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Analysis of the Pancharatnam-Berry phase of vector vortex states using the Hamiltonian
based on the Maxwell-Schrödinger equation
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We derived the Berry connection of vector vortex states (VVSs) from the “true” Hamiltonian obtained through
the Maxwell-Schrödinger equation for an inhomogeneous anisotropic (IA) medium, and we experimentally
demonstrated measurement of the corresponding Pancharatnam-Berry (PB) geometrical phase of VVSs. The PB
phase (PBP) of VVSs can be divided into two phases: homogeneous and inhomogeneous PBPs. Homogeneous
and inhomogeneous PBPs are related to the conventional PBP and the spatially dependent geometric phase given
by an IA medium such as a polarization converter, respectively. We theoretically detected that inhomogeneous
PBP accumulation originates from the gauge dependence of the index of the hybrid-order Poincaré sphere,
which provides an alternate method for understanding optical spin-orbital angular momentum conversion. The
homogeneous PBP, which is explicitly observed, has implications for quantum-state manipulation and information
processing.
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I. INTRODUCTION

The Pancharatnam-Berry phase (PBP) is a geometrical
phase [1] associated with polarization of light [2]. The PBP
has been experimentally observed using a homogeneously
distributed polarization light state [3]. Recently, using spin-
orbit converters [4], Milione et al. [5] conducted a pioneering
exploration of PBPs for vector vortex states (VVSs). Here, the
VVSs, having attracted attention for many applications [6], are
light states having both inhomogeneous phase and polarization
distributions [7]. On a higher-order Poincaré sphere, which is
the space of higher-order Stokes parameters [8], Milione et al.
show pathways made by the spin-orbit converters.

A polarization converter to generate a vector vortex beam
can make a path from a state on one to a state on another higher-
order Poincaré sphere [9], whose process can be described on a
hybrid-order Poincaré sphere (HOPS) [10]. Yi et al. proposed
not only the HOPS but also the PBP for the HOPS, which are
acquired similarly to the method of Milione et al. [5].

Milione et al. theoretically and experimentally investigated
the PBP induced by spin-orbit converters composed of half-
wave plates and pairs of cylindrical lenses. However, the PBP
discussed by them does not always include the PBP induced
by a sequence of inhomogeneous anisotropic (IA) media,
which are another spin-orbit converters, such as space-variant
wave plates (SVWPs) [11] or q plates [12]. The transition
of a state of a VVS in IA medium can be described on the
HOPS, and we can acquire the PBP when the Hamiltonian
for the IA medium is obtained. However, it is difficult to
justify the Hamiltonian for an optical system [13]. Although
Berry has shown the procedure to acquire the PBP for a
uniformly polarized light state [14], the Hamiltonian is just the
density matrix of the circularly polarized states, which does
not provide an appropriate equation of motion for wave plates.
Therefore, it is essential to acquire the true PBP from the true
Hamiltonian describing an IA medium such as a SVWP or a
q plate, which is a typical spin-orbit converter.

*morita@eng.hokudai.ac.jp

In the present paper, in order to accurately discuss the
PBP for VVSs in the right way, we will reestablish the Berry
connections of VVSs on the HOPS. We first acquire the “true”
Hamiltonian of a SVWPs as an extension of Refs. [15], which
acquire the Hamiltonian of homogeneous birefringent media
from the Maxwell-Schrödinger equation. Furthermore, we will
experimentally measure the PBP for VVSs and demonstrate it
to be a “true” PBP given by IA media.

II. THEORETICAL FORMULATION

A. Hybrid-order Stokes parameters

We use bra-ket notation to describe a VVS:

|ψ〉 = ψ+,le
−il+φ
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where φ is the azimuthal angle, ψ±,l are amplitude functions,
l+ and l− indicate topological charges of the left- and
right-circularly polarized states, respectively, and l′[= (−l+ +
l−)/2] and l[= (l+ + l−)/2] are azimuthal indices. We require
the inner product of the vector to be unity (|ψ+,l|2 + |ψ−,l|2 =
1). By definition, the hybrid-order Stokes parameters are
described as
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where σ = [σ0(≡ 1̂),σ1,σ2,σ3]T are the Pauli spin matrices
[16], and |φ〉 represents (ψ+,l ,ψ−,l)T. Since S

