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Measuring the Edwards-Anderson order parameter of the Bose glass:
A quantum gas microscope approach
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With the advent of spatially resolved fluorescence imaging in quantum gas microscopes, it is now possible
to directly image glassy phases and probe the local effects of disorder in a highly controllable setup. Here we
present numerical calculations using a spatially resolved local mean-field theory, show that it captures the essential
physics of the disordered system, and use it to simulate the density distributions seen in single-shot fluorescence
microscopy. From these simulated images we extract local properties of the phases which are measurable by
a quantum gas microscope and show that unambiguous detection of the Bose glass is possible. In particular,
we show that experimental determination of the Edwards-Anderson order parameter is possible in a strongly
correlated quantum system using existing experiments. We also suggest modifications to the experiments which
will allow further properties of the Bose glass to be measured.
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I. INTRODUCTION

Ultracold atoms in optical lattices provide a highly con-
trollable environment for quantum simulations of real ma-
terials [1] and in particular for isolating and investigating
the effects of disorder. The role of disorder has already
been investigated in cold atom systems exhibiting Anderson
localization [2–6], many-body localization [7–9], and quantum
glass phases [10–18]. Most experiments to date have been mea-
surements of bulk properties, such as coherence and transport;
however, the single-site resolved detection of bosonic [19,20]
and fermionic [21–25] atoms now affords us the ability
to investigate the local properties of strongly correlated
systems [26]. Very recently, quantum gas microscopes have
been used to investigate transport in disordered systems in the
context of many-body localization [9], with measurements of
entanglement entropy on the horizon [27,28].

No such local measurements have yet been performed to
study the Bose glass phase [29,30] or any of its fermionic
analogs despite quantum gas microscopes offering a natural
environment in which to investigate the local effects of
disorder so important to the physics of these phases. Here,
we seek to motivate the site-resolved investigation of glassy
phases and show that quantum gas microscopes are ideally
suited to measuring local quantities of disordered systems. In
particular, we show that quantum gas microscopes are capable
of measuring the Edwards-Anderson order parameter.

This quantity has never been measured experimentally in
any condensed matter system as it requires detailed knowledge
of the microscopic states of individual lattice sites. Before
the development of quantum gas microscopes, Morrison
et al. [31] proposed an as-yet-unrealized method to extract
the Edwards-Anderson order parameter of the Bose glass by
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generating two independent copies of the system with the
same disorder distribution, physically overlapping the two
copies and measuring the bulk properties. Here, we suggest
an alternative quantum gas microscope approach to measuring
it.

Using the disordered Bose-Hubbard model in two di-
mensions we simulate ultracold bosons in an optical lattice
and perform mean-field calculations of the lattice occupation
across a range of tunneling and chemical potential values. We
map out the phase diagram in terms of the Edwards-Anderson
order parameter to show that it is capable of distinguishing
the Bose glass and demonstrate that it can be measured under
realistic experimental conditions of parity-sensitive detection,
harmonic confinement, and finite temperature.

II. MODEL

The Bose-Hubbard model describes spinless bosons on a
hypercubic lattice and has been shown to be a good description
of ultracold atoms in optical lattices [32]. In the presence of
chemical potential disorder the Hamiltonian is given by

H = −J
∑
〈i,j〉

(b̂†i b̂j + b̂
†
j b̂i) +

∑
i

[
U

2
n̂i(n̂i − 1) − μin̂i

]
,

(1)

where n̂i , b̂
†
i , and b̂i respectively count, create, and destroy

particles on site i. J is the tunneling amplitude between
nearest-neighbor sites, U is the on-site interaction, and μi =
μ + εi where μ is the bulk chemical potential [33] and εi

is a spatially uncorrelated random variable drawn from a
symmetric box distribution of width 2� which describes the
disorder.

Disorder of this type can be approximated either by
superimposing a speckle potential on top of the lattice [2,11]
or by using a spatial light modulator [9,34] to vary the lattice
depth from site to site. In a real experiment, adding any form
of disorder will simultaneously modify not only the on-site
chemical potential, but also the hopping amplitude and the
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strength of the on-site repulsion. In the following, we assume
that the dominant effects can be modeled by local chemical
potential disorder alone.

