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Topological origin of universal few-body clusters in Efimov physics
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Efimov physics is renowned for the self-similar spectrum featuring the universal ratio of one eigenenergy to
its neighbor. Even more esoteric is the numerically unveiled fact that every Efimov trimer is accompanied by
a pair of tetramers. Here we demonstrate that this hierarchy of universal few-body clusters has a topological
origin by identifying the numbers of universal three- and four-body bound states with the winding numbers of
the renormalization-group limit cycle in theory space. The finding suggests a topological phase transition in
mass-imbalanced few-body systems which should be tested experimentally.
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Critical phenomena are the prime example of universality
in which different physical systems are grouped into univer-
sality classes sharing the same critical exponents. Here, the
universality classes of critical phenomena are categorized by
the fixed points of the renormalization-group (RG) flow which
represent the continuous scale invariance of the second-order
phase transition [1]. Yet another characteristic of the RG flow,
which represents the universal discrete scale invariance, can
be found in the Efimov effect [2] and its four-body extension
[3–5], in which resonantly interacting three and four bosons
form an infinite series of three- and four-body bound states that
feature the self-similar spectrum: the three-body bound states
(Efimov trimers) are related to one another by a scaling factor
of (22.7)2, and each Efimov trimer is accompanied by two
four-body bound states. This discrete scale invariance makes
the Efimov physics a quintessential example of the RG limit
cycle [6,7], where an RG flow forms a periodic circle rather
than converges to a fixed point.

Historically, Thomas [8] found that the three-body energy is
unbounded from below for a resonant two-body interaction, the
origin of which was shown [9] to be the short-range informa-
tion that can be encapsulated in a single three-body parameter.
Efimov [2] generalized the Thomas theorem to the infinitely
many infrared energy levels, the existence of which was proved
mathematically by Amado and Noble [10,11]. The universal
nature of the Efimov trimers together with its connection to the
RG limit cycle was elucidated by Bedaque et al. [12,13] based
on effective field theory. The universality of the Efimov physics
has been studied in a variety of systems including mass-
imbalanced fermions [14,15], particles in mixed dimensions
[16], nucleons [17], magnons [18], and macromolecules [19].
Experimentally, since the first observation in ultracold Cs
atoms [20], Efimov trimers have been realized in various
bosonic atoms [21–26], three-component fermionic atoms
[27,28], and mass-imbalanced Bose-Fermi mixtures [29–31].
The four-body extension of Efimov trimers and its universality
have also been studied based on the Fadeev-Yakubovski
equations [3,4,32], the correlated Gaussian hyperspheri-
cal method [5], and the Alt-Grassberger-Sandhas equations
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[33–36]. The tetramers were recently observed experimentally
in Cs atoms [37].

In this Rapid Communication we address the unresolved
question of how the universal four-body physics is related to
the RG limit cycle, and in particular, whether the embedding
of the limit cycle in theory space unveils the information of
universal Efimov physics. In the following, we answer these
questions by demonstrating that the one-to-two ratio between
the number of Efimov trimers and that of the associated
tetramers can be understood as the topological winding
numbers of the RG limit cycle in theory space, as conjectured
previously [38]. In revealing this connection, we have used
the functional renormalization group (FRG) to deal with the
nonperturbative situation in Efimov physics.

Previous FRG analyses [39–41] on the resonantly interact-
ing four bosons suffer spurious four-body bound states due to
the pointlike approximation where the momentum dependence
of Green’s functions are almost disregarded. To avoid such an
artifact, we take into account the full momentum dependence
of Green’s functions with the separable pole approximation
[42–45]. We obtain the RG flows of the three- and four-body
coupling constants g3(k) and g4(k), which are defined as the
three- and four-body one-particle irreducible (1PI) vertices
of the flowing action [46] with loop corrections down to the
RG-cutoff scale of k. Here, g3(k) and g4(k) can be interpreted
as the effective three- and four-body interaction strengths at the
energy scale of k, and therefore, the k dependencies of g3(k)
and g4(k) represent how three- and four-body physics vary with
the scale transformation. We will see in the following that the
one-dimensional trajectory of (g3(k),g4(k)) parametrized by k

forms a loop in theory space, and that the winding of the loop in
theory space determines the number of universal bound states.

