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In an article by Dubertrand et al. [Phys. Rev. A 77, 013804 (2008)] the perturbation theory for slightly
deformed optical microcavities with a mirror-reflection symmetry was developed. However, in real experiments
such a mirror-reflection symmetry is often not present either intended or unintended via production tolerances. In
this paper we therefore extended the perturbation theory to asymmetric boundary deformations. Consequently, we
are able to describe interesting non-Hermitian phenomena like copropagation of optical modes in the (counter-)
clockwise direction inside the cavity. The derived analytic formulas are demonstrated at two generic boundary
shapes, the spiral and the double-notched circle where a good agreement to the numerical boundary element
method is observed.
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I. INTRODUCTION

Optical microcavities can store light into very small
volumes for large times. Therefore, they have been con-
sidered and realized for a wide range of applications, e.g.,
as unidirectional light emitters [1–3], nanoparticle sensors
[4–6], optical gyroscopes [7,8], and coupled-resonator optical
waveguides [9–12]. An often investigated class of micro-
cavities are quasi-two-dimensional optical microdisks with
homogeneous refractive index n. Here, the boundary shape
in the x-y plane determines the properties of the optical
modes. Analytical solutions can only be obtained for very
simple geometries with rotational symmetry. The frequently
considered deformed cavities, see Figs. 1(a)–1(d) for some
common examples, require an elaborate numerical treatment,
e.g., with the boundary element method (BEM) [13]. However,
these deformed cavities are of large interest to study wave
chaos and non-Hermitian physics of weakly open systems both
theoretically and experimentally [14–18].

Therefore, methods to obtain approximate solutions for
optical modes have been developed which are based, e.g.,
on nondegenerate perturbation theory [19–22], semiclassical
calculations [23–25], or dynamical tunneling in phase space
[26,27]. However, all of these methods are only able to
handle cavities with a mirror-reflection symmetry [as shown in
Figs. 1(a) and 1(b)] where the modes fall into two orthogonal
classes with even and odd parity with respect to the symmetry
line. Asymmetric deformations as in Figs. 1(c) and 1(d)
are not yet covered by these approximation methods. Note
that in an experiment, asymmetric deformations can also
develop unintendedly during the production process; see, e.g.,
Refs. [28,29].

The purpose of this paper is to extend the nondegenerate
perturbation theory for slightly deformed optical cavities by
Dubertrand et al. [19] to a degenerate perturbation theory
for asymmetric boundary deformations which violate mirror-
reflection symmetry. The derived formulas are analytical and
therefore allow for an easy evaluation. The results include
interesting non-Hermitian effects of these cavities: optical
modes come in nearly degenerate pairs where both modes are
not standing waves but aligned traveling waves in either the
clockwise (CW) or counterclockwise (CCW) direction [30].
This causes a strong nonorthogonality of the mode pair. At

so-called exceptional points (EPs) [31–35] in parameter space
the mode pair coalesces, i.e., the modes become collinear with
the same complex wave number. This has been considered to
enhance the sensitivity of sensors [36] and construct orbital
angular momentum microlasers [37,38].

An additional possible application of the derived perturba-
tion theory for asymmetric deformations is the inverse problem
for microcavities introduced in Ref. [39]. Here, the task is to
optimize the boundary shape of the cavity to get a desired
far-field emission pattern. Including the perturbation theory for
asymmetric deformations in the inverse problem will allow for
an optimization to the more general and asymmetric far-field
pattern. This will be part of future investigations.

In this paper we demonstrate the usefulness of the de-
rived formulas at two generic boundary deformations which
have previously attracted attention: the spiral [3,30,40–42]
[Fig. 1(c)] and a double-notched circle [21,43,44] [Fig. 1(d)].
In both cases we observe a very good agreement with the
numerically exact BEM.

