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The possible use of high-resolution rovibrational spectroscopy of the hydrogen molecular ions H2
+ and HD+

for an independent determination of several fundamental constants is analyzed. While these molecules had been
proposed for the metrology of nuclear-to-electron mass ratios, we show that they are also sensitive to the radii
of the proton and deuteron and to the Rydberg constant at the level of the current discrepancies colloquially
known as the proton size puzzle. The required level of accuracy, in the 10−12 range, can be reached both by
experiments, using Doppler-free two-photon spectroscopy schemes, and by theoretical predictions. It is shown
how the measurement of several well-chosen rovibrational transitions may shed light on the proton-radius puzzle,
provide an alternative accurate determination of the Rydberg constant, and yield significantly more precise values
of the proton-to-electron and deuteron-to-proton mass ratios.
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From Bohr’s model of the atom to the advent of quantum
electrodynamics (QED), precision spectroscopy of atomic
hydrogen has played a key role in our understanding of matter
and its interaction with light. Since the first measurement of
the Lamb shift in 1947 [1,2], the predictions of QED have been
verified with an increasing level of accuracy which, together
with stringent tests in other areas of physics, led to assume
the validity of this theory and use it to extract the values of
fundamental physical constants from experimental data [3].
Specifically, available data on the hydrogen (H) and deuterium
(D) atoms are used to extract the Rydberg constant R∞ and the
charge radii of the proton (rp) and deuteron (rd ). Data from
electron-proton and electron-deuteron scattering experiments
also contribute in this determination.

Recently, the undisputed status of these results has been
challenged by the measurement of the Lamb shift in muonic
hydrogen [4,5]. The very precise value of rp deduced from
this experiment is in strong disagreement with previous deter-
minations. The discrepancy with the CODATA adjustment [6]
amounts to 5.6σ , or to 4.5σ if only the H and D data are
taken into account [3]. Similar discrepancies were later found
for the deuteron radius [7]. Although many efforts have been
undertaken in the last few years, no convincing solution of
the “proton size puzzle” has been found so far (see Ref. [8]
for a review). One of the possible explanations is that the
error bars, both of hydrogen spectroscopy and scattering
experiments [9], were underestimated. Scattering experiments
are in preparation or underway, including electron-proton [10],
electron-deuteron [11], and muon-proton scattering [12]. In
atomic hydrogen, the 1S-3S(D) [13,14], 2S-2P [15], and
2S-4P [16] transitions are under study in order to cross check
and improve previous results. An independent determination
of R∞, from which rp and rd may be inferred using the
1S-2S measurements in H and D [17], is another way to
shed light on this problem. Experiments on helium atoms and
He+ ions [18–20], as well as highly charged hydrogenlike
ions [21], may ultimately achieve this goal. On a more general
level, the proton size puzzle exemplifies how improved and
independent determinations of fundamental physical constants

from different physical systems provide essential cross checks
of our understanding of the physical world.

In this Rapid Communication, we propose a different
route towards an independent determination of the Rydberg
constant, nuclear radii, and nucleus-to-electron mass ratios,
relying on high-resolution laser spectroscopy of the hydro-
gen molecular ions (HMI) H2

+ and HD+. These systems
have long been identified as promising for the metrology
of the proton-to-electron mass ratio μpe [22,23]. Recently,
the measurement of a one-photon rovibrational transition in
HD+ [24], and a subsequent comparison with theoretical
transition frequencies [25,26], led to a determination of μpe

with 2.9 ppb uncertainty. Here, we introduce and analyze
a concept which consists in exploiting the dependence of
transition frequencies on other fundamental constants (R∞, rp,
and in the HD+ case, rd and the deuteron-to-proton mass ratio
μdp), and progress in accuracy made possible by Doppler-free
spectroscopy schemes, to simultaneously constrain several
or all of these constants. We show that this idea can be
realized by carefully selecting a suitable set of rovibrational
two-photon transitions. A combination of n measurements on
distinct transitions (with n = 1,2,3,4,5) in H2

+ and/or HD+

may then allow the determination of up to n constants among
{R∞,μpe,μdp,rp,rd}.