−l+,l−
i =Sl
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1,2) and S
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3 ≡S3, we hereafter express S−l+,l− as Sl , and S̃l
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1,S
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T
. If l is an integer, Sl represents the higher-order

Stokes parameters.
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B. Hamiltonian for space-variant wave plates

Following Refs. [15], the Maxwell-Schrödinger equation
for an IA medium, whose transverse dielectric tensor is
described by ε̂⊥ = (εij ) (i,j = x,y), is

2i
√

εk−1∂z|φ〉 = (ε1̂ − Tlε̂⊥T
†
l )|φ〉, (3)

where ε is a dielectric value, k is a wave number, and

Tl =
(

eilφ −ieilφ

e−ilφ ie−ilφ

)

is a transform matrix from the x,y-basis representation |ψ〉
to the circularly polarized optical vortex basis representation
|φ〉 (see Appendix A). Here, the Hamiltonian Hl is given by
ε1̂ − Tlε̂⊥T

†
l .

The transverse relative permittivity tensor of a q = l,α0 =
lᾱ wave plate is described using a rotational matrix Rθ :

ε̂⊥ = Rl(φ+ᾱ)

(
εo 0

0 εe

)
R−l(φ+ᾱ), (4)

where εo,e are the extraordinary and the ordinary dielectric
constants, respectively. Note that the definitions of q and
α0 are given in Ref. [12], and when l=0, lᾱ is replaced
with ᾱ. Hence, the Hamiltonian is calculated to be Hl =
ε−[cos(lᾱ)σ1 + sin(lᾱ)σ2], where ε± = (±εo + εe)/2 and ε =
ε+. The evolution equation for S̃l is given [15] by

d S̃l

dδ
= S̃l ×

⎡
⎣− cos(2lᾱ)

− sin(2lᾱ)
0

⎤
⎦, (5)

where δ = δ(z) = kε−z/
√

ε+ is the retardance phase. This
equation supplies the true path made by a SVWPs because
Eq. (5) represents precession on the HOPS.

We can easily obtain the dynamical phase by following
the Berry’s discussion [16]. The dynamical phase γdynamical is
given by

γdynamical = − k

2
√

ε+

∫ z

0
λ±(S̃l)dz, (6)

where λ± are the eigenvalues of the following eigenvalue
equation:

Hl|ψ±(S̃l)〉 = λ±(S̃l)|ψ±(S̃l)〉. (7)

Since λ± = ±ε−, the dynamical phases γdynamical for |ψ±(S̃l)〉
are given by ±δ/2, respectively. Hence, the dynamical phase
is interpreted as the retardance phase.

C. Berry connection of vector vortex states

We now obtain the PBP of VVSs through the Berry
connection. Since Hl is equivalent to a spin-1/2 system
Hamiltonian, the Berry connection is expressed by

A(S̃l) = −eζl
(2Rl)

−1 tan
ξl

2
+ ∇S̃l

�(S̃l), (8)

where �(S̃l) is a scalar potential [17]. Here, we used the
spherical coordinates S̃l = RleRl

+ ξleξl
+ ζleζl

, where Rl , ξl ,
and ζl are the radial distance, polar angle, and azimuthal angle
in the lth HOPS, and ei (i = Rl,ξl,ζl) represents the unit vector

for the i axis. We define the PBP of VVSs through the Berry
connection as

γBerry =
imax∑
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F
li
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where we require a closed loop in the general meaning. S̃
S
l0

=
S̃

F
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and S̃
S
li

= S̃
F
li−1

, but l0 	= lmax and li 	= li−1 are accepted if

S̃
S
li

= [0,0, ± 1]T.

D. Gauge dependence on l

In general, the Berry phase is gauge invariant. However,
we allow the jump from one HOPS to another HOPS at the
north and the south poles on the HOPS, so the BP phase may
be gauge variant when the gauge depends on l. The general
solution of Eq. (3) is

|ψ〉 = ei(l′φ−δ(z)/2)Rl(φ+ᾱ)

(
E0

x

E0
ye

iδ(z)

)
, (10)

where eilφRl(φ+ᾱ)(E0
x,E

0
y )T is the initial state of |ψ〉 at z = 0.