(a)

(b)

(c)

(d)

FIG. 1. The boundary of (a),(b) symmetric and (c),(d) asymmetry
deformed microcavities is shown as a solid curve. A dashed line
illustrates the mirror-reflection symmetry. The cavities are (a) the
quadrupole, (b) the Limaçon, (c) the spiral, and (d) the asymmetric
double-notched circular cavity.
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The paper is organized as follows. An introduction to the
mode equation for microdisk cavities is presented in Sec. II.
In Sec. III we give a short review on the circular microdisk
and its mirror-reflection symmetry preserving deformations.
In Sec. IV we present the perturbation theory for slightly but
asymmetric deformed microcavities. The application to the
spiral and the notched circle is demonstrated in Sec. V. A
conclusion and outlook is given in Sec. VI. In the Appendix
we present an improvement of the derived formulas using a
rescaled cavity size.

II. THE MODE EQUATION

For many investigations of microcavities the detailed
knowledge of the stationary electric and magnetic field pattern,
the optical modes, is essential. In the case of quasi-two-
dimensional optical microdisks, Maxwell’s equations reduce
to a scalar Schrödinger-type mode equation

[� + k2n2(r)]�(r) = 0 (1)

for � representing either the z direction of the magnetic
field (transverse electric [TE] polarization) or the electric field
(transverse magnetic [TM] polarization). Along the cavities’s
interface in the x-y plane the boundary conditions

�in = �out (2)

and

∂ν�in = ∂ν�out for TM polarization, (3a)

1

n2
in

∂ν�in = 1

n2
out

∂ν�out for TE polarization (3b)

need to be fulfilled for the normal vector ν. In the following
n = nin is the effective refractive index inside the cavity;
outside it is assumed to be nout = 1. In this paper we restrict
ourselves to the case of TM polarization.

In combination with the outgoing wave condition

�out ∝ h(k,φ)
exp(ikr)√

r
(4)

for large r the mode equation (1) is solvable only for discrete
values of the complex (dimensionless) wave number x = kR

whose real part represents the vacuum wave length λ =
2π/(Re k) and the imaginary part determines the decay rate
of the optical mode inside the cavity with time. Therefore, the
quality factor Q = −Re x/(2Im x) characterizes the lifetime
of an optical mode.

III. THE CIRCULAR MICROCAVITY AND ITS
SYMMETRIC DEFORMATIONS

In the case of the circular optical cavity defined in polar
coordinates by

r(φ) = R, (5)

Eq. (1) is solved with the ansatz

�in(r,φ) = Jm(nkr)

Jm(nx)
eimφ, (6a)

�out(r,φ) = Hm(kr)

Hm(nx)
eimφ (6b)

for the wave function inside and outside the cavity. Here, Jm

and Hm are m-th order Bessel and Hankel functions, both of the
first kind. The integer mode number m is associated with the
angular momentum of a traveling wave in the CCW direction.
Negative m correspond to CW propagation of the mode. Since
the boundary conditions (2) and (3a) [(3b) for TE polarization]
and the outgoing wave condition (4) need to be fulfilled, the
possible values of x = kR are determined as the roots of

Sm(x) = n
J ′

m

Jm

(nx) − H ′
m

Hm

(x), (7)

For fixed m, multiple roots xm,l of Eq. (7) exist which are
labeled with an integer l > 0. This mode number l represents
the number of nodes of the wave function in the radial
direction.

Modes with (±m,l) (except for m = 0) are degenerate in
their x. Therefore, a transformation from the traveling wave
basis (6a) and (6b) with ±m into a standing wave basis are
again solutions of Eq. (1). This standing wave basis represents
modes with even and odd parity with respect to the mirror-
reflection symmetry line y = 0. In the standing wave basis the
mode number m is related to the number of nodes of the wave
function in the azimuthal direction.

For slight deformations of the circular boundary it is
convenient to expand the modes of the deformed cavity in
modes of the circular cavity as

�in(r,φ) =
∞∑

p=−∞
αp

Jp(nkr)

Jp(nx)
eipφ, (8a)

�out(r,φ) =
∞∑

p=−∞
βp

Hp(kr)

Hp(nx)
eipφ. (8b)

If the sums contain a dominant contribution for α|p| and β|p|
with p = m, then m is still a good mode number to characterize
the mode in the deformed cavity.

If the deformation is symmetric as in Ref. [19] such that
a mirror-reflection symmetry (at y = 0) exists also the mode
needs to be symmetric, i.e., |α−p| = |αp|. Therefore, modes
are separated into two orthogonal classes with even and odd
parity. For fixed mode numbers (m,l) the modes with even
and odd parity show a small splitting in x due to a coupling
between CW and CCW wave propagation.

