�〉 = |ψi〉 ⊗ |φi〉, (4)

where |ψi〉 and |φi〉 are respectively the system and the pointer
initial states that are taken to be three dimensional.

If φi(q1,q2,q3) �= φi(q1)φi(q2)φi(q3), this would imply that
the pointer state is not correlated between any two of the three
pointer degrees of freedom, i.e., the relevant covariance matrix
[42] whose elements are given by �ij = 〈(q̂i − 〈q̂i〉)(q̂j −
〈q̂j 〉)〉 is diagonal, meaning that only the variance terms of
this matrix are nonvanishing. In general, the covariance matrix
is, however, not diagonal, with the nonvanishing off-diagonal
terms, i.e., the correlation terms with respect to the initial
pointer state, being given by

corr(ql,qm)i =
∫

φ∗
i (p1,p2,p3)q̂l q̂mφi(p1,p2,p3)d �p

−
∫

φ∗
i (p1,p2,p3)q̂lφi(p1,p2,p3)d �p

∫
φ∗

i (p1,p2,p3)q̂mφi(p1,p2,p3)d �p, l �= m, (5)

where d �p = dp1dp2dp3. Before proceeding further, we note the following properties of the correlation terms. Consider the
correlation function of momentum displaced initial pointer wave function φi(p1 − l1,p2 − l2,p3 − l3) (li is the amount of
displacement of momentum pi), given by

corr(pl,pm)i,l1,l2,l3 =
∫

φ∗
i (p1 − l1,p2 − l2,p3 − l3)plpmφi(p1 − l1,p2 − l2,p3 − l3)d �p −

∫
φ∗

i (p1 − l1,p2 − l2,p3 − l3)pl

×φi(p1 − l1,p2 − l2,p3 − l3)d �p
∫

φ∗
i (p1 − l1,p2 − l2,p3 − l3)pmφi(p1 − l1,p2 − l2,p3 − l3)d �p (6)

=
∫

φ∗
i (p1,p2,p3)(pl + ll)(pm + lm)φi(p1,p2,p3)d �p −

∫
φ∗

i (p1,p2,p3)(pl + ll)φi(p1,p2,p3)d �p

×
∫

φ∗
i (p1,p2,p3)(pm + lm)φi(p1,p2,p3)d �p = corr(pl,pm)i (7)

Similarly, it can be shown that

corr(ql,pm)i,l1,l2,l3 = corr(ql,pm)i , (8)

corr(ql,qm)i,l1,l2,l3 = corr(ql,qm)i . (9)

The above equations signify that the correlation functions are
not dependent on the displacement of the momentum distri-
bution of the pointer wave function. Note that corr(ql,ql) =
var(ql) and corr(pl,pl) = var(pl). Therefore, in the light of
above relations it can be stated that

var(ql)i,l1,l2,l3 = var(ql)i , (10)

var(pl)i,l1,l2,l3 = var(pl)i . (11)

In our treatment, for generality, we take the initial pointer
state to be as follows:

|φi(p1,p2,p3)〉 =
∫

φi(p1,p2,p3)|p1〉|p2〉|p3〉d �p. (12)

If φi(p1,p2,p3) involves correlations, then the question ad-
dressed in this paper is whether and, if so, how the shifts of
the relevant pointer degrees of freedom will capture the effect
of these correlations.

The successive weak interactions in the setup considered
here are taken to be of the von Neumann type weak coupling
between the system and the pointer observables, where the
two Hamiltonians in question are H1 = g1(t)Â1 ⊗ q̂1 and
H2 = g2(t)Â2 ⊗ q̂2. We assume that, apart from the von
Neumann couplings used, the system evolves freely in-
between the weak interactions and before being subjected to
the postselection. The postselection is performed by using
projective measurement involving von Neumann type strong
coupling between Â3 and q̂3, (the corresponding Hamilto-
nian H = gt�ka3k�̂3k ⊗ q̂3 with

∫
g3(t)dt = 1, where �̂3k =

|a3k〉〈a3k| is the projection operator corresponding to |a3k〉 with
eigenvalue a3k). Taking

∫
g2(t)dt = λ2 and

∫
g1(t)dt = λ1, if

we expand both the exponentials occurring in the evolution
operators of H1 and H2 up to first order of λ1 and λ2
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respectively, the joint state of system and pointer after the
strong von Neumann interaction but before postselection can
be written as follows:

|ψ〉 = e−i�ka3k�̂3k⊗q̂3

∫
d �p(1 + iλ1Â1 ⊗ q̂1 + iλ2Â1 ⊗ q̂2)

