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Nonlocal correlations arising from measurements on tripartite entangled states can be classified into two
groups, one genuinely three-way nonlocal and other local with respect to some bipartition. Still, whether a
genuinely tripartite entangled quantum state can exhibit genuine three-way nonlocality remains a challenging
problem as far as measurement context is concerned. Here we introduce an approach in this regard. We consider
three tripartite quantum states, none of which is genuinely three-way nonlocal in a specific Bell scenario (three
parties, two measurements per party, two outcomes per measurement), but they can exhibit genuine three-way
nonlocality when the initial states are subjected to stochastic local operations and classical communication. So,
genuine three-way nonlocality is a resource which can be revealed by using a sequence of measurements.
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I. INTRODUCTION

The seminal work of J. S. Bell refuted the Einstein-
Podolsky-Rosen (EPR) argument [1] claiming incompliances
of quantum theory. He in particular showed that there exist
some correlations generated by measurements on a quantum
system shared between distant parties that cannot be explained
by any local hidden variable (LHV) theory [2]. Such type of
correlations, referred to as nonlocal correlations, are witnessed
via violation of a Bell inequality [3]. Apart from its importance
as a foundational concept, nonlocality has also been used in
various information-theoretic tasks [4–10]. For generation of
nonlocal correlations, the quantum particles shared between
distant parties must be entangled. However, the converse
implication is not obvious. To be specific, though nonlocality
can be considered as a generic notion for pure states [11,12],
no such definite conclusion can be drawn for mixed states, as
initially shown by Werner who presented a class of bipartite
entangled states admitting a LHV model in the particular case
of projective measurement [13]. This model was later extended
for general (positive-operator-valued-measurement, POVM)
measurements [14] (see also [15]). Such states are referred to
as local entangled states [16].

In this context, another important topic was discussed by
Popescu [17] and Gisin [18], who showed that some local
entangled states, unable to produce nonlocal correlations under
projective measurements, when subjected to suitable sequen-
tial measurements can exhibit nonlocal behavior (violates the
Bell–Clauser-Horne-Shimony-Holt (CHSH) inequality [19]).
This process of revelation (or activation) of nonlocality of
any state is referred to as its hidden nonlocality. In recent
times it was shown that hidden nonlocality can be extracted
even from those entangled states that admit a LHV model
for POVMs [20]. There exist some other related works in the
literature showing revelation of nonlocality of local entangled
states by performing joint measurements on several copies of
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the state [21–27], or by placing many copies of the state in
a quantum network [28–32]. All of these works simply point
out the fact that context of measurement is important to reveal
nonlocality of quantum states, and ongoing research activities
in this direction imply that it is still a challenging field of
research.

Though questions related to revelation of hidden nonlocal-
ity of local entangled states have been extensively discussed for
bipartite states, the relation between entanglement and hidden
nonlocality for multipartite systems is almost unexplored so
far. For a multipartite scenario, one should intuitively expect
some more interesting and novel phenomena due to the
complex structure of multipartite entanglement. In particular,
there is a hierarchy of different notions of entanglement in
tripartite systems, the strongest of them being genuine tripartite
entanglement (GTE) [33]. Analogous to entanglement in
tripartite scenarios, the notion of genuine tripartite nonlocality
(GTNL), discussed in [34–36], represents the strongest form
of nonlocality for tripartite systems.

Now one may be interested to analyze whether hidden
GTNL can be revealed under sequential measurements. In
this context, Caban et al. [37] gave an example of a class
of tripartite pure states ρ such that it does not violate the
Svetlichny inequality [34], whereas ρ

⊗
ρ can violate it

and hence can exhibit Svetlichny’s notion of GTNL. They,
however, referred to this phenomenon as an activation of
violation of the Svetlichny inequality. Recently a weaker (than
Svetlichny’s notion of GTNL) definition of GTNL was intro-
duced in [35,36], known as genuine three-way NS nonlocality
(NS2 nonlocality), which is better motivated both physically
and from an information-theoretic viewpoint. In this paper,
we address the following question: Consider some genuinely
tripartite entangled states that do not exhibit NS2 nonlocality
individually in a specific Bell scenario (three parties, two
measurements per party, two outcomes per measurement)
and also in a hidden sense, i.e., even after being subjected
to known useful local filters [38]. Is it then possible to find
some sequential measurement protocol so that the final state
resulting from the measurement protocol using these NS2 local
states exhibits NS2 nonlocality? We provide strong numerical
evidence to this open problem. To be precise, we have framed
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FIG. 1. The figure depicts a particular sequential measurement
protocol involving three parties. ρ

j

i denotes the j th particle of the
ith state. Three states, ρ1 [Eq. (7)], ρ2 [Eq. (8)], and ρ3 [Eq. (9)],
are distributed between the three parties A1, A2, and A3 such that
each of the three parties holds one particle from each of the three
states. A1 holds particles ρ1

1 , ρ3
2 , and ρ1

3 ; A2 holds ρ2
1 , ρ1

2 , and ρ2
3 ,

and A3 holds particles ρ3
1 , ρ2

2 , and ρ3
3 . The sequential measurement

protocol (SMP) is a particular example of WCCPI protocol. In the
preparation stage, each of them performs Bell basis measurements
on two of their respective three particles: A1 performs Bell basis
measurement on ρ3

2 and ρ1
3 ; A2 performs Bell basis measurement on

ρ2
1 , ρ1

2 ; and A3 performs Bell basis measurement on ρ3
1 and ρ2

2 . Each
Bell basis measurement is denoted by a dotted box. Due to Bell basis
measurements by each of the three parties and then communication
of the results among themselves, the resultant state ρ4 [Eq. (10)] is
generated at the end of the preparation stage. ρ4 [Eq. (10)] is shared
between A1, A2, and A3. In the measurement stage, each of the parties
A1, A2, and A3 perform arbitrary projective measurements on their
respective qubits of state ρ4 [Eq. (10)]. At the end of the measurement
stage tripartite correlations are generated in the SMP.

a protocol based on sequential measurements which we refer
to as a sequential measurement protocol (SMP, see Fig. 1). It
involves three different tripartite quantum states. These three
states, none of which was individually NS2 nonlocal in the
specific Bell scenario and not even after application of known
useful local filters, when used in the SMP, generates a quantum
state which is NS2 nonlocal. However, as NS2 nonlocality of
the final state is revealed starting from NS2 local initial states
in the specific Bell scenario, so such revelation of hidden NS2
nonlocality can be considered as a revelation of weak hidden
nonlocality. Moreover, the SMP can be used in principle, even
in the case when each of the states initially possessed by the
parties has an arbitrary amount of genuine entanglement.