In the clean case (εi = 0), the model contains two phases. In
the noninteracting limit (U → 0) the ground state is a gapless,
compressible superfluid (SF), while in the local limit (J → 0)
the ground state is a Mott insulator (MI). In the presence of
disorder (εi �= 0), a Bose glass (BG) phase always intervenes
between the MI and the SF [35,36]. The BG is a Griffiths
phase [37] characterized by the presence of rare disconnected
superfluid regions within a Mott-insulating background and
is a gapless, compressible insulating phase. It has been
the subject of extensive theoretical work using techniques
ranging from mean-field theories [38–41], to renormalization
group [29,30,42–49], to quantum Monte Carlo and other
numerical methods [50–56]. Though experimental work on
the Bose glass has so far concentrated on bulk properties,
many theoretical works consider local properties which have
not yet been experimentally measured.

In order to motivate the investigation of the local properties
of disordered systems using quantum gas microscopes, here
we simulate measurements of the Edwards-Anderson order
parameter, a local property accessible to current quantum
gas microscope experiments which can be straightforwardly
computed across a wide range of parameter values for
comparison with experiments.

III. EDWARDS-ANDERSON ORDER PARAMETER

By analogy with spin glass systems [57,58], various
Edwards-Anderson-like order parameters for the Bose glass
have been proposed [31,49,59,60]. The Edwards-Anderson
order parameter originally arose in the mean-field theory
of spin glasses as an indicator of the nontrivial breaking
of ergodicity in a disordered system. It is the natural order
parameter for a disordered phase, and is a more appropriate
metric for distinguishing the Bose glass than, for example,
compressibility, which can be induced by both disorder and
temperature.

Here we define the Edwards-Anderson order parameter in
terms of the boson number density as

q = 〈n̂i〉2 − 〈n̂i〉2
, (2)

where the angled brackets refer to the thermal average and the
overbar refers to the disorder average.

By construction, this disorder-averaged correlation function
is identically zero everywhere in the clean system. The Mott
insulator is characterized by an integer value of 〈n̂i〉 on
every site and consequently a vanishing q. The homogeneous
superfluid is characterized by a uniform but noninteger 〈n̂i〉
which also leads to q = 0.

In the disordered system, however, any correlation between
the density and the disorder will lead to a nonzero value
of q. This in principle allows the Edwards-Anderson order
parameter to distinguish between the homogeneous MI and SF
phases where q = 0 and the BG phase where q �= 0. However,
in the presence of the chemical potential disorder most
conveniently realized in experiments, the superfluid phase that
emerges from the BG will be inhomogeneous. Consequently,
it will also exhibit a nonzero value of q, albeit a smaller value

than in the BG due to the reduced correlation between disorder
and density. This limits the usefulness of the order parameter in
distinguishing, for example, the BG-SF transition. However, an
appropriately chosen disorder distribution (such as a bimodal
distribution or pure hopping disorder) should alleviate or
even eliminate this problem. Nonetheless, in the following
we restrict ourselves to random chemical potential disorder as
this is the type most easily added to current experiments.

IV. LOCAL MEAN-FIELD THEORY

We employ a spatially resolved local mean-field theory
to simulate the experimental results, using the Gutzwiller
variational wave function

|�〉 =
∏

i

∑
ni

fni ,i√
ni!

(b̂†i )ni |0〉 , (3)

subject to the normalization constraint
∑

ni
|fni,i |2 = 1 ∀i.

This provides us with a variational energy in terms of
the parameters fni ,i given by EMF = 〈�|H|�〉 which we
minimize using a conjugate gradient algorithm [61]. This
wave function has been shown to provide a good qualitative
description of interacting bosons in both clean [32,62] and
disordered systems [38,41,63]. Here we simulate experiments
in two dimensions where local mean-field theory is a reliable
and accurate method. While techniques exist which are able to
extract bulk properties in the thermodynamic limit without re-
course to the calculation of local properties, such as stochastic
mean-field theory [39,40], here it is precisely the local behavior
of small systems which we are interested in replicating in order
to meaningfully compare with experiments.