× φi(p1,p2,p3)|ψi〉|p1〉|p2〉|p3〉. (13)

Using ei�ka3k�̂3k⊗q̂3 = �ke
ia3k q̂3�3k , the expression for the

weak value given by Eq. (1), and eia3k q̂3φi(p1,p2,p3) =
φi(p1,p2,p3 − a3k), Eq. (13) can be modified as follows:

|ψ〉 = �k〈a3k|ψi〉
∫

dp1dp2dp3
[
1 + iλ1(A1)3k

w ⊗ q̂1

+ iλ2(A2)3k
w ⊗q̂2

]
φi(p1,p2,p3−a3k)|a3k〉|p1〉|p2〉|p3〉,

(14)

where (A1,2)3k
w = 〈a3k |Â1,2|ψi 〉

〈ψf |ψi 〉 . Note that, after successive weak
interactions, the pointer degrees of freedom q1 and q2 get
entangled with the system observables A1 and A2. The
presence of nonzero correlation between q1,2 and q3 and/or p3

would imply that, before the strong von Neumann interaction,
the system observables A1 and A2 are further correlated with
q3 and/or p3. Subsequently, it can be seen from Eq. (14) that
the strong von Neumann interaction creates an entanglement
between |a3k〉 and |p3〉.

Postselecting the system state onto |a3l〉 which is one of
the eigenstates of the system variable Â3, one can obtain the
relevant pointer state as follows (taking � = 1 throughout our
treatment)

|φf,3l〉 ≈ 〈a3l|ψi〉
∫

[1 + iλ2(A2)wq̂2 + iλ1(A1)wq̂1]

φi(p1,p2,p3 − a3l)|p1〉|p2〉|p3〉dp1dp2dp3,

(15)

where we have taken (A1,2)3l
w = (A1,2)w.

Let us consider the final expectation value of an arbitrary
pointer variable M , corresponding to the postselected pointer
state |φf,3l〉 given by

〈M̂〉f,3l = 〈φf,3l |M̂|φf,3l〉
〈φf,3l |φf,3l〉 . (16)

Then, writing the relevant weak values occurring in Eq. (15)
as follows:

(A1)w = a1 + ib1, (17)

(A2)w = a2 + ib2, (18)

and, using Eq. (15), the numerator and the denominator of
Eq. (16) are respectively given by

〈φf |M̂|φf,3l〉 ≈ |〈a3l |ψi〉|2(〈M̂〉i,3l + iλ1a1〈[M̂,q̂1]〉i,3l

+ iλ2a2〈[M̂,q2]〉i,3l − λ1b1〈{M̂,q1}〉i,3l

− λ2b2〈{M̂,q̂2}〉i,3l), (19)

where

〈A〉i,3l =
∫

φ∗
i (p1,p2,p3 − a3l)Âφi(p1,p2,p3 − a3l)

× dp1dp2dp3, (20)

Similarly

〈φf,3l |φf,3l〉 ≈ |〈a3l|ψi〉|2(1−2λ1b1〈q̂1〉i,3l−2λ2b2〈q̂2〉i,3l).

(21)

Next, using Eqs. (19) and (21), from Eq. (16) one can obtain
the value of 〈M̂〉f,3l up to the first order in λ1,λ2 given by

〈M̂〉f,3l ≈ (〈M̂〉i,3l + iλ1a1〈[M̂,q̂1]〉i,3l + iλ2a2〈[M̂,q̂2]〉in,3l

− λ1b1〈{M̂,q̂1}〉i,3l − λ2b2〈{M̂,q̂2}〉in,3l)

(1 + 2λ1b1〈q̂1〉in,3l + 2λ2b2〈q̂2〉in,3l). (22)

Here [· · · ] and {· · · } denote respectively the commutator and
the anticommutator. For the specific choice of the pointer
observable M̂ = q̂1 in Eq. (22), the relevant commutators
vanish and one obtains

〈q̂1〉f,3l = 〈q̂1〉i,3l − 2λ1 Im(A1)w var(q1)i,3l

− 2λ2 Im(A2)w corr(q1,q2)i,3l . (23)

Using relevant forms of Eqs. (9) and (10) we can rewrite
Eq. (23) as follows:

〈q̂1〉f,3l = 〈q̂1〉i − 2λ1 Im(A1)w var(q1)i

− 2λ2 Im(A2)w corr(q1,q2)i . (24)

For M = q2 we will obtain

〈q̂2〉f,3l = 〈q̂2〉i − 2λ2 Im(A2)w var(q2)i

− 2λ1 Im(A1)w corr(q1,q2)i (25)

using Eqs. (17) and (18), and where the correlation term
corr(q1,q2)i is given by Eq. (5) for l,m = 1,2.