The rest of our paper is organized as follows. In Sec. II,
we give a brief introduction to some concepts and results

which we will use in later sections. We introduce the sequential
measurement protocol in Sec. III, together with the states used
in the protocol to exhibit hidden GTNL. In Sec. IV we discuss
our observations in the context of revealing hidden GTNL.
Finally, we conclude in Sec. V by discussing various aspects
of our findings along with the scope of future research works.

II. PRELIMINARIES

Before starting our discussion, we provide all notions and
facts necessary for further considerations.

A. Genuine tripartite nonlocality

To analyze the nature of correlations shared between three
systems, different forms of nonlocality can be considered. The
local tripartite correlations have the form

P (a,b,c|x,y,z) =
∑

λ

qλPλ(a|x)Pλ(b|y)Pλ(c|z), (1)

where a, b, c ∈ {0,1} denote the outputs and x, y, z ∈ {0,1}
denote inputs of the parties Alice, Bob, and Charlie, respec-
tively, 0 � qλ � 1 and

∑
λ qλ = 1. Pλ(a|x) is the conditional

probability of getting outcome a when the measurement
setting is x and λ is the hidden state; Pλ(b|y) and Pλ(c|z)
are similarly defined. Tripartite correlations that cannot be
written as in Eq. (1) are called nonlocal. Bell-type inequalities
based on local realism [Eq. (1)] fail to distinguish between
bipartite and tripartite nonlocality [39–41]. In order to detect
GTNL, Svetlichny introduced a hybrid local-nonlocal form of
correlations [34]:

P (abc|xyz) =
∑

λ

qλPλ(ab|xy)Pλ(c|z)

+
∑

μ

qμPμ(ac|xz)Pμ(b|y)

+
∑

ν

qνPν(bc|yz)Pν(a|x), (2)

where 0 � qλ, qμ, qν � 1, and
∑

λ qλ + ∑
μ qμ + ∑

ν qν =
1. This form of correlations is referred to as Svetlichny local
(S2 local) or otherwise Svetlichny nonlocal (S2 nonlocal)
[36]. Based on this, Svetlichny designed a tripartite Bell-type
inequality (known as the Svetlichny inequality),

S � 4, (3)

where S = 〈x0y0z0〉 + 〈x1y0z0〉 − 〈x0y1z0〉 + 〈x1y1z0〉 +
〈x0y0z1〉 − 〈x1y0z1〉 + 〈x0y1z1〉 + 〈x1y1z1〉. Violation of
this inequality guarantees S2 nonlocality, sufficient to detect
GTNL. While Svetlichny’s notion of GTNL is often referred to
in the literature, it has certain drawbacks. As has been pointed
out in [35,36,42], Svetlichny’s notion of GTNL is so general
that correlations capable of two-way signaling are allowed
among some parties. This may lead to grandfather-style
paradoxes [36] and provide inconsistency in operational
purposes [35,43]. To remove this ambiguity, Bancal et al.
[36] introduced genuine three-way NS nonlocality (NS2
nonlocality). Suppose P (abc|xyz) be the tripartite correlation
satisfying Eq. (2) with nonsignaling criteria imposed on the
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bipartite correlations terms,

Pλ(a|x) =
∑

b

Pλ(ab|xy) ∀ a, x, y, (4)

Pλ(b|y) =
∑

a

Pλ(ab|xy) ∀ b,x, y, (5)

and similarly for Pμ(ac|xz) and Pν(bc|yz). This form of
correlations is called NS2 local. Otherwise, they are NS2
nonlocal. In analyzing the procedure of revelation of hidden
GTNL, we have used the necessary and sufficient criteria
for detecting GTNL provided by the whole set of 185 facet
inequalities of the NS2 local polytope in the presence of binary
input and output (see Supplementary Material of [36]). The
Svetlichny inequality constitutes the 185th facet inequality.
Throughout the paper we have used projective measurements
to check the nature of correlations generated by some tripartite
quantum states.

B. Wirings and classical communication prior to the inputs
(WCCPI protocol)

This protocol may be considered as a set of allowed opera-
tions that cannot create nonlocality, i.e., interpret nonlocality as
a resource, analogous to entanglement which cannot be created
by local operations and classical communication (LOCC).
This type of protocol was first used in [35] for framing
multipartite nonlocality as a resource. The protocol introduced
there involved single measurement. Later it was extended for
sequential measurements in [44]. A valid WCCPI protocol
for sequential measurements [44], characterizing basically
correlation terms generated in any sequential scenario, mainly
consists of two stages: preparation stage and measurement
stage. In the preparation stage the parties are allowed to
perform measurements on their respective physical systems
and then communicate the corresponding outputs among each
other. As the parties have not yet received any input for the
final Bell test (going to take place in the measurement stage),
classical communication is allowed in the preparation stage.
However, this communication cannot be used to generate any
sort of nonlocal correlations. The inputs of the parties for the
final stage, i.e., the measurement stage depends on outputs
that are obtained and communicated in the preparation stage.
In the measurement stage no further communication is allowed
between the parties. The permissible local operations of each
party consist of processing the classical inputs and outputs
and are referred to as wirings. The sequential correlations
generated at the end of the measurement stage help in
characterizing nonlocality as a resource. As already discussed
before, nonlocality cannot be created by WCCPI, so GTNL
also cannot be created by WCCPI protocol. In our present topic
of discussion, we have introduced a measurement protocol
which may be considered as a WCCPI protocol.