In the clean case, the minimization procedure always finds
the global minimum. In the presence of disorder, the energy
landscape can become complicated due to the presence of
multiple local minima so it is necessary to check convergence
by testing multiple different initial configurations. For the
regions of the phase diagram which are experimentally
accessible, we find that it is sufficient to truncate the ansatz
wave function at ni = 6. After obtaining the values of the
variational coefficients fni,i for each site, we use them to prob-
abilistically calculate the parity-limited occupancy on each
site and generate simulated “snapshot” density distributions
that mimic those produced in quantum gas microscopes. The
probability of imaging site i as empty is

∑even
ni

|fni,i |2, while
the probability of the site being occupied in the image is∑odd

ni
|fni ,i |2. In all of the following, before performing any

analysis we first simulate a snapshot image of the lattice as
would be seen in a quantum gas microscope, to ensure that
the extraction of q can be made in an experimentally realistic
number of repetitions.

V. MEAN-FIELD PHASE DIAGRAM

We construct the phase diagram shown in Fig. 1 for
a homogeneous (25 × 25)-site lattice superimposed with a
disorder distribution of width δ = �/U = 0.3. Comparing
the value of q extracted from snapshots of a 25 × 25 lattice
with snapshots from a 100 × 100 lattice results in an increase
in accuracy on the order of a few percent but at the expense of
a large increase in computational time. For each point in the
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FIG. 1. Phase diagram of the disordered Bose-Hubbard model,
showing values of the Edwards-Anderson order parameter q, sampled
at a resolution of 50 × 50 points. Each point was calculated using ten
thermal configurations and ten disorder realisations on a 25 × 25
lattice. The crosses indicate the boundary of the Mott lobes at q = 0
and the guide-to-the-eye solid line is a fit of these points. The cross
size shows the uncertainty due to our sampling resolution. The same
color scale is used in Figs. 2–4.

phase diagram, we extract ten snapshots for each of ten distinct
disorder distributions to calculate q. We see clear regions of
q � 0 which we identify as the BG surrounding regions of
q = 0 which we identify as the MI. By contrast, in the case of
zero disorder, q = 0 across the entire phase diagram.

Strictly, q is only zero in the MI regions because we do
not consider the effects of quantum fluctuations. These have
been shown [31] to lead to a small nonzero q even in the MI;
however, there remains a sharp crossover from the MI to the
BG from which the transition can be determined, confirming
that this remains a good order parameter beyond the mean-field
analysis presented here.

As we move from the BG to the SF phase, q smoothly goes
to zero with no feature indicative of the BG-SF transition. This
is because even after the establishment of global superfluid co-
herence, the chemical potential disorder still causes lingering
inhomogeneities in the superfluid. The same result was also
found in Ref. [31]. To obtain a sharp transition from the BG to
the SF using this order parameter, we require a type of disorder
which does not cause density inhomogeneities in the SF,
such as bimodal hopping disorder [64]. This form of disorder
has been proposed for a system of ultracold atoms with
cavity-mediated interactions [65], but not yet implemented in
conjunction with a quantum gas microscope. Here we follow
the setup of Ref. [20] where chemical potential disorder is
more straightforwardly incorporated.

Numerically, q appears to be bounded from above by the
value of the variance κ = ∑

ij [〈ninj 〉 − 〈ni〉〈nj 〉]. Previous
studies have shown that the variance is suppressed near the
tip of the Mott lobes [38,39], with some suggesting that it
vanishes entirely [66,67]. The suppression of κ results in the
corresponding suppression of q in the vicinity of the tips of

the Mott lobes, where we would in any case expect local
mean-field theory to break down.

Due to the parity sensitivity of the fluorescence imaging
technique, the value of κ and therefore q saturates at a
maximum of 0.25. We recommend that initial experiments
be performed in the region J/U < 1/100, where the value
of q is largest and there should be no SF present, meaning a
nonzero q necessarily corresponds to the BG.

VI. OPTICAL LATTICES WITH HARMONIC
CONFINEMENT

In real optical lattice experiments, the Gaussian profile of
the laser beams results in a background harmonic confining po-
tential. We emulate the lattice geometry of the experiments de-
tailed in Ref. [20], i.e., we model a (60 × 60)-site lattice in the
low-tunneling regime (J/U = 1/300) with trap frequencies
ωx = ωy = 2π × 77.3 Hz [68]. This causes a spatial variation
of the chemical potential μ(r) = μ0 − 0.5m(ω2

xx
2 + ω2

yy
2),

where m is the atomic mass and μ0 the chemical potential in
the center of the trap. In a single image of the optical lattice,
one captures a range of values of μ and thus multiple phases.
Due to parity-sensitive losses, the familiar “wedding-cake”
structure of the MI appears as concentric rings of occupied
and unoccupied lattice sites. In the presence of disorder, a
single image captures both BG and MI regions.