An overall phase �overall of Eq. (10) is calculated to be (see
Appendix B)

�overall = l′φ − arg
[
E0

xe
−iδ/2 cos l(φ + ᾱ)

−E0
ye

iδ/2 sin l(φ + ᾱ)
]
. (11)

Because the overall phase does not depend on an initial state
(see Appendix B), we set the initial state to be the north pole
of the lth HOPS (E0

x = 1,E0
y = i). In that case, (Rl,ξl,ζl) =

(1,δ,2lᾱ − π/2); thus, the overall phase is rewritten by

�overall(S̃l) = l′φ + arctan
tan(π/4 + ξl/2)

tan(lφ + ζl/2)
. (12)

Since Eq. (12) depends on l, which results in the gauge-variant
PBP, we express the scalar potential as

�(S̃l) = �overall(S̃l) + �indep(S̃l), (13)

where �indep is an arbitrary function independent of l.
Thus, Eq. (8) can be divided into terms independent of l,
[−eζl

(2Rl)−1 tan(ξl/2) + ∇S̃l
�indep(S̃l)], and the term depen-

dent on l, [∇S̃l
�overall(S̃l)]. If the trajectory satisfies the closed

loop in the general meaning, the PBP is described by

γBerry = −�

2
+

imax∑
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S̃

F
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S̃
S
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= −�

2
− φ

2

imax∑
i=0

[(
cos ξF

li
− cos ξS

li

)
li
]
, (14)

where � is the area subtended by the closed loop [Fig. 1(a)].
Hence, when the closed loop is on one HOPS, the PBP is
not gauge dependent, but when it travels between HOPSs, the
PBP is gauge dependent. The former and the latter terms of
Eq. (14) are homogeneous and inhomogeneous parts of the
PBP, respectively. From the requirement of the closed loop,
the inhomogeneous part is quantized by φ, which is illustrated
by a “ladder chart” [Fig. 1(b)]. This is one of the key results
of this paper.
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FIG. 1. (a) A conceptual diagram of the area � subtended by the
closed loop on the HOPS and definition of the angles ξ and ζ . (b) A
ladder chart.

III. EXPERIMENT

A. Experimental setup

Here, we experimentally measured the PBP for VVSs
through interferometry analogous to the measurement of the
Aharonov-Bohm effect [14,18]. Figure 2 shows the experi-
mental setup. The light source that we used in this experiment
was a Ti:sapphire laser amplifier (center wavelength 800 nm;
bandwidth ∼40 nm; pulse duration ∼25 fs). The attenuated
pulse from the laser amplifier passed through a bandpass
filter (BPF; center wavelength, 800 nm; bandwidth 10 nm),
lengthening its pulse duration to ∼120 fs (∼40 cycles). We
conducted this experiment by use of many-cycle femtosecond
pulses [19]. After the BPF, a spatial light modulator (SLM)
system shaped the spatial intensity profile of the pulse into a
Gaussian profile. The x-polarized (or horizontally polarized)
pulse was branched into two beams at a beam splitter (BS1).
In the upper branch, the polarization state of light travels
on the HOPSs; in the lower branch, light is directed into
the delay line as a reference pulse beam (Fig. 2). Here,
BS1 and a second beam splitter (BS2) form a Mach-Zehnder

Ti:Sa Amp

POL1 QWP1 QP1 QWP2

CCD

POL2

POL3

Delay

BPF

f1 f1

1
x

yfast
x

y fast

q=1/2, 0= 1/2
half wave plate

0 1 3
BS1

BS2

(2)(2) 4

SLM

FIG. 2. The experimental setup for measuring PBP for VVSs,
where BPF is a bandpass filter (center wavelength 800 nm; bandwidth
10 nm); SLM is a liquid crystal on a silicon spatial light modu-
lator; BS1,2 are 50 : 50 nonpolarizing beam splitters for ultrafast
optics (Thorlabs UFBS5050); POL1,2,3 are polarizers; QWP1,2 are
quarter-wave plates; QP1 is a q = 1/2, α0 = ᾱ1/2 half-wave plate
(Photonic Lattice SWP-808); Delay is a delay stage; and CCD is a
charge-coupled device camera. The points are numbered in order to
distinguish the intermediate states. Point 2 is located inside QP1.
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FIG. 3. Paths on the HOPSs for (a) l = 0 and (b) l = 1/2. (c) Su-
perposition of all trajectories on all HOPSs [(a) and (b)]. Here, � is the
solid angle of the circuit drawn by the trajectories. State 2 is expedi-
entially illustrated to be S̃1/2 = [sin(ᾱ1 − π/4),− cos(ᾱ1 − π/4),0]T.
(d) A ladder chart.