C. Genuine multipartite concurrence (CG M )

We briefly now describe CGM , a measure of genuine
multipartite entanglement. For pure n-partite states(|ψ〉), this
measure defined as [45] CGM (|ψ〉) := minj

√
2[1 − �j (|ψ〉)],

where �j (|ψ〉) is the purity of the j th bipartition of |ψ〉. The
expression of CGM for X states are given in [46]. For tripartite

X states,

CGM = 2 maxi{0,|γi | − wi}, (6)

with wi = ∑
j �=i

√
ajbj , where aj , bj and γj (j = 1,2,3,4) are

the elements of the density matrix of the tripartite X state:
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 0 0 0 0 0 0 γ1

0 a2 0 0 0 0 γ2 0
0 0 a3 0 0 γ3 0 0
0 0 0 a4 γ4 0 0 0
0 0 0 γ4

∗ b4 0 0 0
0 0 γ3

∗ 0 b3 0 0
0 γ2

∗ 0 0 0 0 b2 0
γ1

∗ 0 0 0 0 0 0 b1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

III. SEQUENTIAL MEASUREMENT PROTOCOL

Consider a measurement protocol connecting three distant
observers Ai(i = 1,2,3). n tripartite quantum states ρj (j =
1,2,...,n) can be used in the protocol. Let each of n states
ρj (j = 1,2,...,n) fails to reveal GTNL in the specific Bell
scenario. Each of these n states ρj (j = 1,2,...,n) can be
distributed between the three parties Ai(i = 1,2,3) with some
specification in distribution of qubits among the parties such
that each of the three parties holds one particle from each
of the n states. So each of the parties holds n qubits in his
laboratory. This protocol is a particular example of WCCPI
protocol. In the preparation stage, each party can perform
some joint measurement on their respective n − 1 particles
and then communicate the results between themselves. At the
end of measurements by all the three parties, ρn+1, a tripartite
quantum state shared between A1, A2, and A3 is generated.
Clearly, as in any WCCPI protocol, the state ρn+1 is output
specific, i.e., it depends on the output of the joint measurements
performed by the parties in the preparation stage. In the
measurement stage of the protocol, each of the three parties
can now perform arbitrary projective measurements on their
share of the physical system ρn+1 but are not allowed to
communicate among themselves, thereby generating tripartite
correlation terms whose nature can now be tested using some
tripartite Bell inequality. We refer to this protocol of sequential
measurements by the three parties sharing n states as a
sequential measurement protocol (SMP). Now we have already
discussed before that GTNL cannot be created by the WCCPI
protocol. Hence generation of GTNL by SMP, starting from
three local initial states, guarantee revelation of hidden GTNL
by our SMP. Our SMP can be considered as a particular type
of sequential measurement protocol in which hidden GTNL
can be revealed, analogous to the sequential measurement
protocol introduced by Popescu for revealing hidden bipartite
nonlocality [17]. We provide an explicit example of revelation
of hidden GTNL for n = 3 by using our SMP(see Fig. 1).
Suppose the three initial states shared between the three parties
is given by

ρ1 = p1|ψf 〉〈ψf | + (1 − p1)|001〉〈001|, (7)

with |ψf 〉 = cos θ1|000〉 + sin θ1|111〉, 0 � θ1 � π
4 , and 0 �

p1 � 1;

ρ2 = p2|ψm〉〈ψm| + (1 − p2)|010〉〈010|, (8)
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with |ψm〉 = |000〉+|111〉√
2

and 0 � p2 � 1; and

ρ3 = p3|ψl〉〈ψl| + (1 − p3)|100〉〈100|, (9)

with |ψl〉 = sin θ3|000〉 + cos θ3|111〉, 0 � θ3 � π
4 , and 0 �

p3 � 1. The ith particle of each of ρ1(ρi
1) [Eq. (7)] and ρ3(ρi

3)
is with the party Ai(i = 1,2,3), whereas the three particles
of ρ2, i.e., ρ1

2 , ρ2
2 , and ρ3

2 , are with parties A2, A3, and A1,
respectively. Hence each of the three parties Ai(i = 1,2,3)
has three particles. Now in the preparation stage of the SMP,
each of the three parties Ai(i = 1,2,3) performs Bell basis
measurements on two of the three particles that each of
them holds: A1 performs Bell basis measurement on the 3rd
particle of ρ2(ρ3

2 ) and 1st particle of ρ3(ρ1
3 ); A2 performs

Bell basis measurement on the 2nd particle of ρ1(ρ2
1 ) and 1st

particle of ρ2(ρ1
2 ); and A3 performs Bell basis measurement

on the 3rd particle of ρ1(ρ3
1 ) and 2nd particle of ρ2(ρ2

2 ). After
all three parties have performed Bell basis measurement on
their respective particles, they communicate the results among
themselves, as a result of which ρ4 is generated at the end of the
preparation stage. If the output of each of the measurements
is |ψ±〉( |01〉±|10〉√

2
), the resultant state (correcting phase term) is

given by

ρ4 = p3|φ〉〈φ| + (1 − p3) sin2 θ1|100〉〈100|
sin2 θ1 + p3 cos 2θ1 sin2 θ3

, (10)

where |φ〉 = cos θ1 sin θ3|000〉 + sin θ1 cos θ3|111〉. Equation
(10) points out that ρ4 is independent of p1 and p2. Clearly the
final state ρ4 is obtained from the initial states ρi(i = 1,2,3)
by means of postselecting particular results (|ψ±〉) of local
measurements, so the preparation stage of this protocol can
be considered as a particular instance of stochastic local
operations and classical communication (SLOCC). After ρ4

is generated and shared between the parties in the preparation
stage, each of the three parties A1, A2, and A3 performs
projective measurement on the state ρ4 in the measurement
stage. Now if the correlations generated from ρ4 exhibit
GTNL under the context that the initial states ρi(i = 1,2,3)
fail to reveal the same, then that guarantees generation of
hidden GTNL in the SMP. However, ρ4 can be generated for
some other specification of SMP protocol also, especially for
some different arrangement of particles between the parties
Ai(1,2,3) and for different outputs of Bell measurements.
Having designed the SMP, we are now going to present our
results.

IV. REVELATION OF HIDDEN GENUINE TRIPARTITE
NONLOCALITY

In this section we discuss in detail our observations which
guarantee that the SMP introduced in the last section helps in
revealing hidden GTNL. For that we consider two different
notions of hidden GTNL: hidden S2 nonlocality and hidden
NS2 nonlocality. First we consider the former notion.