On the experimental side, the most attractive feature of
this approach is that it only relies on Doppler-free frequency
measurements of extremely narrow transitions. Indeed, rovi-
brational states supported by the ground 1sσ electronic curve
have long lifetimes of the order of days in H2

+ and tens of
milliseconds in HD+ [27]. This is a significant advantage with
respect to atomic hydrogen and to some of the alternative
methods to determine the Rydberg constant [20,21]. In H,
only the 1S-2S transition has a small natural width and can
be measured with the highest accuracy [17], and a second
measurement on a much wider transition such as 2S-8S(D) or
2S-12D [28,29], involving an intricate analysis of systematic
effects, is required for a joint determination of R∞ and rp.

The first step is to identify rovibrational transitions in
HMI suitable for high-resolution spectroscopy. Throughout
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this Rapid Communication, rovibrational states are denoted
by (v,L), where v and L are the vibrational and rotational
quantum numbers, and are assumed to be supported by
the ground electronic curve. Up to now, only one-photon
transitions in HD+ have been observed [22–24,30] with a
precision limited to the ppb range by Doppler broadening. To
overcome this, our proposal considers only Doppler-free two-
photon transitions in ensembles of trapped and sympathetically
cooled HMI, which would allow one to improve the accuracy
by several orders of magnitude. For example, in the work
of Ref. [24], the second largest limitation after Doppler
broadening arose from the optical frequency measurement
system, which contributed at the level of 3 × 10−11. Using
commercially available optical frequency comb lasers [31,32]
and cesium atomic clocks, optical frequency measurements
are nowadays routinely done with far better resolutions. We
estimate (see below) that the spectral resolution may be
improved by three orders of magnitude (from 1 × 10−9 to
1 × 10−12) if Doppler broadening is removed.

In the laser spectroscopy of trapped atoms and molecules,
Doppler broadening can be removed altogether by realizing
the Lamb-Dicke regime (see, e.g., Ref. [33]), in which the
motional amplitude of the trapped particle is much smaller
than the wavelength of the laser. This is achieved either by
tight confinement of the particles, or by two-photon transitions
for which the three-level Hamiltonian can be reduced to that
of a two-level system interacting with a single photon with
an effective wavelength λeff = |1/λ1 − 1/λ2|−1 [34,35]. We
propose the use of degenerate (λ1 = λ2) or quasidegenerate
(λ1 ≈ λ2) two-photon transitions such that λeff � 2 μm,
which is the typical motional amplitude of molecular ions in
existing ion traps such as those used by Biesheuvel et al. [24].
The two-photon spectroscopy of HMIs may thus be performed
deeply in the Lamb-Dicke regime, removing the first-order
Doppler effect. Apart from using two-photon transitions,
other features of the envisaged experiments [ion trapping and
sympathetic cooling, detection of the transitions by resonance-
enhanced multiphoton dissociation (REMPD)] are identical to
previous HD+ one-photon spectroscopy experiments, and we
refer the reader to, e.g., Refs. [24,36] for further details on the
experimental arrangement.

In the case of H2
+, degenerate two-photon transitions

(v,L) → (v′ = v + 1,L′) are the most favorable since the
transition strength rapidly decreases with �v = |v′ − v|, as
shown in Ref. [37]. The other main requirement is the efficient
preparation of the ions in the initial state of the transition,
which can be achieved by resonance-enhanced multiphoton
ionization (REMPI) of H2. Highly selective ion production
was demonstrated for 0 � v � 6 and L = 1,2 [38]; we choose
L = 2 as these states have a simpler hyperfine structure
(two sublevels as compared to five) [39]. The seven selected
transitions are listed in Table I; the spectroscopy of the
(0,2) → (1,2) transition is being pursued at LKB Paris [39,40].

