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Gapless many-body quantum systems in one spatial dimension are universally described by the Luttinger liquid
effective theory at low energies. Essentially, only two parameters enter the effective low-energy description,
namely, the speed of sound and the Luttinger parameter. These are highly system dependent and their calculation
requires accurate nonperturbative solutions of the many-body problem. Here we present a simple theoretical
method that only uses collisional information to extract the low-energy properties of spinless one-dimensional
systems. Our results are in remarkable agreement with available results for integrable models and from large-scale
Monte Carlo simulations of one-dimensional helium and hydrogen isotopes. Moreover, we estimate theoretically
the critical point for spinodal decomposition in one-dimensional 4He and show that the exponent governing the
divergence of the Luttinger parameter near the critical point is exactly 1/2, in excellent agreement with Monte
Carlo simulations.
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I. INTRODUCTION

Interacting quantum systems in one spatial dimension,
long ago considered toy models far away from the three-
dimensional reality, now hold the status of physically rel-
evant theories. Advances in the transversal confinement of
trapped ultracold atomic gases [1,2], the realization of carbon
nanotubes by rolling up sheets of graphene [3,4], or helium
isotopes adsorbed in nanopores [5–7] make it possible to
investigate many-body quantum physics in wire geometries
with unprecedented level of control. Most one-dimensional
systems, whether weakly or strongly interacting, are univer-
sally described by the Luttinger liquid effective field theory
at low energies [8] and by its recently developed nonlinear
counterpart at higher energies [9]. Essentially, many corre-
lation functions, and the excitation spectrum, have universal
behaviors and the nonuniversal parameters, i.e., the Luttinger
parameter and speed of sound, are the only system-dependent
quantities of interest. To extract these, however, one needs
to either invoke perturbation theory, only valid for weak
interactions, or numerically solve the many-body problem
“exactly” using Monte Carlo [6,10–12] for continuous or
density-matrix renormalization-group methods [13] for lattice
models or quasianalytically for integrable models via the
Bethe ansatz [9,14]. In this Rapid Communication, we develop
a simple yet highly nonperturbative method that uses only
two-body scattering information to extract the speed of sound
and the Luttinger parameter of strongly interacting many-body
quantum systems in one dimension. To show the reliability of
our theory, we study all the stable isotopes of helium and
spin-polarized hydrogen, and tritium, when tightly confined
to one dimension, using realistic molecular potentials, which
are strongly interacting and intractable with perturbative
methods, and compare our results to the Monte Carlo data of
Refs. [10–12]. Using similar methods, we also study the liquid
phase of 4He, which is not a Luttinger liquid.

The excitations of gapless one-dimensional many-body
systems are characterized, at low energy, by the speed of
sound v, corresponding to an excitation spectrum �ω(q) =
�vq + O(q2), with q the momentum of the excitation. For
bosons, in the weak- and strong-coupling limits, corresponding

to the quasicondensate and fermionized (or Tonks-Girardeau)
regimes, respectively, Bogoliubov and many-body (fermionic)
perturbation theory can be used to extract approximations to
the speed of sound [14–16] in these limits. A weak-coupling
approximation to the speed of sound can also be obtained by
fitting the Tomonaga-Luttinger model’s coupling constant to
reproduce the correct reaction matrix of the original model in
the fermionized situation [17]. Unfortunately, no simple and
reliable nonperturbative approximation is currently available.

One-dimensional spin-polarized Fermi gases (or strongly
coupled spinless Bose gases) owe much of their special
phenomenology to the fact that the Fermi surface is composed
of only two (Fermi) points ±kF . It is reasonable to assume
that one can go beyond first-order (Born) approximation in the
speed of sound by using only two particles that, in the case
of no interactions, have momenta ±kF , based on the fact that
N th-order perturbation theory only needs processes involving
N “active” particles close to the Fermi points. The complexity
of many-body perturbation theory, as opposed to few-body
physics, is much increased by the presence of the Fermi sea.
Here we strive to obtain a nonperturbative method that uses
two-body physics only, without the extra complications of
the Fermi sea. Our method works best in the repulsive to
intermediately attractive fermionic (or fermionized) regime of
these systems. Beyond this regime, bosonic methods, such as
mean-field theory, must be used to describe the low-energy
physics.