The perturbation theory for slightly deformed microcavities
with a symmetric boundary [19] uses the standing wave basis
for unperturbed eigenstates of the circular cavity.

IV. PERTURBATION THEORY FOR ASYMMETRIC
DEFORMED MICROCAVITIES

In this section we derive the perturbative approach to asym-
metric deformed cavities and present our central formulas.
In Sec. IV A we setup our general framework for treating
asymmetric boundary deformation in a perturbative way for
TM polarized modes. Next, we derive the formulas for first-
and second-order perturbation theory in Secs. IV B and IV C,
respectively.
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A. General setup for the perturbation theory

The perturbation theory assumes that the boundary of the
deformed cavity can be written in polar coordinates as

r(φ) = R + λf (φ), (9)

where |λf (φ)| � R represents a small perturbation to the
circular cavity, Eq. (5). The area δa where the refractive index
is changed by λf (φ) deals as a measure for the strength of the
perturbation. Therefore, one expects reasonable results if the
formal criteria

sn

δa

8π
(nRe k)2 � 1, (10)

with

sn = 1 − π

2

(
arcsin

1

n
+ 1

n

√
1 − 1

n2

)
(11)

is fulfilled [19]. This criteria is not too strict and reliable results
can also be achieved for larger perturbations [20].

Note that we demand the deformation function f (φ) to be
single-valued almost everywhere, but in contrast to Ref. [19]
we will employ no symmetry for f (φ), i.e., f (φ) �= f (−φ).
The perturbation parameter λ is assumed to be formally small
so that it is valid to solve the mode equation (1) with the
boundary conditions (2) and (3a) in powers of λ. For this
purpose we write the mode of the deformed cavity which is
characterized by the mode numbers (m,l) as

�in(r,φ) = eiz Jm(nkr)

Jm(nx)
eimφ + e−iz Jm(nkr)

Jm(nx)
e−imφ

+
∑

p �=±m

ap

Jp(nkr)

Jp(nx)
eipφ, (12a)

�out(r,φ) = eiz(1 + bm)
Hm(kr)

Hm(x)
eimφ

+ e−iz(1 + b−m)
Hm(kr)

Hm(x)
e−imφ

+
∑

p �=±m

(ap + bp)
Hp(kr)

Hp(x)
eipφ. (12b)

In this ansatz the unknown quantities are x = kR, z, ap,
and bp with p ∈ Z. Especially, the parameter z ∈ C fixes
the contributions of unperturbed modes with ±m which are
degenerate in the circular cavity. We therefore use the terms
e±iz for symmetrizing the ansatz so that replacing m with −m

enforce replacing z with −z to get the same mode. Note that
the wave function as written above is not normalized.

The mode equation (1) and the outgoing wave condition
(4) are formally solved with the ansatz (12a) and (12b) but
fulfilling the boundary conditions (2) and (3a) requires further
investigation. Therefore, we expand them in a power series in
λ which gives

[�in − �out](R,φ) = −λf (φ)∂r [�in − �out](R,φ)

− 1

2
λ2f 2(φ)∂2

r [�in − �out](R,φ)

+O(λ3), (13a)

∂r [�in − �out](R,φ) = −λf (φ)∂2
r [�in − �out](R,φ)

− 1

2
λ2f 2(φ)∂3

r [�in − �out](R,φ)

+O(λ3). (13b)

Equating the coefficients of these equations in order λ1 and
λ2 allows us to compute the unknown quantities in Eqs. (12a)
and (12b). More precisely we need to expand the unknown
quantities in powers of the perturbation parameter λ according
to the following scheme:

x = x0 + λx1 + λ2x2 + O(λ3),
z = z0 + λz1 + O(λ2),

ap = λa(1)
p + λ2a(2)

p + O(λ3),
bp = λ2b(2)

p + O(λ3).

(14)

Calculating the coefficients in the scheme allows us to
determine the wave functions in- and outside the cavity [(12a),
(12b)]. This is done in Secs. IV B and IV C.