interferometer. In the upper branch, a polarizer (POL1) purified
the x-polarized state. A quarter-wave plate (QWP1) with the
fast axis at 3π/4 rad to the x axis converted the polarization
state into left circularly polarized. After that, the pulse passed
through a q = 1/2,α0 = ᾱ1/2 half-wave plate (QP1, ᾱ1 is a
rotation angle depicted in Fig. 2), and the pulse went through
a quarter-wave plate with the fast axis at π/4 rad to the x axis.
Although the spatial profile is converted into a “point vortex”
[20] or a hypergeometric-Gaussian mode [21] by a polarization
converter QP1, the spatial intensity profile after QP1 was
returned to a Gaussian profile on the charge-coupled camera
(CCD) due to the pair of relay lenses. After the polarizers with
polarization axes along the x axis (POL2 and POL3) purified
the x-polarized states, a beam splitter (BS2) combined the up-
per and lower beams collinearly and coherently. The delay time
was set so that the contrast of the interference was sufficiently
high. The spatial interference pattern was captured by CCD.

Figures 3(a) and 3(b) depict the paths of the VVS on the
HOPSs. By merging all trajectories into one sphere as shown in
Fig. 3(c), these paths can form a closed contour, which satisfies
the requirement of a “closed” loop. From Eq. (14), the PBP
is calculated to be −�/2 + φ = ᾱ1 − π/2 + φ. Early studies
[11] have mentioned the observation of the inhomogeneous
PBP term φ through a q = 1/2 half-wave plate, which
is known as the space-variant Pancharatnam-Berry phase.
However, the uniform PBP term ᾱ1 − π/2 has not been
explicitly observed. Figure 3(d) is a ladder chart describing
the change in the inhomogeneous part of the PBP.

B. Results

Figure 4 shows the experimental results. To explore the
PBP for VVSs, we measured the intensity of the interference
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FIG. 4. Experimental results. (a, b) Intensity patterns acquired
with a CCD camera with and without the reference pulse beam,
respectively. The beam size of the reference pulse beam is large
enough to cover the whole original pulse beam (b). In contrast to
the intensity pattern of the original pulse beam (b), the interference
pattern (a) is nonuniform in the azimuthal direction, which shows that
there is a nonuniform phase distribution in the azimuthal direction.
Red rectangles in (a) and (b) represent the average areas. (c) Intensity
variation by changing the rotation angle ᾱ1. Curves in (c) are the fitted
lines proportional to cos(γBerry + δpd) + const.

by rotating QP1. The measured intensity patterns are shown
in Fig. 4(a). The beam center was estimated using the singular
point on the intensity pattern without the reference pulses
[Fig. 4(b)]. Areas A, B, C, and D correspond to φ = 0,π/2,π ,
and 3π/2, respectively. The intensity is proportional to the
function of cos(γBerry + δpd) + const., where δpd is the phase
difference owing to delay and was experimentally evaluated
to be 3.38 rad. The dynamical phase is a constant value in the
beam cross section and is almost canceled by the interference
measurements. The obtained data in Fig. 4(c) are consistent
with the above function; thus we have successfully observed
the PBP for VVSs, including not only the inhomogeneous part
but also the homogeneous part.

IV. DISCUSSION

The experimental results in our setup show that the
inhomogeneous part of the PBP for VVSs is gauge dependent
on l. If we replace QP1 (a q = 1/2 half-wave plate) with an
ordinary (q = 0) half-wave plate, the experimental setup is
essentially the same as the well-known homogeneous PBP
measurement setup [3], and the trajectories on all HOPSs
correspond to Fig. 3(c). The difference in the two setups
is whether there are jumps between different HOPSs at the
poles or not. The interference pattern varying in the azimuthal
direction in Fig. 4(a), which cannot be observed in the
conventional homogeneous PBP measurement setup, shows
that the inhomogeneous part of the PBP for VVSs depends on
jumps between different HOPSs at poles, indicating the gauge
dependency of the PBP.