II. TWO FERMIONS ON A RING

Consider two spin-polarized fermions whose dynamics is
governed by the Hamiltonian

H = p2
1

2m
+ p2

2

2m
+ V (x1 − x2). (1)

If the interaction V (x), with x ≡ x1 − x2, falls off faster
than 1/|x| at long distances, then the stationary scattering
states ψk(x), after separation of center of mass and relative
coordinates, of the Hamiltonian (1), behave asymptotically as

ψk(x) → sgn(x) sin[k|x| + θ (k)], x → ±∞. (2)
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Above, we assume k > 0, sgn(x) is the signum function, and
θ (k) is the scattering phase shift. We place the two fermions
on a ring of length L (periodic boundary conditions). It is easy
to see that, for total momentum K = 0, the energies of the
two-body states are given by �

2k2/m, where k must satisfy the
equation

k = 2πn

L
− 2

L
θ (k), (3)

with n ∈ Z+. From now on, we particularize to n = 1 in Eq. (3)
and identify kF = 2π/L.

III. UNIVERSALITY HYPOTHESIS

In a many-body system, the thermodynamic limit is attained
by taking the length of the ring to infinity while keeping the
density constant. This, in a few-particle system, is not possible.
To remedy this inherent deficiency, we invoke a universality
hypothesis, stating that two thermodynamically large one-
dimensional gapless quantum systems at zero temperature but
at different densities have the same dimensionless low-energy
properties if all their dimensionless coupling constants at
energies near the Fermi points are identical. Clearly, this
hypothesis is very reasonable and is verified in well-known
integrable models, such as the Lieb-Liniger model [15], or
its fermionic dual [18–20], whose ratio of speed of sound
to Fermi velocity, and its Luttinger parameter only depend
on the coupling constant γ (see Supplemental Material [21]),
regardless of the density of the system. For generic, nonin-
tegrable models, with two-body forces only, the universality
hypothesis implies that the two-body T matrices, on and off
shell, of the two target models must be the same. The theory we
present below is a pure two-particle theory and therefore we
can only invoke universality on the on-shell (i.e., phase shift)
scattering. Note that universality in this case implies that the
speed of sound, when θ (kF ) = 0, must be given by the Fermi
velocity v = vF . This last condition, which is not exact, is a
very good approximation nevertheless, as we will see below
(see also [10–12]), and coincides with the result obtained by
weak-coupling theory from the Tomonaga-Luttinger model
[9,17,22].

IV. CALCULATION OF THE SPEED OF SOUND

In order to excite the system, we need to add more
incident relative momentum in Eq. (3). The lowest excitation is
obtained by setting n = 2, corresponding to 2kF , which is too
large to extract low-momentum expansions of the excitation
energies. Instead, we can shorten the ring, L → L − δ,
with 0 < δ � L. Identifying, to leading order, the incident
momentum in Eq. (3) with kF + q/2, we obtain δ = L2q/4π .
Since in this way not only the incident momentum (≡kF )
but also the density is increased, we need to ensure that the
coupling constants of the theory remain fixed, in order to
guarantee that the universality hypothesis stated in the previous
paragraph holds at the two-body level. We find that the speed
of sound is given by

�v = �
2L2

4πm

dk2
δ

dδ

∣∣∣∣
δ=0

, (4)
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FIG. 1. Speed of sound vs Lieb-Liniger constant γ . We plot the
theoretical results from Eqs. (4) and (3) (blue solid line), fourth-order
perturbation theory in 1/γ (red dotted line), and Bogoliubov theory
(black dashed line).

while leaving the dimensionless coupling constants of the
particular problem fixed, where kδ is the solution to Eq. (3)
with L substituted by L − δ.

To show how good an approximation one can achieve with
Eq. (4), we calculate the speed of sound for the hard-rod (HR)
(with diameter a)1 and the Lieb-Liniger (LL) model to third
order. The two models are defined as follows. The interaction
potential V (x) for the HR model, whether spinless bosonic or
fermionic, is given by V (x) = ∞ for |x| < a and V (x) = 0
otherwise. The only dimensionless interaction parameter in
the HR model is the gas parameter ρa, with ρ the density.
The phase shifts for the HR model read θ (k) = −ka. The
Lieb-Liniger model consists of a system of spinless bosons
interacting via Dirac delta interactions, that is, V (x) = gδ(x).
The Lieb-Liniger parameter γ for a gas of density ρ is defined
as γ = mg/�

2ρ and plays the role of dimensionless interaction
parameter in this case. The phase shifts for the LL model read
θ (k) = arctan(2�

2k/mg). Using Eq. (4) for the HR and LL
models, we obtain

vHR

vF

= (1 − ρa)−2, (5)

vLL

vF

= 1 − 4

γ
+ 12

γ 2
+ 16

3γ 3
(π2 − 6) + O(γ −4). (6)

Above, and as one could expect for the very simple HR model,
we see that its speed of sound is exact [9,10], while for the
Lieb-Liniger model it is correct to third order in perturbation
theory [16,24]. In Fig. 1 we plot the numerically calculated
speed of sound for the LL model and compare it with fourth-
order perturbation theory [16,24] in 1/γ and the Bogoliubov
approximation [14,15]. There we observe that the results are
highly nonperturbative and are valid beyond the perturbative
regime and down to γ ≈ 5 and that our results interpolate
between the Bogoliubov and the Tonks-Girardeau regimes.