A. Revelation of hidden Svetlichny nonlocality

Existence of hidden S2 nonlocality will be guaranteed if
we can transform S2 local ρi(i = 1,2,3) to ρ4, capable of
violating Eq. (3). Below we will show that the final state
ρ4, resulting from the preparation stage of the SMP, exhibits

S2 nonlocality, though the initial states ρi(i = 1,2,3) are S2

local. The maximum value of the Svetlichny operator (S) up
to projective measurements, for state ρi(i = 1,2,3), is given
by (see Appendix A)

B1 = max[4
√

2 p1 sin 2θ1,4|(1 − p1 − p1 cos 2θ1)|],
B2 = max[4

√
2 p2,4(1 − p2)],

and

B3 = max[4
√

2 p3 sin 2θ3,4|(1 − p3 − p3 cos 2θ3)|], (11)

respectively, whereas that for the final state ρ4 is given by

B4 = max

[
2
√

2 p3 sin 2θ1 sin 2θ3

sin2 θ1 + p3 cos 2θ1 sin2 θ3
,

2|(1 − 2p3 sin2 θ3 − cos θ1)|
sin2 θ1 + p3 cos 2θ1 sin2 θ3

]
. (12)

Since both the initial (ρi,i = 1,2,3) and final states (ρ4) belong
to the class of tripartite X states, their amount of genuine
entanglement can be measured by Eq. (6). For the initial states
ρi(i = 1,2,3), the amounts of GTE are given by

C
ρ1
GM = p1 sin 2θ1,

C
ρ2
GM = p2,

and

C
ρ3
GM = p3 sin 2θ3, (13)

whereas that for ρ4 is given by

C
ρ4
GM = p3 sin 2θ1 sin 2θ3

2(sin2 θ1 + p3 cos 2θ1 sin2 θ3)
. (14)

The initial states ρi(i = 1,2,3) are genuinely entangled for any
nonzero value of the state parameters [Eq. (13)]. It is clear from
the maximum value of the Svetlichny operator [Eqs. (11) and
(12)] and the measure of entanglement [Eqs. (13) and (14)] of
both initial states and the final state that each of them is S2

local for C
ρi

GM � 1√
2
(i = 1,2,3,4). Thus existence of hidden

S2 nonlocality can be observed if for some fixed values of the
parameters of the three initial S2 local states (Cρi

GM � 1√
2
), the

final state can have C
ρ4
GM > 1√

2
. Now for θ1 = 0.1, p2 � 1√

2
,

θ3 = 0.144, and p1 ,p3 ∈ [0,1], each of the initial states is S2

local (Cρi

GM � 1√
2
), whereas the resultant state ρ4 violates the

Svetlichny inequality (Cρ4
GM > 1√

2
) for p3 � 0.505 5. In this

explicit example, initial genuinely tripartite entangled states
do not violate the Svetlichny inequality, but when used in the
preparation stage of our SMP, they can generate a state which
exhibits S2 nonlocality. This guarantees existence of hidden S2

nonlocality for p3 ∈ [0.505 5,1] (see Fig. 2).
Now use of local filters is known to be a standard method

to reveal hidden nonlocality. Interestingly, our SMP can reveal
hidden S2 nonlocality using some initial states which are even
incapable of exhibiting hidden S2 nonlocality (i.e., cannot
reveal S2 nonlocality after being subjected to known useful
local filters [38]). We proceed forward with an example. Let
known useful local filters be applied on each of the three initial
states ρi(i = 1,2,3) to reveal hidden S2 nonlocality of the
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FIG. 2. The region of revelation of hidden S2 nonlocality for
θ1 = 0.1 where the initial states ρi(i = 1,2,3) are S2 local. Similar
type of regions of revelation of hidden S2 nonlocality can be observed
for different values of θ1.

individual state. The maximum value of Svetlichny operator
S [Eq. (3)], in terms of state parameters, for each of the three
states ρi(i = 1,2,3), after applying known useful local filters,
are derived (see Appendix B). Maximum values of S, in turn,
provide constraints on the state parameters such that each of
the initial states ρi , has no S2 nonlocality, even after being
subjected to local filtering. For a particular instance, when
θ1 = 0.1, ρ1, after being filtered, still remains S2 local for
p1 ∈ [0,0.502 5]. Similarly the second state (ρ2), after being
subjected to filtering, remains S2 local for p2 ∈ [0,0.666 6], but
the range of p3 for which ρ3 exhibits S2 nonlocality remains
unaltered both before and after filtering when θ3 = 0.144 (see
Appendix B). Hence each of the initial states ρi(i = 1,2,3),
under some restricted range of state parameters, has no hidden
S2 nonlocality. Now if these initial states under the said
restricted range are used in the initial stage (preparation
stage) of our SMP, then S2 nonlocality will be revealed for
p3 ∈ [0.505 5,1]. However, this range of revelation of hidden
S2 nonlocality in our SMP remains the same when the states
ρi(i = 1,2,3) are used without being filtered. This example
thus suffices to justify our claim that our SMP can reveal hidden
S2 nonlocality even from some initial states which have no
hidden S2 nonlocality. This in turn points out the utility of SMP
over the standard procedure of using local filters for revelation
of hidden S2 nonlocality. In the context of our discussion, it
should be pointed out that in [37], hidden S2 nonlocality was
observed. But our method and the results differ from those
discussed in [37]. It was shown there that if the three parties
share two identical copies of the genuinely entangled state κ

such that each κ does not violate the Svetlichny inequality,
then κ

⊗
κ can violate Svetlichny inequality, the maximal

amount of violation being 4.241 8. Moreover, in our SMP
there exist initial states ρi(i = 1,2,3) which do not violate
the Svetlichny inequality, whereas the final state ρ4 generated
from the initial stage (preparation stage) of our SMP (Fig. 1)
can violate the Svetlichny inequality maximally. For instance,

if we consider ρi(i = 1,2,3) as the three initial states with
θ3 = θ1 and p3 = 1, then with the S2 local version of these
initial states, i.e., under some restricted range of θ1, p1, and p2

[Eq. (11)]: 0 < sin 2θ1 � 1√
2
, 0 < p1 � 1, and 0 < p2 � 1√

2
,

the maximally entangled state |ψm〉 is obtained. Even with
arbitrarily lower values of θ1, p1, and p2, i.e., with initial
states having lower values of CGM , |ψm〉 can be obtained
and hence the maximal violation of Svetlichny inequality
can be observed. This in turn points out the utility of our
SMP to check the existence of hidden S2 nonlocality from
experimental perspectives.