The key consequence of the presence of the correlation term
corr(q1,q2) in the above equations can be expressed as follows.
Equation (24) [(25)] shows that the shift of the expectation
value of the pointer degree of freedom q1 (q2), apart from
being dependent on the imaginary part of the weak value of
the system observable Â1 (Â2) which is coupled (à la von
Neumann) with the pointer degree of freedom q1 (q2), contains
an additional contribution arising from the correlation term
corr(q1,q2)i that depends on the imaginary part of the weak
value of the system observable Â2 (Â1) which is, too, von
Neumann coupled with the pointer degree of freedom q̂2 (q̂1).

For M̂ = q̂3, one obtains from Eq. (22)

〈q̂3〉f,3l = 〈q̂3〉i,3l − 2λ1 Im(A1)w corr(q1,q3)i,3l

− 2λ2 Im(A2)w corr(q2,q3)i,3l . (26)

Using 〈q̂3〉i,3l = 〈q̂3〉i and Eq. (9) we can recast Eq. (26) as
follows:

〈q̂3〉f,3l = 〈q̂3〉i − 2λ1 Im(A1)w corr(q1,q3)i

− 2λ2 Im(A2)w corr(q2,q3)i . (27)

Note that the shift in the expectation value of the pointer
degree of freedom q3 arising from sequential weak interactions
cum postselction essentially depends upon the nonzero corre-
lations between q1,2 and q3 present in the initial pointer wave
function. Presence of these correlations ensure that after two
successive weak interactions, not only q1,2 but also q3 gets
entangled with the system observables A1 and A2. It is this
entanglement due to which the postselection of a particular
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system state ensures that the expectation value of q3 gets
shifted.

Considering the sequential WM scenario, if the pointer
degree of freedom involved in the projective measurement
enabling postselection is the same as that used in the preceding
weak interactions, then Eq. (27) reduces to

〈q̂3〉f = 〈q̂3〉in−2λ1 Im(A1)w var(q3)−2λ2 Im(A2)w var(q3),

(28)

which does not contain any effect of correlations between the
pointer degrees of freedom present in the initial state.

Now, if the pointer degrees of freedom that are involved
in the weak interactions are different from that used in
postselection, then the shift of the final expectation value of
the pointer degree of freedom (q3) involved in postselection
will contain the effect of correlations embodied in the initial
preselected pointer state. When these correlations vanish, such
a shift will also vanish. It is the above feature that is reflected in
Eq. (27) which essentially pertains to the case where the pointer
degree of freedom q3 used in postselection is different from the
pointer degrees of freedom (q1,q2) used in the preceding weak
interactions. In such cases, the shift of the final expectation
value of q3 crucially depends on whether at least one of the
correlations corr(q1,q3) or corr(q2,q3) is nonvanishing.

Further, note that, even if all these correlations vanish, the
shifts of the final expectation values of the pointer degrees
of freedom q1,q2 occurring in the weak interactions remain
nonvanishing, as can be seen from Eqs. (24) and (25).

Similarly, for M̂ = p̂1,2, from Eq. (22) we get

〈p̂1,2〉f,3l ≈ (〈p̂1,2〉i,3l + iλ1a1〈[p̂1,2,q̂1]〉i,3l

+ iλ2a2〈[p̂1,2,q̂2]〉i,3l

− λ1b1〈{p̂1,2,q̂1}〉i,3l − λ2b2〈{p̂1,2,q̂2}〉i,3l)

(1 + 2λ1b1〈q̂1〉i,3l + 2λ2b2〈q̂2〉i,3l). (29)

Using the canonical commutation relations [q̂1,p̂2] =
0, [q̂1,p̂1] = iI, [q̂2,p̂1] = 0, [q̂2,p̂2] = iI, Eqs. (8) and (10),
and following the mathematical treatment of Jozsa [34] we can
obtain