By incorporating μ(r) into our Hamiltonian, we generate
snapshots of the site occupations in these regions at zero
temperature. At δ = 0, our model accurately matches the
experimental results from Ref. [20]. For δ = 0.3, as shown
in Fig. 2(a) for μ0/U = 2.1, the MI regions are detected as
areas with uniform site occupations, while the BG regions are
those with nonuniform occupation. There are no SF regions
present in the snapshots for these parameter values.

As in Sec. V, we extract q using Eq. (2) by performing the
averages over ten simulated snapshots at each of ten disorder
realizations [Fig. 2(b)]. The result gives a clear distinction
between the MI regions (q = 0) and the BG regions (q ∼ 0.25)
which are present in this low-tunneling regime. The value of q

measured using this method of averaging of snapshots agrees
to within 1% of that extracted directly from the Gutzwiller
coefficients. This method is easily integrated into existing
quantum gas microscope experiments such as those in Refs. [9]

FIG. 2. In situ measurement of q, for δ = 0.3, μ0/U = 2.1, and
J/U = 1/300. (a) Simulated snapshot of the parity-sensitive lattice
occupation, where orange (black) denotes a site occupied by an odd
(even) number of atoms. The white scale bar denotes five lattice
sites. (b) q extracted from site-by-site evaluation of Eq. (2) with
ten snapshots at each of ten disorder realizations. (c) q can also be
approximated using ten repetitions of a single disorder realization by
averaging along contours of constant μ.
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and [69], where the disorder can be generated by a digital
micromirror device and thus easily changed to allow averaging
over different disorder realizations.

Even without the ability to apply multiple disorder re-
alizations, an indicative measure of q is also possible by
using only a single disorder realization, and performing
azimuthal averaging along contours of fixed μ [Fig. 2(c)].
While this procedure gives qualitatively similar results to the
site-averaged case, the regions of nonzero q are broadened
and the values differ by ∼30% on average when compared to
the site-averaged case. These effects are due to the problems
inherent in attempting to perform circular averages on a square
lattice.

VII. FINITE TEMPERATURE EFFECTS

The previous analysis was conducted at zero temperature
and did not take into account thermal fluctuations in the
density. As density fluctuations due to finite temperature and
disorder look cosmetically similar [as shown in Figs. 3(a)
and 3(b)], we verify that q can distinguish between these cases.
To test this, we model the effect of finite temperature in the
limit of zero tunneling by Boltzmann-weighted Fock states.
This leads to an additional probabilistic step in the snapshot
generation

P (n) = exp{[μ(r)n − En]/kBT }
Z(r)

, (4)

where T is the temperature and Z(r) the partition function
for a homogeneous system with chemical potential μ(r).
Figures 3(c) and 3(d) show that the site-averaged q gives a clear
distinction between thermal fluctuations and glassy phases.
The average value of q within a radius of five lattice sites from
the trap center is 0.02 ± 0.08 for the clean, finite temperature
case and 0.216 ± 0.007 for the disordered, zero-temperature
lattice. The dominant uncertainty stems from the variance in
the on-site occupation due to the finite number of simulated
snapshots. Consequently, the faint rings of nonzero q visible

FIG. 3. The site occupations of (a) a clean optical lattice at finite
temperature and (b) a disordered lattice at zero temperature are
cosmetically similar. However, (c) for the clean case q ≈ 0, while
(d) in the disordered case there are Bose glass regions with large
values of q. The white scale bar shown in (a) denotes five lattice sites.
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FIG. 4. Melting of the Bose glass. The visibility of the Edwards-
Anderson order parameter decreases with temperature but remains
finite over a wide range of experimentally relevant temperatures.
(a) Histogram showing the local average value of q with error
bars showing standard error. (b)–(d) The full distribution of q in
the zero-tunneling regime for δ = 0.3, μ0/U = 2.1, and kBT /U =
0.01, 0.05, 0.13, and 0.25, respectively.

in Fig. 3(c) are an artifact of the finite number of averages
performed: by averaging over a large enough number of
snapshots, they can be made to disappear entirely.