B. Revelation of hidden genuine three-way NS nonlocality

The initial states used so far were S2 local. However,
some of them were genuinely three-way NS nonlocal, as they
can violate one of the 185 facets (except for the Svetlichny
inequality). So revelation of hidden S2 nonlocality via violation
of the Svetlichny inequality does not guarantee the existence
of hidden NS2 nonlocality. For that purpose, all the initial
states must be NS2 local and the final state (resulting from the
preparation stage of the SMP) must violate at least one of these
185 facets. We now proceed to present instances in support of
our claim that hidden NS2 nonlocality can be revealed by our
SMP.

Consider three genuinely tripartite entangled states (ρi,i =
1,2,3) satisfying all 185 facets of the NS2 local polytope (for
some restricted range of state parameters). Precisely, each of
the three states are NS2 local. If the final state ρ4, resulting from
the preparation stage of SMP, violates at least one of the 185
facets, then that implies revelation of hidden NS2 nonlocality.
For instance, consider ρ1 [Eq. (7)] with θ1 = 0.1, p1 < 0.509,
ρ2 [Eq. (8)] with p2 < 0.667 2, and ρ3 [Eq. (9)] with θ3 = 0.3,
p3 < 0.919 8, then these initial states satisfy all 185 facet
inequalities. The final state ρ4 [Eq. (10)] where θ1 = 0.1,
θ3 = 0.3, violates some of the facet inequalities over a varying
range of the state parameter p3. For p3 � 0.105, the 16th
facet inequality (same numbering as in [36] has been used for
convenience) is violated. This implies the existence of hidden
NS2 nonlocality in the range p3 ∈ [0.105,0.919 8]. These
ranges of p1, p2, p3 are found by numerical optimization using
the MATHEMATICA software [47] (see Appendix A). There exist
many other specific NS2 local initial states belonging to the
three families of tripartite mixed states [Eqs. (7), (8), and
(9)] for which the state generated by the preparation stage
of our SMP (Fig. 1) can reveal hidden NS2 nonlocality. We
have thus succeeded to show the existence of hidden NS2
nonlocality by our SMP. Some numerical observations are
listed in Table I. These observations justify our claim that
an arbitrarily small amount of GTE suffices to reveal hidden
NS2 nonlocality. Analogous to our approach, in the case of S2

nonlocality, here we consider three initial states, none of which
is NS2 nonlocal even after being subjected to filtering. Then
these states when used in our SMP generate NS2 nonlocal
correlations. We provide an explicit illustration in support of
our claim. Let known useful filters be applied on each of the
three initial states ρi(i = 1,2,3). Fixing the state parameter
of ρ1 to be θ1 = 0.1, we apply known useful filters over it.
After being filtered, it remains NS2 local for p1 ∈ [0,0.502 5].
Similarly, a second state (ρ2), after filtration, remains NS2
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TABLE I. The range of revelation of hidden genuine three-way NS nonlocality for state parameter p3 is given in the table for different fixed
values of the state parameters of the NS2 local initial ρi(i = 1,2,3). These values were found by numerical optimization (by MATHEMATICA

software). Here we consider a fixed value of state parameter (θ1) of ρ1, θ1 = 0.1. Clearly the range of revelation varies with variation of θ1.

ρ1 ρ2 ρ3 Revelation range

p1 < 0.509 p2 < 0.6672 θ3 = 0.1, p3 < 0.9901 p3 ∈ [0.504,0.9901]
p1 < 0.509 p2 < 0.6672 θ3 = 0.5, p3 < 0.8135 p3 ∈ [0.0425,0.8135]
p1 < 0.509 p2 < 0.6672 θ3 = 0.7, p3 < 0.7072 p3 ∈ [0.0243,0.7072]
p1 < 0.509 p2 < 0.6672 θ3 = 0.785, p3 < 0.6677 p3 ∈ [0.0202,0.6677]

local for p2 ∈ [0,0.666 6]. However, for θ3 = 0.3, the range
of p3 for which ρ3 exhibits NS2 nonlocality does not change
after applying filtering operation (see Appendix B). So for each
of the three initial states ρi(i = 1,2,3), after being subjected
to local filtering, there exists some range of state parameters
for which NS2 nonlocality cannot be revealed. If these initial
states under the said restricted range are used in our SMP, then
NS2 nonlocality will be revealed for p3 ∈ [0.105,0.919 8].
However, analogous to revelation of hidden S2 nonlocality,
this range of revelation of hidden NS2 nonlocality in our
SMP remains the same when the states ρi(i = 1,2,3) are used
without being subjected to filtration. Thus our SMP turns out
to be more efficient compared to the standard procedure of
using local filters for revelation of hidden NS2 nonlocality.

V. DISCUSSION

From our discussion so far we conclude that genuine
three-way NS nonlocality is a kind of resource that can
be revealed by a sequence of measurements. Usually it is
believed that a standard Bell scenario (i.e., in each run of the
experiment, nonsequential local measurements are performed
on a single copy of an entangled state) is suitable for a
quantum state to exhibit genuine three-way NS nonlocality.
Our present work, however, can be considered as an approach
deviated from this usual belief. We have shown that three
tripartite quantum states, unable to reveal genuine three-way
NS nonlocality in the standard Bell scenario, when used in our
sequential measurement protocol, can generate a state which
is genuinely three-way NS nonlocal. This implies that hidden
genuine three-way NS nonlocality can be revealed. Even our
SMP emerges to be more efficient to reveal hidden genuine
three-way NS nonlocality compared to the standard procedure
of using known useful local filters.

Besides, the preparation stage of our SMP protocol can
also be interpreted as an entanglement swapping protocol.
Consequently, via this protocol we can give an affirmative
answer for a tripartite system to a query posed by Sen et al.
[28]: Considering some local entangled states, is it possible to
find some entanglement swapping process so that the swapped
states, resulting from it, are capable of showing nonlocal
behavior?