1Or the extended HR model [23] with scattering length a.
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FIG. 2. Luttinger parameter vs density for 3He (blue solid line),
3H (black double-dash–dotted line), 2H (green dash-dotted line), and
1H (red dashed line). Blue dots (3He), black triangles (3H), green
diamonds (2H), and red squares (1H) are the Monte Carlo data from
Refs. [11,12].

V. LIGHT ATOMIC GASES

We now move on to discuss more realistic, nonintegrable
systems in one dimension. We study 4He, 3He, and spin-
polarized 3H, 2H, and 1H. For all the above atoms there are ex-
tensive Monte Carlo data [10–12] for the Luttinger parameter
KL. This, in the case of Galilean-relativistic systems, is related
to the speed of sound as KL = vF /v [22]. These systems are
very different from the LL and HR models, for which, once the
only dimensionless parameter γ is fixed, we have a density-
independent v/vF . For H and He, the use of γ as a parameter
is only valid in the low-density regime [11,12]. We calculate
the phase shifts θ (k) using the Aziz HFDHF2 potential for 4He
[25], the Aziz II potential for 3He [26,27], and a cubic-spline
interpolation of the Jamieson-Dalgarno-Wolniewicz (JDW)
potential [28], readjusted to match the 1/|x|6 tails [29] as
in Ref. [12], for hydrogen.2 Since all these interactions have
short-distance hard cores, the distinction between fermion and
boson is void and we will treat all these atoms as fermions. The
phase shifts (see [21]) can be locally approximated by linear
functions as

θ (k) ≈ θ0 − a(k − kF ), (7)

where θ0 is the phase shift at k = kF . We have verified that
adding higher-order terms in Eq. (7) does not change the
results below in a significant way. The manipulations in Eq. (4)
are done by keeping the dimensionless coupling constants θ0

and kF a fixed. The results are shown in Figs. 2 and 3 and
are in excellent agreement with the Monte Carlo results of
Refs. [10–12]. As noted above, the universality hypothesis
at the two-body level implies KL = 1 whenever θ (kF ) = 0,
which, as seen in Figs. 2 and 3, is nearly true in most cases. This
constraint may be lifted by nonintegrability effects beyond
two-body physics.

2These interactions are used for the sake of comparison with the data
of Refs. [10–12]. In reality [6], the phase shifts should be calculated
including the external confinement [30].
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FIG. 3. Luttinger parameter vs density for 4He (solid blue line).
Red dots are Monte Carlo data of Ref. [10]. The inset shows the
Luttinger parameter from Eq. (9) (blue solid line) and the renormal-
ized Luttinger parameter (see the text) with ρ∗ = 0.0296 Å−1 (black
dashed line) and with ρ∗ = 0.026 Å−1 (red dash-dotted line). Red
dots are the Monte Carlo data of Ref. [10].

VI. LIQUID 4He

Of all the helium and hydrogen isotopes, the most difficult
to describe is 4He, as is seen in Fig. 3. This is due to
the existence of a very weakly bound s-wave state in three
dimensions, with a binding energy EB = 1.1+0.3

−0.2 mK [31].3

In strict one dimension, the binding energy is identical to the
three-dimensional case due to the short-distance hard core of
the He-He interaction. For the Aziz HFDHF2 potential, the
scattering length and effective range are a = 124.65 Å and
r = 7.39 Å, respectively, yielding EB ≈ 0.83 mK. The liquid
phase of 4He [10] exists at low densities ρ below a critical point
ρ∗, which was calculated to be ρ∗ = 0.026 ± 0.002 Å−1 in
Ref. [10]. To estimate the critical point theoretically, we use the
well-established energy-dependent scattering length a(k) [32],
given by −1/a(k) = −1/a + rk2/2, where k =

√
mE/�2,

and E the relative energy, giving an effective interaction
strength g(k) = −2m/�

2a(k), with V ∼ g(k)δ(x). We place
two particles in a ring of length L and find the critical k,k∗,
by setting g(k∗) = 0, which yields k∗ = 0.0466 Å−1. This is
in very good agreement with the resonance found numeri-
cally, located at k∗ = 0.0465 Å−1. Identifying ρ = 2/L, we
obtain ρ∗ = 2k∗/π = 0.0296 Å−1, in good agreement with
Ref. [10]. At low densities ρ � ρ∗, we expect the effective
range to contribute minimally and we can use the attractive
mean-field (Gross-Pitaevskii) theory with the Lieb-Liniger
parameter γ = −2/ρa. At higher densities, the effective
range will play a role, but effective-range mean-field theory
with a homogeneous ground state shows no effect of r