The fact that one-photon dipole transitions are weakly
allowed opens up different avenues for the spectroscopy of
HD+. It is possible to probe quasidegenerate two-photon tran-
sitions [35,41,42], where the lasers are tuned close to resonance
with an intermediate rovibrational level in order to enhance
the transition probability. State-selected ion production is not
required: HD+ ions can be obtained by the electron-impact

TABLE I. Selected rovibrational transitions (v,L) → (v′,L′) in
H2

+. The lower and upper rovibrational levels and the transition
wavelength are given in the first three columns. The relative
sensitivities of the transition frequency on μpe and rp [defined by
Eq. (2)] are given in the last two columns. The sensitivities of the
1S-2S transition in H, obtained from the results compiled in Ref. [3],
are given in the last line.

Name (v,L) (v′,L′) λ (μm) sμpe
109 srp

H2(0) (0,2) (1,2) 9.1661 −0.4657 −1.240
H2(1) (1,2) (2,2) 9.7321 −0.4346 −1.216
H2(2) (2,2) (3,2) 10.350 −0.4013 −1.194
H2(3) (3,2) (4,2) 11.031 −0.3652 −1.173
H2(4) (4,2) (5,2) 11.787 −0.3252 −1.153
H2(5) (5,2) (6,2) 12.636 −0.2801 −1.133
H2(6) (6,2) (7,2) 13.603 −0.2279 −1.114
H H(1S-2S) 0.00054 −0.8502

ionization of HD, after which they will relax to v = 0 within a
few hundreds of milliseconds, ensuring sufficient population
in the states (0,L) with L � 5 at 300 K; moreover, the REMPD
signal is enhanced by the interaction with blackbody radiation,
which continuously recycles ions from other rotational states
into the desired state [24,35]. Four transitions from v = 0 with
an intermediate level (v′′,L′′) lying sufficiently close to the
midpoint energy (E(v,L) + E(v′,L′))/2 have been identified (see
Ref. [43]) and are listed in Table II. An experiment to measure
the (0,3) → (4,2) → (9,3) transition frequency is currently
underway at VU University Amsterdam.

A discussion of experimental parameters and expected
transition rates, based mainly on the analysis made in
Refs. [39] (for H2

+) and [35] (for HD+), is given in the
Supplemental Material [27], showing the feasibility of the
proposed spectroscopy schemes.

The next step is to compute the dependence of the
transition frequencies on fundamental constants. The energy
of rovibrational levels of HMI, calculated in the framework of
QED, may be written as

E = R∞

[
Enr(μn) + α2FQED(α) +

∑
n

Afs
n (rn/a0)2

]
, (1)

where α is the fine-structure constant, and a0 = α/4πR∞
is the Bohr radius. The main contribution to E is the
nonrelativistic (Schrödinger) energy Enr(μn), which depends
on the mass ratio(s) μn = μpe in H2

+, and μn = {μpe,μdp}
in HD+; the sensitivity coefficients ∂Enr/∂μn were calculated
in Refs. [45,46]. The next term corresponds to relativistic and
QED corrections. The function FQED(α) is a nonanalytic ex-
pansion which, beyond powers of α, also contains logarithmic
terms such as αp lnq(α). In principle, the coefficients of the
expansion slightly depend on the mass ratios μn, but this
dependence may be neglected here. All coefficients have been
calculated up to order α3 (or R∞α5 for the energy) [25,26]. The
last term is the nuclear finite-size correction, which comprises
a single term proportional to r2

p in H2
+, and an additional

term proportional to r2
d in HD+ [47]. The coefficients Afs

n are
proportional to the squared density of the wave function at the
electron-nucleus coalescence point.
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TABLE II. Selected rovibrational transitions in HD+. The lower, intermediate, and upper rovibrational levels are given in the first three
columns. The next two columns display the wavelengths λ1,λ2 of the nondegenerate two-photon transition, and the effective wavelength
λeff = |1/λ1 − 1/λ2|−1 for the absorption of counterpropagating photons. The last four columns give the relative sensitivities of the transition
frequency on μpe, μdp , rp , and rd [defined by Eq. (2)]. Note that the first transition (0,0) → (0,2) is a stimulated Raman transition with
copropagating photons. The sensitivities of the hydrogen-deuterium isotopic shift of the 1S-2S transition, obtained from Ref. [44], are given
in the last line.