The PBP for VVSs is composed of the homogeneous and
inhomogeneous PBP [Eq. (14)]. While the former is the same
as the PBP for homogeneously polarized states, the latter is
unique for VVSs. Thus, we write the general formula of the
PBP for VVSs as

γBerry(φ) = γBerry,H + γBerry,I(φ), (15)

l=1/2

overall

0

l=1/2

0
0

10

-10
0

0

(a) (b)

(s, )=(1,0)

(s, )=(-1,1)

FIG. 5. (a) Distribution of �overall(φ,ξl) and (b) its topological
charge power spectrum when l = 1/2, θ0 = π/2, and l′ = 1/2.

where γBerry,H = −�/2 and γBerry,I(φ), respectively, stand
for homogeneous and inhomogeneous PBPs. The former is
illustrated by the area subtended by the closed contour on
superposed HOPS [Fig. 1(a)]. The latter can be described by
the ladder chart in Fig. 1(b), where the intermediate states
between the initial and the final states are complicated, when
the trajectory satisfies our requirement of the “closed” loop.

From Eq. (12), in a q = l wave plate, the phase ramp of the
inhomogeneous PBP around the beam axis is homogeneous
only at the north pole (ξl = 0), the south pole (ξl = π ), and the
equator (ξl = π/2) of the lth HOPS, but the distribution along
the φ axis of the inhomogeneous PBP is generally complicated.
Figure 5 shows the inhomogeneous PBP �overall(φ,ξl) and its
topological charge distribution (the Fourier power spectrum of
exp[i�overall(φ,ξl)] on the φ axis) for q = 1/2,α = π/2 half-
wave plates. The transition of VVSs in SVWPs is interpreted as
the optical spin-to-orbital angular momentum conversion from
(s,l)= (±1,l′ ∓ l) to (∓1,l′ ± l) (s is the spin angular momen-
tum in units of �), which has been conventionally regarded
as energy conversion between the left-circularly polarized
(s =1,ξl =0) and right-circularly polarized (s =−1,ξl =π )
states [12,22]. We further introduce another interpretation of
this phenomena: the transition of VVSs in SVWPs is the
adiabatic change of the topological charge spectrum of the
inhomogeneous PBP, as shown in Fig. 5(b).

V. CONCLUSION

We have introduced the Berry connections of VVSs from
the Maxwell-Schrödinger equation, and we experimentally
verified the PBP obtained from the Berry connections. In con-
trast to earlier studies, our PBP of VVSs describes an adiabatic
change of a VVS on a HOPS. We have found that the PBP can
be divided into two phases. One phase is the homogeneous
PBP γBerry,H, which is essentially the same mathematics as the
conventional PBP and is explicitly observed. The other phase
is the inhomogeneous PBP γBerry,I(φ), which is ascribed to
the gauge dependence of l. We have theoretically detected
the adiabatic change of the inhomogeneous PB phase and
its topological charge spectrum in polarization converters,
which provide another aspect of the optical spin-orbital angular
momentum conversion. This research was conducted only with
q retarders, which confine motions on the HOPS. Observations
of the PBPs using various optical effects such as Faraday
rotation are desired.

Adiabatic manipulation of the quantum coherence of spinor
Bose-Einstein condensates (BECs) through the stimulated
Raman adiabatic passage (STIRAP) process using optical
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vortex pulses as pump pulses can be interpreted as a Raman
q-wave plate for spinor BECs [23]. Therefore, the PBP for
VVSs has implications for spinor BECs and related other
quantum systems. In particular, the homogeneous PBP can be
applied to quantum phase gates and precise phase manipulation
of macroscopic quantum states.
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APPENDIX A: DERIVATIONS FOR THE
MAXWELL-SCHRÖDINGER EQUATION IN THE

CIRCULARLY POLARIZED OPTICAL VORTEX BASIS

We suppose that the relative permittivity tensor ε̂ and the
electric field vector E(r,t) are, respectively, described by