〈p̂1〉f,3l = 〈p̂1〉i + λ1 Re(A1)w + mλ1 Im(A1)w
∂ var(q1)i

∂t

+ 2λ2 Im(A2)w corr(p1,q2)i , (30)

〈p̂2〉f,3l =〈p̂2〉i + λ2 Re(A2)w + mλ2 Im(A2)w
∂ var(q2)i

∂t

+ 2λ1 Im(A1)w corr(q1,p2)i , (31)

where corr(ql,pm)i with i �= j is given by

corr(ql,pm)i = 〈q̂l p̂m〉i − 〈q̂l〉i〈p̂m〉i . (32)

Here again, the effect of the pointer-state correlation is
embodied in Eq. (30) [(31)] in terms of the shift of the
expectation value of the pointer degree of freedom p1 (p2)
containing an additional contribution from the imaginary part
of the weak value of the system observable A2 (A1) which
is coupled (à la von Neumann) with the pointer degree of
freedom q2 (q1).

For M̂ = p̂3, from Eq. (22) one can similarly obtain

〈p̂3〉f,3l = 〈p̂3〉i,3l + 2λ1 Im(A1)w corr(q1,p3)i,3l

+ 2λ2 Im(A2)w corr(q2,p3)i,3l . (33)

Note that 〈p̂3〉i,3l = 〈p̂3〉i + a3l . Therefore, using Eq. (8) we
obtain

〈p̂3〉f,3l = a3l + 〈p̂3〉i + 2λ1 Im(A1)w corr(q1,p3)i

+ 2λ2 Im(A2)w corr(q2,p3)i . (34)

In the absence of weak interactions, the final expectation value
of p3 will get shifted by the amount a3l due to projective
measurement. In the presence of successive weak interactions
involving q̂1 and q̂2 pointer degrees of freedom, entanglement
between p3 and the system observables A1 and A2 is created
through nonzero values of corr(q1p3) and corr(q2,p3); this
results in the further shift of the expectation value of p3 which
can be seen from Eq. (34).

It may be stressed here that the correlation terms among the
pointer position and momenta degrees of freedom occurring
in Eqs. (30)–(34) are nonvanishing essentially because of
the nonvanishing correlation among the position degrees of
freedom occurring in the preselected pointer state. This can be
seen by recalling that the Fourier transform of a multidimen-
sional probability density function, say, f (q1,q2,q3), can be
done through intermediate steps, each step comprising Fourier
transform of qi to pi which ensures that if corr(qi,qj ) �= 0, then
corr(qi,pj ) is also necessarily nonvanishing (see the Appendix
for the relevant mathematical details).

It is the results given by Eqs. (24)–(27) and (30)–(34) that
provide the extension of Jozsa’s results [given by Eqs. (2) and
(3)] for the sequential WM in the presence of pointer-state
correlations. Note that, if all the correlation terms vanish in
Eqs. (24)–(27) and (30)–(34), i.e., if the three-dimensional
pointer state is separable in different pointer degrees of
freedom, then Eqs. (24)–(27) and (30)–(34) reduce to Jozsa’s
results in the three-dimensional case. Thus, an upshot of our
analysis is that if the strengths of both the weak interactions are
taken to be up to first order, Jozsa’s results (although originally
derived for the WM scenario using single weak interaction)
remain valid for the case of sequential WM, too, provided the
pointer-state correlations are ignored.

III. THE TREATMENT OF WM WITH SINGLE WEAK
INTERACTION IN THE PRESENCE OF POINTER

STATE CORRELATIONS

In the case of the usually considered WM scenario involving
a single weak interaction, one needs essentially two pointer
degrees of freedom: one for the von Neumann weak interaction
and the other for implementing postselection via a projective
measurement. Thus, in this context, it suffices to consider the
preselected pointer state to be of the two-dimensional form

|φi(p1,p2)〉 =
∫

φi(p1,p2)|p1〉|p2〉d �p, (35)

where we take corr(q1,q2)i �= 0.
Here again the preselected system state is |ψi〉, while

the von Neumann coupling for weak interaction is of the
usual form H = λ1Â1 ⊗ q̂1 and the subsequent postselection
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is done through projective measurement using another von
Neumann coupling involving the pointer degree of freedom
q̂2. Then, for the postselection of the system state |a2l〉 (which
corresponds to one of the eigenstates of the system variable
Â2 that is von Neumann coupled with q̂2). Going through the
similar calculations leading up to Eq. (14) we can obtain the
state after the strong von Neumann interaction but before the
postselection as follows

|ψ〉 = �k

∫
[1 + iλ1(A1)wq̂1]φi(p1,p2 − a2k)

|a2k〉|p1〉|p2〉d �p. (36)

Postselecting |a2l〉 and writing Eq. (36) in terms of weak values
we obtain the postselected pointer state

|φf 〉 ≈ 〈a2l |ψi〉
∫

[1+iλ1(A1)wq̂1]φi(p1,p2−a2l)|p1〉|p2〉d �p.