In Fig. 1(a), g3(k) and g4(k) at the unitarity limit are plotted
against the cutoff k, which demonstrates that g3(k) and g4(k)
both have the log-periodic k dependencies to form an RG
limit cycle. Furthermore, g4(k) flows twice from −∞ to ∞
every time g3(k) flows from −∞ to ∞, indicating that there
appear two four-body bound states associated with one Efimov
trimer, since the emergence of bound states is connected with
the divergent coupling constants g3(k) and g4(k) [39]. We also
notice that the flow of g4 accompanies that of g3, indicating the
nonnecessity of any four-body parameter in accordance with
Ref. [3]. To see how the limit cycle is embedded in theory

2469-9926/2016/94(5)/050702(6) 050702-1 ©2016 American Physical Society

https://doi.org/10.1103/PhysRevA.94.050702


RAPID COMMUNICATIONS

YUSUKE HORINOUCHI AND MASAHITO UEDA PHYSICAL REVIEW A 94, 050702(R) (2016)

100

50

−100

−50

−2−4−6−8

g3
g4

lnk

−100

−50

−2

lnk −
π
2

π
2

π /2

−π /2

arctang4

arctang3

−1

−1

1

1

(a) (b)

(c)

FIG. 1. (a) Cutoff k dependencies of the three-body and four-body coupling constants g3(k) and g4(k) at the unitarity limit 1/a = 0. The
abscissa shows the logarithm of the cutoff k. The blue dots and the purple diamonds show g3(k)/2 and g4(k)/250, where the multiplication
factors 1/2 and 1/250 are introduced to display the two flows simultaneously. (b) RG flow in theory space of the three-body and four-body
coupling constants. The abscissa shows arctan(g3/16) and the ordinate shows arctan(g4/6250), where we use arctan to display diverging
coupling constants, and g3 and g4 are multiplied by 1/16 and 1/6250 for the sake of simultaneous display. The brown curve shows the RG limit
cycle obtained by eliminating the cutoff k dependence of g3(k) and g4(k) from (a). If we glue the edges of the figure to form a torus, the limit
cycle winds once in the g3 direction and twice in the g4 direction, revealing a topological nature. (c) Schematic illustration of the topological
feature of the limit cycle described in (b). (c) is adapted from Fig. 5 of Ref. [38] with modifications.

space, we plot the one-parameter trajectory of (g3(k),g4(k))
on the g3-g4 plane in Fig. 1(b). A topological nature of the
limit cycle emerges if we regard the g3-g4 plane as a torus
by gluing the opposite sides of the edges of the plane: The
RG limit cycle forms a closed loop, which winds the torus
twice in the g4 direction and once in the g3 direction as
schematically illustrated in Fig. 1(c). These results suggest
that the universal numbers of the three- and four-body bound
states are, in fact, the topological winding numbers of the RG
limit cycle. Mathematically, the topological number is defined
by the first homotopy group π1, which classifies the way of
embedding a closed loop in a larger space according to the
number of windings of the closed loop in the larger space.
In our setup, a closed loop is embedded in the theory space
spanned by the three- and four-body coupling constants g3 and
g4, which should be regarded as a torus T 2 so that the limit

cycle forms a closed loop. The topological number is, then,
defined by π1(T 2) which is isomorphic to Z × Z, where Z
is the additive group of integers, i.e., the topological winding
number is a pair of integers (n,m). Thus the limit cycle belongs
to a homotopy class (n,m) = (1,2) ∈ Z × Z, reflecting the
universal numbers of the three- and four-body bound states.
Our finding shows that the geometrical property of how
the RG flow is embedded in theory space indeed contains
the information about the universal property of the Efimov
physics.

We now present our theoretical framework for obtaining
the results. To make semianalytic calculations of the four-body
sector possible, we use an effective field theory that exactly
reproduces two- and three-body observables of identical
bosons with the contact interaction. For this purpose, we
consider the following action:

S[ψ,φ] :=
∫

P

ψ∗(P )(ip0 + p2 − μ1)ψ(P ) +
∫

P

φ∗(P )

[
− 1

16π

√
ip0

2
+ p2

4
− μ1 − μ2

]
φ(P )

−
∫

PP2P1

Gψ

(
P

3
+ P2 + P1

)
φ∗

(
2P

3
+ P2

)
ψ∗

(
P

3
− P2

)
ψ

(
P

3
− P1

)
φ

(
2P

3
+ P1

)
, (1)

where P denotes the four-momentum consisting of Matsubara
frequency p0 and momentum p,