ε̂ =

⎛
⎜⎝

εxx εxy 0

εyx εyy 0

0 0 εzz

⎞
⎟⎠, (A1)

E(r,t) = Ẽ(r)e−iωt . (A2)

From the Maxwell equations, we derive the following two
equations [15]:

∇2 Ẽ + ε̂k2 Ẽ = ∇(∇ · Ẽ), (A3)

∇ · (ε̂ Ẽ) = 0, (A4)

where the dispersion relation in vacuum, k = ω/c ≡ ω
√

ε0μ0,
is applied. Here, c, ε0, and μ0 are the velocity of light in
vacuum, the permittivity of vacuum, and the permeability of
vacuum, respectively.

We express the transverse electric field Ẽ as

Ẽ⊥(r) =
(

Ẽx(r)

Ẽy(r)

)
= eik

√
εzf (r,z)T †|φ〉

≡ eik
√

εzf (r,z)
1√
2

(
e−ilφ eilφ

ie−ilφ −ieilφ

)(
ψ+,l(z)

ψ−,l(z)

)
,

where ε = (εo + εe)/2. Here, we require that f (r,z)T † satisfies
the paraxial wave equation:

(∇2
⊥ + 2ik

√
ε∂z)f (r,z)T † = 0. (A5)

From Eqs. (A1) and (A4), we derive

∂zẼz = − 1

εzz

∇⊥ · (
ε̂⊥ Ẽ⊥

)
, (A6)

and thus Eq. (A3) is transformed into

[(∇2
⊥ + 2ik

√
ε∂z)f (r,z)T †]|φ〉 + f (r,z)T †[(∇2

⊥ + 2ik
√

ε∂z)

− k2(εT T † − T ε̂⊥T †)]|φ〉

= ∇⊥

[
∇⊥ ·

(
1̂ − ε̂⊥

εzz

)
f T †|φ〉)

]
. (A7)

Here, the first term of Eq. (A7) vanishes due to Eq. (A5).

Since ∇2
⊥|φ〉 = 0, we derive a simplified form of Eq. (A7):

[2ik
√

ε∂z − k2(ε1̂ − T ε̂⊥T †)]|φ〉

= T

f
∇⊥

[
∇⊥ ·

(
1̂ − ε̂⊥

εzz

)
f T †|φ〉

]
. (A8)

Here, we discuss the right-hand side of Eq. (A8). If the
medium is a q = l,α0 = lᾱ retarder, the transverse dielectric
tensor is described by

ε̂⊥ = Rl(φ+ᾱ)

(
εo 0
0 εe

)
R−l(φ+ᾱ), (A9)

where Rθ is a rotation matrix

Rθ =
(

cos θ − sin θ

sin θ cos θ

)
. (A10)

Thus, the right side is transformed into

T

f
∇⊥

[
∇⊥ ·

(
1̂ − ε̂⊥

εzz

)
f T †|φ〉

]

= 1

f

(
1 − ε+

εzz

)(
eilφ∇2

⊥ eiiφ l̂2
−

e−ilφ l̂2
+ e−ilφ∇2

⊥

)
f

(
e−ilφψ+,l

eilφψ−,l

)

+ 1

f

ε−
εzz

(
eilφ l̂2

− eilφ∇2
⊥

e−ilφ∇2
⊥ e−ilφ l̂2

+

)
f

(
eil(φ+2ᾱ)ψ+,l

e−il(φ+2ᾱ)ψ−,l

)
,

(A11)

where l̂± = ∂x ± i∂y are ladder operators [24]. These terms are
regarded as energy conversion terms between ψ±,l , namely,
the optical spin-orbit coupling [25]. These phenomena are
negligible when the collimated beam (or nearly collimated
beam) is propagating in a birefringent media [26]. We therefore
neglect these terms.