As shown in Fig. 4, the main effect of increasing tempera-
ture at fixed disorder strength is to reduce the maximum value
of q. Despite this, the Edwards-Anderson order parameter
remains distinct across an experimentally relevant range of
temperatures. For reference, the lowest temperature reached
in Ref. [20] was 0.07U/kB .

VIII. OUTLOOK AND CONCLUSIONS

While at low values of J/U, q clearly distinguishes be-
tween the BG and MI, the most obvious drawback of our work
is the inability of q to clearly identify a BG-SF transition. This
is entirely due to the continuous chemical potential disorder
we consider, such as is most straightforwardly added to
current experiments by, for example, superimposing a speckle
potential. If an alternative form of disorder was used instead
that did not give rise to such significant inhomogeneities
in the superfluid phase, such as bimodal mass disorder or
hopping disorder, this order parameter would be capable of
distinguishing both the MI-BG transition and the BG-SF
transition.

The first measurement of an Edwards-Anderson order
parameter in a strongly interacting quantum system would
already be a landmark achievement, but may also allow the
possibility of experimentally testing for replica symmetry
breaking, a feat recently achieved in random laser systems [70].
Replica symmetry breaking has been suggested to be crucial
to the Bose glass [49,67] but there is as yet no experimental
confirmation of this. Future theoretical work going beyond
the scope of the mean-field approach presented here could
provide quantitative predictions of replica symmetry breaking
for experiments to compare to.
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While we have concentrated on the case of the Bose glass,
the measurement of q using site-resolved imaging is also
applicable to other glassy phases. For example, ultracold atoms
with cavity-mediated interactions offer the possibility to create
interesting spin glass analogs [65,71,72] where measurements
of the Edwards-Anderson order parameter could prove to be
extremely illuminating. Although our analysis was restricted
to an ultracold gas of bosons, the measurements themselves
are not: the protocol proposed here could equally well be
applied to ultracold fermionic gases and it may be possible to
generalize these techniques to scanning tunneling microscope
systems.

Beyond the Edwards-Anderson order parameter, the quan-
tum gas microscope is a promising tool for investigating other
properties of glassy phases. For example, in a large enough
system it would be possible to directly image the spacing of
the rare superfluid regions within the BG, which could offer
insights into the disputed percolation transition from BG to
SF. In typical harmonic traps, the local chemical potential
varies quickly across lattice sites, which restricts the BG to
a small area, ruling out measurements of longer length-scale
properties. The integration of quantum gas microscopes and
spatial light modulators to create arbitrary potentials [9,69]
could be used to increase the size of the BG regions. In
order to provide an almost flat potential with hard walls,
the red-detuned optical lattice could be illuminated by a
repulsive blue-detuned potential of comparable trap frequency

to the lattice beams and an additional blue-detuned Laguerre-
Gauss beam. Using holographic methods these blue-detuned
potentials and the disorder could all be generated using a
single spatial light modulator [73]. In such a trap with weakly
varying μ, large samples of a single phase can be measured,
allowing quantum gas microscopes to probe longer wavelength
properties of the BG at a site-resolved level.

In summary, we have shown that current-generation quan-
tum gas microscopes are capable of directly imaging the Bose
glass phase. We have provided mean-field simulations of the
Edwards-Anderson order parameter under realistic experimen-
tal conditions, paving the way for its first measurement in a
strongly correlated system, and suggested future directions for
experiments.

Supporting data for this work may be found in [75].
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M. Piraud, L. Pezzé, L. Sanchez-Palencia, A. Aspect, and P.
Bouyer, Nat. Phys. 8, 398 (2012).

[6] G. Semeghini, M. Landini, P. Castilho, S. Roy, G. Spagnolli, A.
Trenkwalder, M. Fattori, M. Inguscio, and G. Modugno, Nat.
Phys. 11, 554 (2015).

[7] M. Schreiber, S. S. Hodgman, P. Bordia, H. P. Lüschen, M. H.
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