(37)

Going through the similar calculations as before, one can
obtain the following results for the shifts of the expectation
values of the pointer degrees of freedom:

〈q̂1〉f = 〈q̂1〉i − 2λb var(q1)i , (38)

〈q̂2〉f = 〈q̂2〉i − 2λb corr(q1,q2)i , (39)

〈p̂1〉f = 〈p̂1〉i + λa + mλb
∂var(q1)i

∂t
, (40)

〈p̂2〉f = a2l + 〈p̂2〉i + 2λb corr(q1,p2)i , (41)

where a and b are respectively the real and the imaginary parts
of the weak value of the observable Â in question.

Here also, the effect of entanglement between q1 and system
observable A1 due to weak interaction is manifested through
nonzero correlation between the degree of freedom used for
postselection and that used in weak interaction; this can be
seen from Eqs. (39) and (41)

Note that Eqs. (38) and (40) do not contain any effect of
pointer-state correlation and are the same as Jozsa’s results
given by (2) and (3). On the other hand, it can be seen from
Eqs. (39) and (41) that the effect of pointer-state correlation is
manifested in the shift of that pointer degree of freedom (say,
position) which is involved in the von Neumann coupling used
for the projective measurement resulting in postselection, as
well as in the shift of its conjugate variable (momentum).
Then, Eqs. (39) and (41) constitute the key extension of
Jozsa’s results in the case of WM scenario involving single
weak interaction that arises essentially from the pointer-state
correlations. Note that in these Eqs. (24)–(27), (30)–(34),
(39), and (41) the correlation terms essentially contain the
imaginary part of the weak value. This means that for the
effect of the pointer-state correlation to be manifested in terms
of observable shifts of the pointer degrees of freedom, the
relevant weak value has to be necessarily complex.

Here it is relevant to mention that in the treatment of weak
measurement using orbital angular momentum (OAM) pointer
states in terms of the Laguerre-Gaussian optical modes, it has
been noted that for the optical modes endowed with OAM,
the pointer-state distribution is not factorizable [43]. In this

context, for extracting the joint weak values from the two-
dimensional spatial displacements, the relevant results for the
shifts of the mean pointer position degrees of freedom have
been obtained by Kobayashi et al. [44].

To put it more specifically, in the aforementioned paper, the
preselected pointer state is represented by the two-dimensional
Laguerre Gauss modes with nonvanishing OAM l, and the
weak interaction is taken to be of the form

H = gδ(t − t0)(Â ⊗ p̂x + B̂ ⊗ p̂y), (42)

where g is the coupling parameter. The preselected pointer
state is given by

ψ(x,y,l) = N [x + i sgn(l)y]|l|e−(x2+y2)/4σ 2
, (43)

where N is the normalization constant and 2σ is the beam
waist. Kobayashi et al. [44] considered the weak measurement
scheme using the Hamiltonian given by Eq. (42) for the
Laguerre Gauss mode with OAM l as the initial pointer state.
They obtained the following relations:

〈x̂〉f − 〈x̂〉in = g[Re(A)w + l Im(B)w], (44)

〈ŷ〉f − 〈ŷ〉in = g[Re(B)w − l Im(A)w]. (45)

Now, note that the compatibility between Eqs. (30) (31)
(obtained in our more general treatment) and Eqs. (44), (45)
requires that for the Laguerre Gauss mode with OAM l

characterized by ψ(x,y,l) given by Eq. (43),

corr(px,y) = corr(py,x) = l

2
(46)

where l is the OAM corresponding to the Laguerre Gauss
mode. In order to check whether this condition is indeed
satisfied, we have calculated the values of correlations for the
OAM l = 1 Laguerre Gauss mode, ψ(x,y,l = 1), given by
Eq. (43). It is found that for the two-dimensional spatial wave
function corresponding to the OAM l = 1 Laguerre Gauss
mode, using weak interaction of the form given by Eq. (42),
one obtains corr(x,y) = 0 and corr(px,y) = corr(py,x) = 1

2 ,
thereby ensuring in this case the compatibility between
Eqs. (44), (45) and Eqs. (30), (31). Similarly, it can be
checked that this compatibility holds for any other value of
l. Turek et al. [45] later generalized the treatment using all
orders of interaction strength and by taking specific system
observables. If our treatment is extended to include higher
orders of interaction strength. It would give rise to higher
order cross moments pertaining to pointer degrees of freedom.
This calls for further study.