Finally, the Maxwell-Schrödinger equation in the circularly
polarized optical vortex basis is acquired:

2i
√

ε

k
∂z|φ〉 = (ε1̂ − T ε̂⊥T †)|φ〉. (A12)

APPENDIX B: GENERIC SOLUTION FOR THE
MAXWELL-SCHRÖDINGER EQUATION OF Q-WAVE

PLATES AND Q RETARDERS AND ITS OVERALL PHASE

The Maxwell-Schrödinger equation for a q = l wave plate
is simply given by

2i∂δψ±,l = e∓2ilᾱψ∓,l . (B1)

We obtain the second-order differential equation:

(2i)2∂2
δ ψ±.l = ψ±,l . (B2)

Thus, the general solution of the Maxwell-Schrödinger equa-
tion is

ψ±,l(δ) = A±+eiδ/2 + A±−e−iδ/2, (B3)
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where A±± are constants. Here, we set the initial condition as
follows:

ψ±,l(δ = 0) ≡ e∓iθ0A0
±. (B4)

Equation (B4) describes the relationship between A±±
and A0

±:

ψ±,l(δ = 0) = A±+ + A±− = +e∓ilᾱA0
±, (B5)

∂δψ±,l |δ=0 = A±+ − A±− = −e∓ilᾱA0
∓. (B6)

Using Eqs. (B5) and (B6), the coefficients of Eq. (B3) are
written as

A±+ = e∓ilᾱ
A0

± − A0
∓

2
, (B7)

A±− = e∓ilᾱ
A0

± + A0
∓

2
. (B8)

Consequently, the general solution is expressed by

ψ±,l(δ) = e∓ilᾱ

{
A0

± cos

(
δ

2

)
− iA0

∓ sin

(
δ

2

)}
(B9)

and

|ψ〉 = T †|φ〉 = eil′φe−iδ/2

√
2

Rl(φ+ᾱ)

(
A0

+ + A0
−

i(A0
+ − A0

−)eiδ

)

= eil′φe−iδ/2Rl(φ+ᾱ)

(
E0

x

E0
ye

iδ

)
, (B10)

where eil′φRl(φ+ᾱ)(E0
x E0

y)
T

is the initial state vector.
We can transform the vector |ψ〉 into the vector |ψ ′〉 whose

x component is real:

|ψ ′〉 = exp[−i�overall]|ψ〉 (B11)

=
( ∣∣E0

xe
−iδ/2 cos θ − E0

ye
iδ/2 sin θ

∣∣(
E0

xe
−iδ/2 sin θ + E0

ye
iδ/2 cos θ

)
exp

{−i
[
l′φ − arg

(
E0

xe
−iδ/2 cos θ − E0

ye
iδ/2 sin θ

)]}
)

, (B12)

where

�overall = l′φ − arg
(
E0

xe
−iδ/2 cos θ − E0

ye
iδ/2 sin θ

)
(B13)

is an overall phase of |ψ〉 [3], and θ = l(φ + ᾱ).
Here, we show that the overall phase does not depend on

the initial state. Since the overall phase is written in the form
of

�overall =
∫

∂l(�overall)dl + const., (B14)

it is sufficient to show that ∂l(�overall) is independent of the
initial state of

eil′φRl(φ+θ0)

(
cos α

2 e−iκ/2

sin α
2 eiκ/2

)
. (B15)

Here, ∂l(�overall) is calculated by

∂l(�overall) = ∂l arg
(
E0

xe
−iδ/2 cos θ − E0

ye
iδ/2 sin θ

)
(B16)

= −∂l arctan
cos

(
α
2 − lφ − lᾱ

)
sin

(
δ+κ

2

)
cos

(
α
2 + lφ + lᾱ

)
cos

(
δ+κ

2

) (B17)

= φ

2

sin α sin(δ + κ)

cos2 α
2 cos2(lφ + lᾱ) + sin2 α

2 sin2(lφ + lᾱ) − 1
2 sin α cos(δ + κ) sin(2lφ + 2lᾱ)

. (B18)

Since the lth hybrid-order Stokes parameters are

Sl
1 = cos(2ᾱ) cos α − sin(2ᾱ) sin α cos(δ + κ), (B19)

Sl
2 = sin(2ᾱ) cos α + cos(2ᾱ) sin α cos(δ + κ), (B20)

Sl
3 = sin α sin(δ + κ), (B21)

we obtain

∂l(�overall) = Sl
3φ

1 + Sl
1 cos(2lφ) − Sl

2 sin(2lφ)
, (B22)

which does not depend on the initial state. From this result,
�overall is a single-valued function of S̃l .
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