There are a number of possible generalizations of the above
results. One may explore whether for any genuinely tripartite
mixed entangled state, the existence of at least one suitable
SMP is guaranteed under which revelation of hidden GTNL
is possible. Also, it will be interesting to generalize our SMP
so as to demonstrate n partite hidden genuine nonlocality.
Moreover, until now there exist various experimental works
demonstrating tripartite nonlocality [48–50] and also hidden
bipartite nonlocality [51]. In that context, one may expect
to use our protocol for experimental verification of hidden
GTNL. Besides, as GTNL implies GTE, our SMP can be
used in the laboratory to detect GTE of the initial states in a
device-independent way [52,53].
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APPENDIX

1. Checking facets of NS2 local polytope

Derivation of Bi(i = 1,2,3,4). In order to obtain the
maximum value B1 [Eq. (11) of main text] of the Svetlichny
operator S [Eq. (3)] up to projective measurements we
follow the method used in [42]. We consider the following
measurements: x0 = 	x · 	σ1 or x1 = 	́x · 	σ1 on the 1st
qubit, y0 = 	y · 	σ2 or y1 = 	́y · 	σ2 on the 2nd qubit, and
z0 = 	z · 	σ3 or z1 = 	́z · 	σ3 on the 3rd qubit, where 	x, 	́x, 	y, 	́y,
and 	z,	́z are unit vectors, and σi are the spin projection
operators that can be written in terms of the Pauli matrices.
Representing the unit vectors in spherical coordinates, we have
	x = (sin θa0 cos φa0, sin θa0 sin φa0, cos θa0), 	y = (sin αb0

cos βb0, sin αb0 sin βb0, cos αb0), and 	z = (sin ζc0 cos
ηc0, sin ζc0 sin ηc0, cos ζc0), and similarly, we define 	́x, 	́y,

and 	́z by replacing 0 in the indices by 1. Then the value of the
operator S [Eq. (3)] with respect to the state ρ1 [Eq. (7)] gives

S(ρ1) = cos(αb0)[−1 + p1 + p1 cos(2θ1)]
{

cos(ζc0)[cos(θa0) − cos(θa1)] + cos(ζc0)(cos θa0)

+ cos(θa1)
} + cos(αb1)[−1 + p1 + p1 cos(2θ1)]

{
cos(ζc0)[cos(θa0) − cos(θa1)] − cos(ζc1)[cos(θa0)

+ cos(θa1)]
} + p1 sin(2θ1)

{
cos(βb0 + ηc0 + φa0) sin(αb0) sin(ζc0) sin(θa0)

+ cos(βb1 + ηc0 + φa0) sin(αb1) sin(ζc0) sin(θa0)+ cos(βb0+ηc1
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+φa0) sin(αb0) sin(ζc1) sin(θa0) − cos(βb1+ηc1 + φa0) sin(αb1) sin(ζc1) sin(θa0)

+ cos(βb0 + ηc0 + φa1) sin(αb0)sin(ζc0)sin(θa1)− cos(βb1+ηc0+φa1)sin(αb1) sin(ζc0) sin(θa1)

− cos(βb0 + ηc1 + φa1) sin(αb0) sin(ζc1) sin(θa1)

− cos(βb1 + ηc1 + φa1) sin(αb1) sin(ζc1) sin(θa1)}. (A1)

Hence in order to get a maximum value of S(ρ1), we have to perform a maximization over 12 measurement angles.
We first find the global maximum of S(ρ1) with respect to θa0 and θa1. We begin with, by finding all critical points
of S(ρ1) inside the region R = [0,2π ] × [0,2π ], which are, namely, (0,0), (π

2 ,−π
2 ),(−π

2 , π
2 ), (π

2 , π
2 ), and (−π

2 ,−π
2 ).

Among all these critical points, (π
2 , π

2 ) gives the global maximum of S(ρ1) if
√

2p1 sin(2θ1) > |[1 − p1 − p1 cos(2θ1)]|.
Thus, we have S(ρ1) � p1 sin(2θ1)[cos(βb0 + ηc0 + φa0) sin(αb0) sin(ζc0) sin(θa0) + cos(βb1 + ηc0 + φa0) sin
(αb1) sin(ζc0) sin(θa0) + cos(βb0 + ηc1 + φa0) sin(αb0) sin
(ζc1) sin(θa0) − cos(βb1 + ηc1 + φa0) sin(αb1) sin(ζc1) sin
(θa0) + cos(βb0 + ηc0 + φa1) sin(αb0) sin(ζc0) sin(θa1) − cos(βb1 + ηc0 + φa1) sin(αb1) sin(ζc0) sin(θa1)]

− cos(βb0 + ηc1 + φa1) sin(αb0) sin(ζc1) sin(θa1)

− cos(βb1 + ηc1 + φa1) sin(αb1) sin(ζc1) sin(θa1). (A2)

Now we carry out the same procedure over the following pair of variables: (ζc0,ζ c1) and (αb0,αb1), one by one. Similar to the
previous case, the critical point ( π

2 , π
2 ) gives the maximum value for both of these pair of variables. So, the last inequality in

Eq. (A2) takes the form

S(ρ1) � p1 sin(2θ1)
{

cos ηc0[cos(βb0 + φa0) + cos(βb1 + φa0)

+ cos(βb0 + φa1) − cos(βb1 + φa1)] − sin ηc0[sin(βb0 + φa0) + sin(βb1 + φa0)

+ sin(βb0 + φa1) − sin(βb1 + φa1)] + cos ηc1[cos(βb0 + φa0) − cos(βb1 + φa0)

− cos(βb0 + φa1) − cos(βb1 + φa1)]

+ sin ηc1[− sin(βb0 + φa0) + sin(βb1 + φa0) + sin(βb0

+φa1) + sin(βb1 + φa1)]
}
, (A3)

which when maximized with respect to ηc0 and ηc1 gives

S(ρ1) � 2p1 sin(2θ1)
√

[cos A00 + cos A10 + cos(A01) − cos A11]2 + (sin A00 + sin A10 + sin A01 − sin A11)2, (A4)

where Aij = βbi + φaj , (i,j ∈ {0,1}). The last inequality
is obtained by using the inequality x cos θ + y sin θ �√

x2 + y2. A maximum value of the expression in Eq. (A4)
remains unaltered by putting any value of βb0 and φa0.
In particular, if we take βb0 = 0 and φa0 = 0, then the
maximum value is obtained for (βb1,φa1) = (π