∫
P

:= ∫
d4p

(2π)4 , and Gψ (P ) :=
(ip0 + p2 − μ1)−1. In Eq. (1), ψ describes a particle, and φ

describes a dimer. Throughout this Rapid Communication,
we employ the units � = 2m = 1, where m (2m) is the mass
of a particle (a dimer). In our model, we have reduced the
Yukawa coupling between a particle and a dimer in the ordinary
two-channel model of identical bosons [12,47] to the particle

exchange interaction, as in the third term on the right-hand side
of Eq. (1). As we show below, our model exactly reproduces
the dimer propagator and the Skorniakov-Ter-Martirosian
equation [48] for the three-body scattering.

Based on this model, we have performed the FRG analysis
that is governed by the Wetterich equation [46]:

∂k�k[�] = 1

2
Tr∂̃kln

(
δ2�k[�]

δ�(P )δ�(P )
+ R�,k(P )

)
, (2)
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where �(P ) = (ψ(P ),ψ∗(P ),φ(P ),φ∗(P )), and �k[�] is
the flowing action which is defined as the 1PI effec-
tive action of the cutoff k dependent action Sk := S +∫
P

ψ∗(P )Rψ,k(P )ψ(P ) + ∫
P

φ∗(P )Rφ,k(P )φ(P ) and reduces
in the high-energy limit k → 	 to the action S and in the

low-energy limit k → 0 to the quantum effective action �

that is defined as the Legendre transform of the Schwinger
functional. The symbol Tr implies the sum over momenta,
Matsubara frequencies, and field species. The derivative ∂̃k acts
only on the regulators R�,k = Rψ,k,Rφ,k , which are chosen as

Rψ,k(Q) = k2

c2
, Rφ,k(Q) =

√
k2 − q2

16π

(k2 − q2), (3)

where 
 is the unit-step function and c is a constant to be specified later. The continuous regulators facilitate numerical
calculations.

To focus on the three- and four-body physics, we perform the vertex expansion [49] of Eq. (2) with respect to the field variables
to derive the RG equations for 1PI vertices:

�k[ψ,ψ∗,φ,φ∗] :=
∫

P

ψ∗(P )G−1
ψ,k(P )ψ(P ) +

∫
P

φ∗(P )�(2)
k (P )φ(P )

+
∫

P1,P2
P ′

1,P
′
2

(2π )4δ(4)(P1 + P2 − P ′
2 − P ′

1)�(3)
k (P1P2; P ′

2P
′
1)φ∗(P1)ψ∗(P2)ψ(P ′

2)φ(P ′
1)

+ 1

(2!)2

∫
P1,P2,P3
P ′

1,P
′
2,P

′
3

(2π )4δ(4)(P1 + P2 + P3 − P ′
3 − P ′

2 − P ′
1)�(4)

k (P1P2P3; P ′
3P

′
2P

′
1)

×φ∗(P1)ψ∗(P2)ψ∗(P3)ψ(P ′
3)ψ(P ′

2)φ(P ′
1) + · · · , (4)

where �
(n)
k is the 1PI vertex that represents the correlation of

n particles at the RG cutoff scale of k. By substituting Eq. (4)
into Eq. (2), we obtain the exact FRG equation of �

(n)
k . Since

we are interested in the three- and four-body physics, we have
only to consider the 1PI vertices up to n = 4. Indeed, the
exact FRG equation of �

(n)
k is closed up to n [50], showing

that the n-body physics in the vacuum is not affected by the
(n + 1)-body physics.

We first consider the one-, two-, and three-body sectors
separately to obtain the limit cycle of the three-body coupling
constant g3. We find that the β function of the one-body
sector vanishes [38,39,47], because the self-energy correction
is absent in the particle vacuum. Therefore, the cutoff k

dependent one-body inverse propagator is given by

G−1
ψ,k(P ) = G−1

ψ (P ) = ip0 + p2 − μ1. (5)

Concerning the two-body sector, the exact FRG equation
corresponding to Fig. 2(a) can also be solved analytically.
Together with the renormalization condition μ2 + 	