Name (v,L) (v′′,L′′) (v′,L′) λ1 (μm) λ2 (μm) λeff (μm) sμpe
sμdp

109 srp 109 srd

HD(R) (0,0) (4,1) (0,2) 1.4040 1.4304 76.149 −0.9848 −0.3284 −1.058 −6.335
HD(2) (0,1) (1,0) (2,1) 5.3501 5.3857 809.34 −0.4601 −0.1534 −0.619 −3.701
HD(4) (0,5) (2,4) (4,5) 2.8764 2.8606 518.60 −0.4179 −0.1394 −0.601 −3.587
HD(9) (0,3) (4,2) (9,3) 1.4424 1.4453 730.58 −0.3522 −0.1175 −0.588 −3.500
H-D D(1S-2S)-H(1S-2S) −0.9992 1.0013 3125 −18722

The dependence of a transition frequency f on a fundamen-
tal constant c is expressed in terms of a sensitivity coefficient

sc = c0

f0

∂f

∂c
, (2)

where c0 is the recommended value of the fundamental
constant c and f0 the transition frequency calculation for
c = c0 (and assuming recommended values for all other
constants involved). All sensitivity coefficients of the selected
transitions are given in Tables I and II. The sensitivities to R∞
(not shown) are very close to 1 and can be taken as equal to
1 for all practical purposes. The uncertainty due to α gives
a negligible contribution to the overall uncertainty of the
transition frequencies and will not be considered here.

The accuracy with which fundamental constants can be
determined from the measurement of several rovibrational
transitions depends on the uncertainty of those measurements,
and of the related theoretical predictions from Eq. (1). It is
thus essential to give a realistic assessment of the accuracy that
may be reached both in theory and experiments. Concerning
theory, all correction terms of order R∞α5 have been calculated
recently, leading to predictions of transition frequencies with
3–4 × 10−11 relative uncertainty [25,26]. Based on current
progress in the theoretical description, we estimate that the
accuracy may be improved further by about one order of
magnitude in the foreseeable future, and we will assume a
theoretical uncertainty of 3 × 10−12 for all transitions. This
involves evaluating the following corrections: (i) two-loop
self-energy at order R∞α6, (ii) nonlogarithmic one-loop self-
energy correction of order R∞α6, and (iii) recoil corrections
of order R∞α4(m/M), which are discussed in Refs. [48–50]
for the hydrogen atom case.

Concerning the experimental accuracy of two-photon tran-
sition frequencies, we estimate that it may realistically reach
a level of 1 × 10−12 [35]. Since the natural widths of the
transitions are extremely small (see Table S1 in Ref. [27]),
experimental linewidths are expected to be limited by the
width of the excitation laser and by power broadening [35].
For our estimates of transition rates we have conservatively
assumed a linewidth of 500 Hz for all transitions (see Ref. [27]
for details). The targeted uncertainty �νa = 10−12ν2ph is then
generally around one tenth (or more) of the linewidth [51]. In
view of the signal-to-noise ratio obtained in experiments [24],
the required statistical accuracy may be reached within a
reasonable integration time.

There remains to estimate the uncertainties associated with
the various systematic frequency shifts. The main systematic
effect to consider is the linear Zeeman effect. For purely vibra-
tional transitions, some of the favored hyperfine components
between homologous hyperfine states benefit from almost
perfect compensation of Zeeman shifts (see Refs. [52,53]
and Appendix A of Ref. [35]). Assuming that the magnetic
field can be reduced to 20 mG (which has been achieved in
the Amsterdam experimental setup), this results in very small
Zeeman splittings of the order of 10 Hz. The laser linewidth
being larger than this value, all the Zeeman components
can be addressed simultaneously, enhancing the signal and
avoiding any linear Zeeman shift of the measured line. The
only exception is the HD(R) rotational transition in Table II,
where all hyperfine components have Zeeman splittings of
several kHz. Individual Zeeman components must then be
measured separately. With a sufficiently stable magnetic field,
the linear Zeeman shift can be canceled by averaging over
at least one pair of opposite Zeeman components (see, e.g.,
Ref. [54]). Due to the smaller addressed population, the signal
is markedly smaller in this case. If necessary, this may be
improved by applying rotational cooling [55,56].