2 , π
2 ) and is

equal to 4
√

2p1 sin 2θ1. Again, if
√

2p1 sin(2θ1) < |[1 − p1 −
p1 cos(2θ1)]|, the critical point (0,0) gives the maximum value
of S(ρ1). Then Eq. (A1) reduces to S(ρ1) � 2[−1 + p1 +
p1 cos(2θ1)][cos(αb0) cos(ζc0) − cos(αb1) cos(ζc1)]. Now the
critical point (0,0) gives the maximum value when we
maximize the last expression with respect to αb0 and
αb1. Then the last inequality becomes S(ρ1) � 2[−1 +
p1 + p1 cos(2θ1)][cos(ζc0) − cos(ζc1)]. Again we maximize

it with respect to ζc0 and ζc1. The critical point
(0,π ) or (π,0) gives the maximum value depending
on whether p1[1 + cos(2θ1)] > 1 or p1[1 + cos(2θ1)] <

1. Hence in any case S(ρ1) � 4|1 − p1 − p1 cos(2θ1)|.
So S(ρ1) � max[4

√
2p1 sin 2θ1,4|1 − p1 − p1 cos(2θ1)|] as

stated in Eq. (11) of the main text. Similarly one can obtain
Bi (i = 2,3,4). From these values of Bi (i = 1, 2, 3), one can
get the range of pi for which the corresponding initial state
ρi satisfies the Svetlichny inequality. For the final state ρ4, we
obtain the range of violation of Svetlichny inequality by fol-
lowing the above analytical method. We now proceed to search
for the maximum expectation value of operator [NSi(ρj ),j =
1,2,3,4] corresponding to the remaining ith (i = 1,2,...,184)
facet inequality.

Checking the remaining 184 facets. The above method of maximization is applied for most of the remaining 184 facet
inequalities, excluding a few for which the upper bound of violation [Bi(i = 1,2,3)] is measurement specific, i.e., varies not only
with the state parameters but also with variation of parameters characterizing the measurement settings. In order to find the range
of pi for those inequalities, we have performed numerical optimization by using MATHEMATICA software [47]. We now give an
example of such a facet inequality for which the analytical method of maximization does not hold good due to dependence of
the upper bound of expectation value of the corresponding operator over measurement settings apart from state parameters. The
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3rd facet (say) is given by

NS3 = −〈x0〉 − 〈x1〉 − 〈x0y0〉 − 2〈y1〉 − 〈z0〉 + 〈x1y0〉 − 〈x0z0〉 + 〈y0z0〉 + 〈x1y0z0〉 − 〈x0y1z0〉 + 〈x1y1z0〉 − 〈z1〉
+ 〈x1z1〉 − 〈y0z1〉 − 〈x0y0z1〉 + 〈x0y1z1〉 + 〈x1y1z1〉 � 4. (A5)

The value of the operator NS3 given by the 3rd facet with respect to the state ρ1 [Eq. (7) of main text] under the projective
measurement gives the following:

NS3(ρ1)

= cos ζc1[(1 − p1)(1 + cos αb0 + cos θa0 cos αb0) − p1 cos2 θ1 − p1 cos αb0 cos2 θ1] − (1 − p1) cos θa0(1 + cos αb0)

−p1 cos2 θ1 cos θa0(1 + cos αb0 + cos αb0 cos ζc1) + (cos αb0 cos θa1 − cos ζc1 cos θa1 − 1)(1 − p1)

−p1 cos2 θ1 cos θa1(1 − cos αb0

− cos ζc1) + cos ζc0{1 − p1 − p1 cos 2θ1 + cos θa0(1 − 2p1) + cos αb0[−1 + 2p1 + (−1 + p1 + p1 cos 2θ1) cos θa1]}
− 1

2 cos αb1{cos ζc0(−2 + p1 + p1 cos 2θ1)(cos θa0 − cos θa1) − 2p1 cos2 θ1[−2 + cos ζc0(cos θa1 − cos θa0)

+ cos ζc1(cos θa1

+ cos θa0)] + 2[2 − 3p1 + p1 cos 2θ1 − (1/2) cos ζc1(−2 + p1 + p1 cos 2θ1)(cos θa1 + cos θa0)] + (p1 cos ζc1 sin2 θ1

+p1 cos θa0 sin2 θ1)(1 − cos αb0) + p1 cos αb0 cos ζc1 cos θa0 sin2 θ1 + p1 cos θa1 sin2 θ1(1 + cos αb0 + cos ζc1)

−p1 cos(βb1 + ηc0 + φa0) sin αb1 sin ζc0 sin 2θ1 sin θa0 − p1 cos(βb0 + ηc1 + φa0) sin αb0 sin ζc1 sin 2θ1 sin θa0

+p1 cos(βb1 + ηc1 + φa0) sin αb1 sin ζc1 sin 2θ1 sin θa0 + p1 cos(βb0 + ηc0 + φa1) sin αb0 sin ζc0 sin 2θ1 sin θa1

+p1 cos(βb1 + ηc0 + φa1) sin αb1 sin ζc0 sin 2θ1 sin θa1 + p1 cos(βb1 + ηc1 + φa1) sin αb1 sin ζc1 sin 2θ1 sin θa1}.
(A6)

Now to find the upper bound of NS3(ρ1) in terms of state
parameters, we need to maximize NS3(ρ1) over all the
variables parameterizing measurement settings. However, for
almost each of those variables there is no fixed critical point
for which NS3(ρ1) gives a maximum value, it varies with the
variation of state parameters. Hence, the analytical method
that was followed for S(ρ1) cannot be applied. In order to
overcome this difficulty, we apply numerical optimization by
using MATHEMATICA software [47]. We consider a particular
example. Let θ1 = 0.1. The measurement settings parameters
vary with the other state parameter p1, i.e., the maxima of
NS3(ρ1) with respect to any measurement parameter varies
with state parameter p1. So we maximize NS3(ρ1) over all
measurement parameters by using MATHEMATICA software.
After maximizing numerically, it is observed that under the
restriction 0 � p1 � 0.509, the maximum value of NS3(ρ1)
never exceeds 4. Hence the initial state ρ1 with θ1 = 0.1
satisfies the 3rd facet when 0 � p1 � 0.509. We have applied
this numerical method for all facets for which the upper bound
of violation depends on measurement settings apart from state
parameters. In totality, i.e., considering all facets (some by
analytical method and others by numerical method), it is
checked that ρ1 with θ1 = 0.1 satisfy all of the 185 facets
when 0 � p1 � 0.509. A similar method is applied to find the
range of p1 for which ρ1 satisfies all of 185 facets for different
fixed values of θ1. Just as for the initial state ρ1, we have
followed a similar trend of analysis for the other two initial
states ρ2, ρ3 and also for the resultant state ρ4.