Note that the term b(1)
p is absent in the scheme (14) which

follows from inserting Eq. (13b) into Eq. (13a). Also, the
parameter z is just fixed up to z ∼ λ1 within second-order
perturbation theory. Computing the order z ∼ λ2 would require
us to expand x up to third order which may be part of
future investigations. But in this paper we will show that the
scheme (14) is sufficient to give reasonable results for slightly
deformed asymmetric cavities.

Once the parameter in the scheme (14) and therefore the
wave functions in- and outside the cavity [Eqs. (12a) and (12b)]
have been calculated we can investigate further properties of
the optical modes: (i) The chirality αch [42,43,45] which is
here defined as

αch =
∑

p>0 |ap|2 − ∑
p<0 |ap|2∑

p>0 |ap|2 + ∑
p<0 |ap|2 , (15)

with the convention am = eiz and a−m = e−iz. It describes
the propagation of a mode inside the cavity and ranges from
αch = −1 for a pure clockwise propagating mode to αch = 1
for a pure counterclockwise propagation. For αch = 0 the mode
is a standing wave. And (ii) the far-field F (φ) or its intensity
pattern |F (φ)|2 can be calculated within perturbation theory
from the asymptotic expansion of the Hankel functions as

F (φ) = (1 + bm)eiz e−iπm/2

Hm(x)
eimφ

+ (1 + b−m)e−iz e−iπm/2

Hm(x)
e−imφ

+
∑

p �=±m

(ap + bp)
e−iπp/2

Hp(x)
eipφ. (16)

B. First-order perturbation theory

In this section we derive formulas for the first-order pertur-
bation theory. For this purpose we compare the coefficients in
Eq. (13b) which are proportional to λ1. Note that we therefore
need to evaluate

g(x) = g(x0) + λ
∂g

∂x

∣∣∣∣
x=x0

+ λ2

2

∂2g

∂x2

∣∣∣∣
x=x0

+ O(λ3) (17)
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for g ∈ {J ′/J,H ′/H } up to first order in λ and

e±iz = e±iz0 ± λiz1e
±iz0 + O(λ2). (18)

After simplification using Eq. (7) we get

− (n2 − 1)x1[eiz0eimφ + e−iz0e−imφ] +
∑

p �=±m

a(1)
p Speipφ

= f (φ)

R
x0(n2 − 1)[eiz0eimφ + e−iz0e−imφ]. (19)

Here and in the following, Sp = Sp(x0) is shortened. Using the
orthogonality of e±imφ in Eq. (19) and introducing the Fourier
harmonics

Aq = 1

2πR

∫ 2π

0
f (φ)eiqφ dφ (20)

of the boundary deformation, see Eq. (9), the system of
equations

− x1e
iz0 = x0[eiz0A0 + e−iz0A−2m], (21a)

−x1e
−iz0 = x0[eiz0A2m + e−iz0A0] (21b)

is extracted. The solutions of this system are the first-order
results

z0 = −1

4
arg

(
A2m

A−2m

)
+ μ

π

2
, μ ∈ Z (22)

x1 = −x0[A0 + e−2iz0A−2m], (23)

where A−2m = A�
2m. Furthermore, using the orthogonality of

eipφ with p �= ±m in Eq. (19), one gets

a(1)
p = (n2 − 1)x0

Sp

[eiz0Am−p + e−iz0A−m−p]. (24)

In the following we make some remarks about the first-order
results: (i) In Eq. (22) it is sufficient to restrict μ ∈ {0,1} to
describe a mode pair. Other values of μ will predict the same
two modes. (ii) z0 is real and fixes the phase of the involved
unperturbed modes with ±m. It does not contribute to a finite
chirality; see Eq. (15). (iii) Equation (23) can be rewritten as

x1 = −x0(A0 ± |A2m|). (25)

Hence, the first-order results in general lift the degeneracy in
x0 of the mode pair in the unperturbed cavity. But both modes
still have the same Q factor since Q = −Re x/(2Im x) and
A0 ∈ R. (iv) Equation (22) assumes A−2m = A�

2m �= 0. For
nongeneric boundary shapes with vanishing Fourier harmonic
A−2m, one cannot fix z0 in first-order perturbation theory and
only one value x1 = −x0A0 is predicted.