The next effect to consider is the Stark shift, especially
the ac Stark shift due to the spectroscopy laser(s), which
might be important for weak transitions requiring high laser
intensities. For the weakest transition, H2(0) in Table I, one
may assume an intensity I ∼ 10 W mm−2, which yields
a more than sufficient excitation rate 	2ph ∼ 84 s−1 [27].
Using dynamical polarizabilities computed in Ref. [57], we
find an ac Stark shift �fS = 17 Hz that is smaller than the
targeted experimental uncertainty 10−12ν2ph ∼ 33 Hz. For all
other transitions, this effect is significantly smaller and thus
negligible. Other systematic effects, including the electric
quadrupole and quadratic Zeeman shifts, blackbody radiation
shift, and second-order Doppler effect, are negligible at the
10−12 level (see, e.g., Ref. [58]). For trapped ions in ultrahigh
vacuum chambers, collisions occur very infrequently, leading
to negligible line shifts [59,60].

We are now ready to estimate the uncertainty of n funda-
mental constants c1 · · · cn extracted from the measurement of n

transition frequencies f1 · · · fn. Here, we follow the approach
of the CODATA least-squares adjustment (see Appendixes E
and F in Ref. [61]). Linearizing the expressions of the transition
frequencies obtained from Eq. (1) around the recommended
values c01 · · · c0n of the fundamental constants leads to the
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matrix relation

Y = AX, (3)

where X and Y are column vectors with n elements x1 · · · xn

(respectively y1 · · · yn) given by xj = (cj − c0j )/c0j [respec-
tively yi = (fi − f0i)/f0i , f0i being the frequency calculated
for cj = c0j ], and A is an n × n matrix filled by the elements
aij = si

cj
[relative sensitivity of frequency i on the constant cj ,

as defined by Eq. (2)]. Least-squares minimization gives us
the best solution X̂ of Eq. (3), for which the covariance matrix
is [61]

G = (AT V−1A)−1, (4)

and where V is the correlation matrix of the input data Y.
To construct this correlation matrix, we add the experimental
and theoretical uncertainties quadratically. The experimental
uncertainties of different transitions are assumed to be uncor-
related. However, theoretical uncertainties due to uncalculated
terms are strongly correlated since these terms are primarily in
the form of an unknown common constant multiplied by the
square of the wave function at the electron-nucleus coalescence
point [3]. Here, we assume perfect correlations.

At this point, it is instructive to compare the rel-
ative uncertainties of individual transitions frequencies
originating from each fundamental constant separately
(correlations between constants are not considered for
this evaluation). Taking the CODATA2014 uncertainties,
one obtains for the (0,2) → (1,2) transition in H2

+,
[�y(R∞),�y(μpe),�y(rp)] = (0.59,4.4,0.87) × 10−11. This
confirms that μpe, being the main source of uncertainty, is
the parameter to be constrained from a measurement, as
previously observed [22,24,30]. However, in the context of the
proton-radius puzzle, it makes sense to set �rp equal to the
difference between the muonic hydrogen and CODATA values,
and increase �R∞ by the same factor as it is nearly perfectly
correlated with rp (see the second line of Table III for the values
of the uncertainties). Then the contributions from the different
constants are of the same order, [�y(R∞),�y(μpe),�y(rp)] =
(3.3,4.4,4.8) × 10−11, which shows that at least two other
rovibrational transition frequency measurements are required
to extract information on each constant separately. The
situation is similar in HD+; for the (0,3) → (9,3) transi-
tion one gets [�y(R∞),�y(μpe),�y(μdp),�y(rp),�y(rd )] =

(0.59,3.3,1.1,0.41,0.42) × 10−11 with the CODATA uncer-
tainties, and (3.3,3.3,1.1,2.3,2.6) × 10−11 when considering
the discrepancies between nuclear radii.