2. Local filtering and hidden genuine tripartite nonlocality

Here we discuss the effect of using local filtering on the
initial states ρi(i = 1,2,3). Any local filtering transforms a

tripartite state ρ into

ρ́ = (F1
⊗

F2
⊗

F3)ρ(F †
1

⊗
F

†
2

⊗
F

†
3 )

tr[(F1
⊗

F2
⊗

F3)ρ(F †
1

⊗
F

†
2

⊗
F

†
3 )]

, (A7)

where F
†
j Fj � I2 (j = 1,2,3). It is shown in [38] that for the

qubit case, the most general filters are of the form

Fj =
(

εj 0
0 1

)(
cos θj −eiφj sin θj

eiφj sin θj cos θj

)
,

where εj , θj , φj are real parameters. It is argued in [38] that
theoretically there is no reason to exclude the unitary matrix
in Fj (which corresponds to a local unitary before the filter),
yet in the standard form of local filters, the contribution from
the unitary matrix is ignored. In [38] it is also argued that all
the known useful filters are diagonal. Especially for the qubit
case, it seems that only the diagonal filters are relevant. Since
we are dealing with the qubit case only, we take the filters of
the form

Fj =
(

εj 0
0 1

)
.

Here the εj ’s (j = 1,2,3) are filtering parameters and 0 �
εj � 1. Now the application of local filtering on the state ρ1

[Eq. (7) in the main text] results in

ρ́1 = p1|φ1〉〈φ1| + (1 − p1)ε2
2ε

2
3 |100〉〈100|

(1 − p1)ε2
2ε

2
3 + p1ε

2
1ε

2
2ε

2
3 cos2 θ1 + p1 sin2 θ1

, (A8)

where |φ1〉 = ε1ε2ε3 cos θ1|000〉 + sin θ1|111〉.
To obtain the maximum value of the Svetlichny operator S

with respect to projective measurements, for the state ρ́1 we
apply the same method as we used in the last section for the
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derivation of B1. The maximum value is given by

max

[
4
√

2p1ε1ε2ε3 sin 2θ1

(1 − p1)ε2
2ε

2
3 + p1ε

2
1ε

2
2ε

2
3 cos2 θ1 + p1 sin2 θ1

,

4
[
(1 − p1)ε2

2ε
2
3 − p1ε

2
1ε

2
2ε

2
3 cos2 θ1 + p1 sin2 θ1

]
(1 − p1)ε2

2ε
2
3 + p1ε

2
1ε

2
2ε

2
3 cos2 θ1 + p1 sin2 θ1

]
. (A9)

Clearly, 4((1−p1)ε2
2ε2

3−p1ε
2
1ε2

2ε2
3 cos2 θ1+p1 sin2 θ1)

(1−p1)ε2
2ε2

3+p1ε
2
1ε2

2ε2
3 cos2 θ1+p1 sin2 θ1

� 4 for any value of

0 � p1 � 1 and 0 � εj � 1. So the filtered state ρ́1 remains S2

local if 4
√

2p1ε1ε2ε3 sin 2θ1

(1−p1)ε2
2ε2

3+p1ε
2
1ε2

2ε2
3 cos2 θ1+p1 sin2 θ1

� 4. After maximizing

the left-hand side of the last inequality with respect to εj

(j = 1,2,3), we have

p1 � 2

3 + cos 2θ1
. (A10)

From Eq. (24) one can get the range of p1 for each nonzero
value of θ1 such that the filtered state ρ́1 remains S2 local, i.e.,
the initial state ρ1 has no hidden S2 nonlocality. Similarly, the
ranges of p1 for each nonzero value of θ1 for which the filtered
state ρ́1 satisfies remaining facet inequalities are obtained.
For most of the facet inequalities, the analytical method (as

followed in the previous section) is applicable, except for a few
where the upper bound of the expectation value of the operator
NSi(ρ1) corresponding to the ith(i = 1,...,184) facet depends
not only on the state parameters but also on the variables
parameterizing measurement settings. For those few facets we
have done numerical optimization by MATHEMATICA software
(as already discussed in the previous section). For instance, we
consider the 3rd facet inequality. Let us fix the state parameter
θ1: θ1 = 0.1. For this fixed value of θ1, numerical maximization
of NS3(ρ1) over all the measurement settings shows that under
the restriction εj (j = 1,2,3) ∈ [0,1] and p1 ∈ [0,0.515], state
ρ́1 satisfies the 3rd facet inequality. After checking all of
NSi(ρ1),i = 1,...,185, we arrive at the conclusion that for
θ1 = 0.1 and p1 ∈ [0,0.502 5], state ρ1 does not reveal any
GTNL after the application of known useful local filters. We
have applied the same procedure over other fixed values of θ1.
For the other two initial states ρ2 and ρ3, we have made an
analysis in a similar manner so as to obtain the range of p2 and
p3 (for a fixed value of θ3) of ρ2 [Eq. (8) of the main text] and
ρ3 [Eq. (9) of the main text], respectively, for which they still
do not reveal any hidden GTNL after the application of local
filters.
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[33] O. Gühne and G. Tóth, Phys. Rep. 474, 1 (2009).
[34] G. Svetlichny, Phys. Rev. D 35, 3066 (1987).
[35] R. Gallego, L. E. Würflinger, A. Acı́n, and M. Navascués, Phys.

Rev. Lett. 109, 070401 (2012).
[36] J.-D. Bancal, J. Barrett, N. Gisin, and S. Pironio, Phys. Rev. A

88, 014102 (2013).
[37] P. Caban, A. Molenda, and K. Trzcińska, Phys. Rev. A 92,
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