Here we may stress that we have considered the generic
case of nonseparable pointer state, but in the treatment by
Kobayashi et al. [44] they consider a specific case of the
nonseparability of the pointer state arising from nonvanishing
orbital angular momentum in the optical modes. A curious
point to be noted is that the observable shifts obtained in
our treatment of sequential WM by considering each of the
two weak interactions to be involving single von Neumann
coupling turn out to be the same as that obtained by Kobayashi
et al. [44] using a single weak interaction with two von
Neumann couplings given by Eq. (42). Since both these
treatments are based on considering effects up to the first
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order of weak interaction, it should be worth investigating
in detail the implication of this equivalence and how this is
affected by considering effects up to the second order of weak
interactions. A further implication of extending our treatment
of the sequential WM for the second order of weak interactions
would be to probe the way the results obtained in the presence
of pointer-state correlations would reduce to the results that
were derived by Mitchison et al. [41] for the second order
of weak interactions but without considering the pointer-state
correlations.

IV. CONCLUDING REMARKS AND OUTLOOK

To put it in a nutshell, in the case of sequential WM as
well as for the usually considered WM scenario involving
single weak interaction, our treatment shows the way the effect
of the pointer-state correlation is reflected in the empirical
manifestation of weak values in terms of observable shifts
of the expectation values of the pointer degrees of freedom.
In both these cases we have derived explicit forms of the
pertinent extensions [Eqs. (24)–(27), (30)–(34), (39), and (41)]
of Jozsa’s original results. A key point to be noted here is
that, in each of these equations, the effect of correlations
among the pointer degrees of freedom is embodied in those
individual terms which essentially contain the imaginary part
of the weak values involved. Thus, for real weak values,
the observable shifts of the expectation values of the pointer
degrees of freedom do not contain any effect of the pointer-
state correlations.

Now, regarding the role of entanglement between the
pointer degrees of freedom in the pointer state |φi〉, we
may stress that the existence of nonzero correlation between
the pointer degrees of freedom does not necessarily imply
entanglement. It is only for the two-mode Gaussian wave
function, the nonzero correlation between the pointer degrees
of freedom necessarily implies entanglement in the sense
of satisfying the positive partial transpose (PPT) criteria
for continuous variable entanglement [46]. For the three-
mode Gaussian wave function, nonzero correlations do not
necessarily imply entanglement [47]. Thus, our treatment of
the standard WM scenario (Sec. III) involving single weak
interaction and the choice of |φi〉 [Eq. (35)] to be two-mode
Gaussian involving nonzero correlation has an interesting
testable implication in the sense that the shift of the final
expectation values of the pointer degrees of freedom will
contain the effect of entanglement in terms of the relevant
correlations [Eqs. (39) and (41) of Sec. III]. To elaborate
on this, note that, a general two-mode Gaussian state can be
written as follows:

ψ(q1,q2) = N exp
[−(

αq2
1 + βq2

2 + 2γ q1q2
)]

, (47)

where N is the normalization constant and the above state
implies correlation given by corr(q1,q2) ∝ γ . Using the cri-
terion for any Gaussian state to be entangled [48], the value
of the determinant of the matrix C defined as follows for the
two-mode Gaussian determines whether it is entangled:

C =
[〈q1q2〉 〈q1p2〉
〈p1q2〉 〈p1p2〉

]
. (48)

When det(C) < 0, the state is entangled. Using this criterion, it
has been shown that for all nonzero values of γ the two-mode
Gaussian state given by Eq. (47) is entangled [46].