Our main results are summarized in Table III, which is
divided into four sections corresponding to different (hypo-
thetical) outcomes of the proton-radius puzzle. In each case,
we tested all possible combinations of transitions among
those of Tables I and II and chose the one(s) leading to
the most accurate determinations. The general guideline is
to minimize redundancy, i.e., to select transitions having
as diverse sensitivities as possible. For example, if two
measurements in H2

+ are required, the best choice is to
combine the most different transitions in Table I, which are
v = 0 → 1 and v = 6 → 7.

We considered the following four (hypothetical) cases:
(i) Puzzle unresolved: Using only HMI data. Five transition

measurements in HMI yield a fully independent determination
of R∞, rp, and rd . As can be seen by comparing the third
line with the first two, the accuracy of rp, rd , and R∞ would
approach that of the current CODATA values. Importantly,
the results of HMI would provide enough resolution to
shed light on the proton-radius puzzle as the uncertainties
are significantly smaller than the related discrepancies. In
addition, the uncertainty of μpe would be reduced by more than
one order of magnitude over the present CODATA value, while
the uncertainty of μdp would also be significantly improved.

(ii) 1S-2S measurements in H and D confirmed: Using
1S-2S and HMI data. Combined with the H(1S-2S) result,
two measurements in H2

+ determine R∞, μpe, and rp. One
additional measurement in HD+, together with the H-D isotope
shift measurement [44], allows one to determine also μdp and
rd . Again, the accuracy is good enough to shed light on the
discrepancy, and the uncertainties of μpe and μdp are reduced
by factors of 6 and 3, respectively.

(iii) Muonic atom experiments confirmed: Using muonic
and HMI data. Assuming that rp and rd are precisely deter-
mined by muonic atom spectroscopy, three HMI transition
measurements allow one to determine R∞, μpe, and μdp. This
would improve the uncertainty of both mass ratios by more
than one order of magnitude, and that of the Rydberg constant
by a factor of 1.7.

(iv) Puzzle resolved: Using 1S-2S, muonic, and HMI data.
If muonic atom and hydrogen 1S-2S accuracies are confirmed,

TABLE III. Achievable relative accuracy on fundamental constants using HMI spectroscopy data (combined or not with atomic hydrogen
or deuterium spectroscopy), assuming experimental and theoretical accuracies of 1 × 10−12 and 3 × 10−12, respectively. The first two lines
refer to the present CODATA uncertainties and the discrepancies between electronic and muonic atom spectroscopy. The “muonic” value of
rd is obtained from the muonic hydrogen value of rp , and using the determination of r2

d − r2
p from the 1S-2S isotopic shift measurement [44].

Sections (i)– (iv) refer to different hypotheses on the outcome of the proton-radius puzzle (see text).

Used input 1011 �x(R∞) 1011 �x(μpe) 1011 �x(μdp) 103 �x(rp) 103 �x(rd )

CODATA 0.59 9.5 9.3 7.0 1.2
Muonic atom discrepancy 3.3 39 6.3

(i) H2(0), H2(6), HD(R), HD(2), HD(9) 0.86 0.82 5.6 8.4 3.3
(ii) H, H2(0), H2(6) 1.8 1.6 22

H, H-D, H2(0), H2(6), HD(R) 1.8 1.6 3.4 22 3.7
(iii) (rp,rd ) + H2(0), HD(R), HD(9) 0.34 0.41 0.84
(iv) (R∞,rp) + H2(0) 0.68

(R∞,rp,rd ) + H2(0), HD(9) 0.68 1.2

050501-4



RAPID COMMUNICATIONS

HYDROGEN MOLECULAR IONS FOR IMPROVED . . . PHYSICAL REVIEW A 94, 050501(R) (2016)

rp, rd , and R∞ are precisely determined independently of HMI
data. We then revert to the initial idea of mass ratio determina-
tions [22,23]. A single measurement in H2

+ improves μpe by
a factor of 14, and an additional measurement in HD+ yields a
determination of μdp with an eightfold accuracy improvement.