8
√

2πc
=

1
16πa

= 0 at the unitarity limit a = ±∞, the exact two-body
sector is given by

�
(2)
k (P ) = 1

16π

√
ip0

2
+ p2

4
− μ1, (6)

where we follow the trick of Ref. [51] to set the constant c in
Eq. (3) to be c = ∞, thereby integrating out the ψ field first
and then the φ field in the RG flow. We note that Eq. (6) is
consistent with the expression of the dimer self-energy [47,52].
The inverse dimer propagator thus becomes

G−1
φ,k(P ) = Rφ,k(P ) + 1

16π

√
ip0

2
+ p2

4
− μ1. (7)

The three-body sector can also be solved exactly. The
exact FRG equation for the three-body sector corresponding
to Fig. 2(b) can be analytically integrated with respect
to the cutoff k, resulting in an integral equation
corresponding to Fig. 2(c). We note that the integral

FIG. 2. Diagrammatic expressions for the exact FRG equations
for (a) the two-body sector and (b) the three-body sector. The black
dot in (a) shows the bare particle exchange interaction introduced in
Eq. (1), the solid curve shows the propagator Gψ of a particle, and
the double line shows the propagator Gφ,k of a dimer introduced in
Eq. (7). (c) Integral form of the exact FRG equation for the three-body
sector. Decomposition of (d) the three-body 1PI vertex and (e) the
four-body 1PI vertex. The curly brackets indicate symmetrization
with respect to external lines. (f) Integral form of the exact FRG
equation for the four-body sector. (g) Definition of the particle-trimer
scattering amplitude T

(4)
k represented as a square vertex.
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equation reduces in the infrared limit k → 0 to the
Skorniakov-Ter-Martirosian equation [48]. Since the s-wave
component of the scattering amplitude makes the dominant
contribution to the low-energy Efimov physics, we perform
a projection onto �

(3)
k (p2,p1) = 2π

∫
d cos θp2p1�

(3)
k (ip0 =

k2 + 3μ1; p2,p1), and define the dimensionless three-body
coupling constant by g3 := −k2�

(3)
k (p2 = 0,p1 = 0), the

divergence of which is connected with the appearance of
Efimov trimers. By solving the FRG equation corresponding to
Fig. 2(c), we obtain the exact k dependence of g3(k) in Fig. 1(a).

Concerning the four-body sector, we cannot perform an
exact FRG calculation since the four-body sector requires the
knowledge of the full momentum dependence of the particle-
dimer scattering amplitude, which is too complicated to deal
with directly. Our strategy is to take into account the dominant
intermediate state in the total particle-dimer scattering process
by making use of the Källén-Lehmann spectral representation.
By focusing on the s-wave component of the particle-dimer
scattering amplitude, we decompose −�

(3)
k (ip0,p; p2,p1) as

−�
(3)
k (ip0,p; p2p1) = χk(p2)χ∗

k (p1)

ip0 + p2

3 − ET,k

, (8)

which is diagrammatically represented in Fig. 2(d). In Eq. (8),
ET,k is the binding energy of an intermediate Efimov state
and χk(p) is the Bethe-Salpeter wave function of the Efimov
trimer. Equation (8) means that we replace the particle-dimer
scattering process by a propagation process of a relevant
Efimov state. This approximation is based on the separable
pole approximation [42–45], which respects the position and
the residue of the bound-state pole of the subsystem amplitude.
The rationale for the approximation is the pole dominance
of the subsystem amplitude as first pointed out by Lovelace
[53]. The separable approximation and its extensions are
extensively studied [54–61] in four 4He atoms and an α

particle, and are found to reproduce four-body binding energies
for a given interparticle interaction obtained by other methods
(see, e.g., Refs. [62,63]). We should note, however, that our
one-term separable pole approximation does not have a hard
evidence for its validity in accurate four-body calculations, yet
the approximation enables us to deal with a nonperturbative
four-body FRG equation with the full momentum dependence
of correlation functions.