[33]. We therefore use a Hammer-Furnstahl field redefinition
[34,35] to trade the effective range for a three-body force
of strength λ3 and avoid its microscopic calculation [36–38]

3Note that the binding energy of 4He2 is seven orders of magnitude
smaller than for H2, for instance.
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FIG. 4. Low-density equation of state from Eq. (8) (blue solid
line). Red dots are the Monte Carlo data of Ref. [10].

by using ∂ρμ = 0 at ρ = ρ∗, where μ = gρ + λ3ρ
2 is the

chemical potential. This yields λ3 = (�2/m)/ρ∗a (∝ √
r/a)

and the equation of state (EOS) in this approximation is
given by

E

N
= �

2ρ

ma

[
−1 + 1

3

ρ

ρ∗

]
. (8)

The EOS is shown in Fig. 4, where it is compared to the
results of Ref. [10]. The EOS is in qualitative agreement
with the Monte Carlo results at the densities where these
are available, with the correct order of magnitude. The speed
of sound v for ρ > ρ∗ can be calculated from the EOS in
Eq. (8) as mv2 = ρ∂ρμ. The Luttinger parameter then has the
form

KL = π

√
ρ∗a

2

(
ρ − ρ∗

ρ

)−1/2

. (9)

Even though the above result, in particular the factor π/
√

2,
is not accurate quantitatively (see the inset of Fig. 3), because
higher power terms of ρ, and possibly quantum fluctuations
[39], contribute to the chemical potential at such densities,
it does show that KL diverges for ρ → ρ+

∗ as (ρ − ρ∗)−1/2,
whose exponent agrees with Monte Carlo simulation results
[10], and unveils the otherwise inaccessible factor of ρ1/2

that renders the square root dependence dimensionless. If
we assume the functional form of KL given by Eq. (9),
but leave the factor in front as a renormalizable parameter,
i.e., π/

√
2 ↔ C, then this can be extracted by fitting the

Luttinger parameter for ρ ∈ [0.035,0.06] Å−1 to the values
reported in [10]. For our calculated value of ρ∗ = 0.0296 Å−1

we obtain C = 1.388, whereas for the Ref. [10] estimate
ρ∗ = 0.026 Å−1, we obtain C = 1.697. In the inset of Fig. 3,
we show the resulting renormalized KL, which strongly
suggests that the critical point of Ref. [10] is most accurate
and that the functional dependence in Eq. (9) is indeed
correct.

VII. CONCLUSION

In this Rapid Communication we have devised a remarkably
simple method that uses only two-particle scattering data, that

is, the phase shifts, to obtain nonperturbative approximations
to the speed of sound and the Luttinger parameter of one-
dimensional quantum many-body systems. The method reveals
how strikingly large an amount of information the two-body
problem in one dimension encodes about the low-energy
physics of the many-body system near the Fermi points.
We have given relevant examples, such as the Lieb-Liniger
model, where third-order perturbation theory is recovered and
the speed of sound interpolates deep into the regime where
strong-coupling perturbation theory fails. For the simplest
case of the hard-rod model our method is, moreover, exact.
We have also applied the method to all isotopes of helium
and hydrogen, finding excellent agreement with full-blown
Monte Carlo simulations available in the literature. Our
method, given its simplicity, can also be used as a valuable
tool for efficiently recognizing possible interesting regions
of parameter space that can then be explored via exact
numerical calculations. We have also shown how well simple
two-body theory can predict the critical or spinodal point in
one-dimensional 4He and extracted the effective three-body
force that is largely responsible for the liquid-to-Luttinger
liquid transition in this system. On the Bose gas side, we have
also obtained the critical exponent with which the Luttinger
parameter diverges at the spinodal point (1/2), in perfect
agreement with Monte Carlo calculations. Our method is
not restricted to continuous models, but works as well for
lattice models and can be easily extended to systems with
discrete translational invariance, i.e., many-body problems in
one-dimensional periodic potentials, for which scattering is
also characterized by phase shifts [40]. We expect variations
of our method to also be able to describe electrons with
spin or cold atoms with pseudospin. Of special interest
are systems, such as electrons in a strong magnetic field
[41,42], where spin-charge separation is destroyed and the
microscopic calculation of the low-energy properties is quite
challenging. An extension of our theory to higher-dimensional
systems with restricted phase space around the Fermi energy,
such as materials with Dirac cones, e.g., for the estimation
of the renormalized Fermi velocity in graphene [43–45],
would be highly desirable. More accurate approximations
should also be feasible by extending our results to three-
and four-particle problems, which may show the effects
of nonintegrability, but would still be manageable from a
theoretical and computational point of view by using recently
developed methods such as the adiabatic projection method
[46] that has been successfully applied to the nuclear few-body
problem [47,48].
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