We furthermore point out that an improved value of μpe

may be combined with the accurate electron atomic mass
determination reported by Sturm et al. [62] to yield an
improved value of the proton relative mass (reducing the
uncertainty from 9 × 10−11 to 3 × 10−11). In addition, combi-
nations of accurate experimental and theoretical results of HMI
spectroscopy can also be exploited to set greatly improved
constraints on “new physics”, such as the possible existence
of a fifth force between hadrons [63] or of compactified higher
dimensions [64].

In conclusion, we have shown that Doppler-free two-photon
spectroscopy of H2

+ and HD+ is a promising route to shed
light on the proton-radius puzzle. Depending on the progress
and outcomes of ongoing experiments (atomic hydrogen
spectroscopy, electron and muon scattering off nuclei), it
may resolve the presently observed discrepancy, provide an
alternative determination of the Rydberg constant, and improve
the accuracy on the proton-electron and deuteron-proton mass

ratios by one order of magnitude and beyond the 10−11 level.
We stress that the proposed approach is very attractive as it
relies on Doppler-free frequency measurements of rovibra-
tional transitions with extremely small natural linewidths, thus
relaxing the requirement of a very precise understanding of the
experimental line shape. Similar to the role played by muonic
hydrogen spectroscopy in the proton size puzzle, we expect
that accurate theory and measurements of the HMI will provide
essential input not only for the determination of fundamental
constants, but also for foundational and cross-disciplinary
checks of the validity of fundamental theory and experimental
tests thereof, and for the search for new physics.
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T. Udem, Phys. Rev. A 79, 052505 (2009).

[20] D. Z. Kandula, C. Gohle, T. J. Pinkert, W. Ubachs, and K. S. E.
Eikema, Phys. Rev. A 84, 062512 (2011).

[21] J. N. Tan, S. M. Brewer, and N. D. Guise, Phys. Scr. T144,
014009 (2011).

[22] W. H. Wing, G. A. Ruff, W. E. Lamb, Jr., and J. J. Spezeski,
Phys. Rev. Lett. 36, 1488 (1976).

[23] J. C. J. Koelemeij, B. Roth, A. Wicht, I. Ernsting, and S. Schiller,
Phys. Rev. Lett. 98, 173002 (2007).

[24] J. Biesheuvel, J.-Ph. Karr, L. Hilico, K. S. E. Eikema, W. Ubachs,
and J. C. J. Koelemeij, Nat. Commun. 7, 10385 (2016).

[25] V. I. Korobov, L. Hilico, and J.-Ph. Karr, Phys. Rev. Lett. 112,
103003 (2014).

[26] V. I. Korobov, L. Hilico, and J.-Ph. Karr, Phys. Rev. A 89,
032511 (2014).

[27] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevA.94.050501 for a detailed discussion of the
linewidths and excitation rates of two-photon transitions in H2

+

and HD+.
[28] B. de Beauvoir, F. Nez, L. Julien, B. Cagnac, F. Biraben, D.

Touahri, L. Hilico, O. Acef, A. Clairon, and J. J. Zondy, Phys.
Rev. Lett. 78, 440 (1997).

[29] C. Schwob, L. Jozefowski, B. de Beauvoir, L. Hilico, F. Nez, L.
Julien, F. Biraben, O. Acef, J.-J. Zondy, and A. Clairon, Phys.
Rev. Lett. 82, 4960 (1999).

[30] U. Bressel, A. Borodin, J. Shen, M. Hansen, I. Ernsting, and
S. Schiller, Phys. Rev. Lett. 108, 183003 (2012).
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