The function χk and ET,k can be determined from the Bethe-
Salpeter equation which is obtained by substituting Eq. (8) into
the three-body equation as depicted in Fig. 2(c). If we choose
the intermediate Efimov state such that ET,k � k2, the Bethe-
Salpeter equation reduces to an analytically solvable one given
in Ref. [64], and the resulting χk and ET,k are given by

χk(p) = A

sin
[
s0arcsinh

( √
3p√

2ET,k

)]
p/

√
ET,k

, (9)

ET,k = 6	2e−2n(k)π/s0 , (10)

where s0 	 1.00624 is Efimov’s scaling parameter, n(k)
is a nonnegative integer, 	 is an ultraviolet cutoff, and
A 	 5.00858 is the normalization factor determined through
the procedure developed in Ref. [67]. To take into account the

relevant intermediate Efimov state that satisfies ET,k � k2,
we choose the integer n(k) in Eq. (10) as

n(k) =
⌊

s0

2π
ln

6	2

k2

⌋
, (11)

where 
x� gives the largest integer less than or equal to x.
Based on Eqs. (8)–(11), the four-body sector is greatly

simplified. Following Ref. [66], we decompose the four-body
1PI vertex as depicted in Fig. 2(e). The resulting four-body
FRG equation can be integrated with respect to k, resulting in a
simple form as depicted in Fig. 2(f). We note that the integrated
four-body FRG equation possesses the same structure as the
Alt-Grassberger-Sandhas equation [42,43], except that our
equation does not involve the dimer-dimer scattering process.
The neglect of the dimer-dimer process may be justified again
by the pole dominance of the subsytem amplitude, which
is the rationale for the separable pole approximations such
as the generalized unitary pole approximation [45] and the
energy-dependent pole approximation [44]. Because dimer
states are absent at the unitarity limit, the contribution of
the dimer-dimer process to the entire four-body process is
expected to be small.

As in the three-body sector, we perform an s-wave
projection onto T

(4)
k (p2,p1) = 2π

∫
d cos θp2p1T

(4)
k (ip0 =

e2π/s0k2 + 4μ1; p2,p1) and define the dimensionless four-body
coupling constant by g4 := √

ET,k T
(4)
k (p2 = 0,p1 = 0), the

divergence of which is identified with the appearance of
tetramers. By solving the FRG equation given in Fig. 2(f),
we obtain the nonperturbative RG flow of g4.

By evaluating the energies of an Efimov trimer and the
associated two tetramers from the values of the cutoff k = k3b

and k = k
(1)
4b ,k

(2)
4b at which g3 and g4 diverge, respectively, we

find the following relations:

k
(1)
4b

k3b

= 1.11,
k

(2)
4b

k3b

= 3.66, (12)

which agree reasonably with the exact ratio between the energy
of an Efimov trimer and that of associated two tetramers√

E
(1)
4b

E3b
= 1.00113,

√
E

(2)
4b

E3b
= 2.14714 [35].

In conclusion, we have demonstrated that the numbers
of universal few-body clusters are, in fact, the topological
winding numbers of the RG flow trajectory in theory space.
The one-to-two correspondence in the numbers of Efimov
trimers and tetramers is a consequence of the torus topology in
the space of the three-body and four-body coupling constants,
where the trajectory winds twice in the g4 direction every time
it winds in the g3 direction. Because of the topological nature
of the limit cycle, we expect that the numbers of universal
few-body clusters are protected against small variations of
particle masses and dimensions that respect the discrete scale
invariance. Our result demonstrates that geometrical properties
of how a “renormalized trajectory” [1] is embedded in the
entire theory space contains the information of the universal
physics characterized by the renormalized trajectory.

A closely related question is a topological phase transition
in the four-body physics. If we introduce a mass imbalance
in a four-particle system, there is a situation in which the
number of four-body companions accompanying an Efimov
trimer changes according to the mass ratio [65]. Our present
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analysis suggests that such a situation may be regarded as a new
type of topological phase transition in theory space at which
the winding number of the RG limit cycle changes. Now that
Efimov trimers are observed in mass-imbalanced mixtures of
certain atomic species [29–31], the topological phase transition
in the four-body physics should be within experimental reach.

Another important question is the predicted instability of
tetramers accompanying an Efimov trimer. As pointed out in
Ref. [34], a tetramer can, in principle, decay into a composite
of a particle and a deep Efimov trimer, making the tetramer
unstable. One may think that such an instability rounds off
the diverging behavior of the four-body coupling constant g4

by introducing an imaginary part to g4, thereby removing the

topological feature of the RG limit cycle. However, we find
that even if we take the instability into account by introducing
a deep Efimov trimer so that a tetramer can decay into the
trimer state, the imaginary part of g4 remains zero and the
divergence of g4 survives.
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