An important point to note here is that, using Eqs. (39)
and (41) giving the shifts of the expectation values of
the postselected pointer degrees of freedom (q2 and p2),
one can obtain the diagonal terms of the matrix C from
the experimentally determined shifts. Similarly, in order to
empirically determine the off diagonal terms of the matrix
C, one needs to interchange the pointer degrees of freedom
involved in weak interaction and projective measurement used
in the postselection. Thus, by determining all the elements
of the matrix C, one can verify whether the initial pointer
state in question is entangled or not. Note that this procedure
essentially uses the scheme developed in Sec. III of our paper.

Similarly, for the three-mode Gaussian as the initial pointer
state, one can obtain the elements of the matrix C using
the scheme presented in Sec. II for the sequential WM. An
extension of this procedure seems possible for the initial
pointer state taken to be multimode Gaussian. A comprehen-
sive investigation of this possibility will be pursued in a sequel
paper.

Another line of future study could be with respect to the
paper mentioned earlier by Mitchison [37]. In that paper,
joint expectation values of the postselected pointer degrees
of freedom are obtained in terms of joint weak values for
factorizable multidimensional preselected pointer state, i.e., in
the absence of the correlation between different pointer degrees
of freedom. One can thus investigate how their result would
be modified if we consider the initial preselected pointer state
to be correlated among different pointer degrees of freedom.

It may also be instructive to probe how correlations in
the initial pointer state would affect the earlier analysis of
“weak trajectories” extracted from the pointers of a series of
weakly interacting devices using factorizable N -dimensional
Gaussian function for the initial pointer state [18]. Finally, we
offer a few remarks about a possible experimental test of the
effect of pointer-state correlations derived in the present paper.
Recently, predictions made by Mitchison et al. [41] have been
confirmed by Piacentini et al. [49] in an interesting experiment
by considering sequential weak interactions undergone by
single photons using birefringence in optical crystals. In
this setup, the preselected two dimensional pointer state is
experimentally prepared to be a separable Gaussian, by using
single photon guided in a single-mode optical fiber that is
suitably collimated with a telescopic optical system. It would
therefore be an interesting extension of this experimental
setup to study how the shifts of the postselected probability
distribution functions of the relevant pointer variables are
modified by an appropriate tuning of the procedure for
preparing the preselected pointer state that would entail
pointer-state correlations. Such an investigation would thus
constitute a critical empirical check of the results that have
been obtained and analyzed in this paper.
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APPENDIX

In this section we illustrate how the correlation between
pointer position variables gives rise to correlation between
position and momentum variables. Here we assume the initial
pointer-state distribution as a Gaussian function represented
by φ(q1,q2), where the position distribution function f (q1,q2)
is given by

f (q1,q2) = |φ(q1,q2)|2

=
√

|G|
(2π )2

exp

[
−1

2
σ 2

1 q2
1 − 1

2
σ 2

2 q2
2

− corr(q1,q2)q1q2

]
(A1)

where 〈q̂1〉in = 〈q̂2〉in = 0 and |G| is the determinant of the
covariance matrix written as

G =
[

σ1 corr(q1,q2)
corr(q1,q2) σ2

]
. (A2)

Now, note that for the above mentioned Gaussian f (q1,q2),
nonzero correlation between q1 and q2 implies the nonsepara-
bility of f (q1,q2). Next, we show that the nonseparability of

f (q1,q2) implies nonseparability of f (p1,q2), which in turn
entails nonzero correlation between p1 and q2.

From Eq. (A1), taking the partial Fourier transformation
from q1 to p1, one can obtain as follows (by ignoring the
normalization constant):

f (p1,q2) =
∫

e−ip1q1f (q1,q2)dq1

=
∫

e−ip1q1 exp

[
−1

2
σ 2

1 q2
1 − 1

2
σ 2

2 q2
2

− corr(q1,q2)q1q2

]
dq1

= exp

[
−1

2

(
σ 2

2 − corr2(q1,q2)

σ 2
1

)
q2

2 − p2
1

2σ 2
1

+ i
corr(q1,q2)

σ 2
1

p1q2

]
. (A3)

Then, using Eq. (32) in the text, one can evaluate the correlation
between p̂1 and q̂2 for the function f (p1,q2) given by Eq. (A3).
Thus we obtain

corr(p1,q2) =
∫

p1q2f (p1,q2)dp1dq2−
∫

p1f (p1,q2)dp1dq2

×
∫

q2f (p1,q2)dp1dq2

= i
[corr(q1,q2)]

σ 2
1

. (A4)

From Eq. (A4) it is evident that if corr(q1,q2) �= 0, corr(p1,q2)
is also necessarily nonvanishing.
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