C. Second-order perturbation theory

In this section we compare the coefficients proportional to
λ2 in Eqs. (13a) and (13b). This fixes the remaining unknown
quantities in the scheme (14).

After employing Eq. (17) for g ∈ {J ′/J,H ′/H,Sp} and
using Eq. (18) we extract

[
−x2 + x2

1

2x0

(
1 + 2x0

H ′
m

Hm

)]
[eiz0eimφ + e−iz0e−imφ] − b2

m

n2 − 1

H ′
m

Hm

eiz0eimφ − b2
−m

n2 − 1

H ′
m

Hm

e−iz0e−imφ

−x1iz1[eiz0eimφ − e−iz0e−imφ] + 1

n2 − 1

∑
p �=±m

[
a(1)

p x1
∂Sp

∂x
+ a(2)

p Sp − b(2)
p

H ′
p

Hp

]
eipφ

= f (φ)

R

⎛
⎝x0iz1[eiz0eimφ − e−iz0e−imφ] + x1[eiz0eimφ + e−iz0e−imφ] + x0

∑
p �=±m

a(1)
p eipφ

⎞
⎠

+ 1

2

f 2(φ)

R2
x0

(
1 + x0

H ′
m

Hm

)
[eiz0eimφ + e−iz0e−imφ], (26a)

b(2)
m eiz0eimφ + b

(2)
−me−iz0e−imφ +

∑
p �=±m

b(2)
p eipφ = 1

2

f 2(φ)

R2
x2

0 (n2 − 1)[eiz0eimφ + e−iz0e−imφ] (26b)

from Eqs. (13a) and (13b), respectively. Here, ∂Sp/∂x and H ′
p/Hp are evaluated at x0. We employ Eq. (26b) first: By introducing

the second Fourier harmonics of the boundary function

Bq = 1

2πR2

∫ 2π

0
f 2(φ)eiqφ dφ (27)

and using the orthogonality of eipφ we get

b(2)
p = 1

2x2
0 (n2 − 1)[eiz0Bm−p + e−iz0B−m−p], (28a)

b(2)
m = 1

2x2
0 (n2 − 1)[B0 + e−2iz0B−2m], (28b)

b
(2)
−m = 1

2x2
0 (n2 − 1)[B0 + e2iz0B2m]. (28c)
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Next, we calculate x2, z1, and a(2)
p from Eq. (26a). Therefore, we first use the orthogonality of e±imφ to get the system of

equations [
−x2 + x2

1

2x0

(
1 + 2x0

H ′
m

Hm

)
− b2

m

n2 − 1

H ′
m

Hm

]
eiz0 = ix1z1e

iz0 + ix0z1[eiz0A0 − e−iz0A−2m]

+ x1[eiz0A0 + e−iz0A−2m] + x0

∑
p �=±m

a(1)
p Ap−m

+ 1

2
x0

(
1 + x0

H ′
m

Hm

)
[eiz0B0 + e−iz0B−2m], (29a)

[
−x2 + x2

1

2x0

(
1 + 2x0

H ′
m

Hm

)
− b2

−m

n2 − 1

H ′
m

Hm

]
e−iz0 = −ix1z1e

−iz0 + ix0z1[eiz0A2m − e−iz0A0]

+ x1[eiz0A2m + e−iz0A0] + x0

∑
p �=±m

a(1)
p Ap+m

+ 1

2
x0

(
1 + x0

H ′
m

Hm

)
[eiz0B2m + e−iz0B0], (29b)

which is solved by

z1 = − ie2iz0

4A−2m

⎧⎨
⎩

∑
p �=±m

a(1)
p [e−iz0Ap−m − eiz0Ap+m] − 1

2

(
1 + 2x0

H ′
m

Hm

)
[e2iz0B2m − e−2iz0B−2m]

⎫⎬
⎭, (30)

x2 = x0

⎧⎨
⎩1

2

(
3[A0 + e−2iz0A−2m]2 − [B0 + e−2iz0B−2m]

) + x0
H ′

m

Hm

(
[A0 + e−2iz0A−2m]2 − [B0 + e−2iz0B−2m]

)

− e−iz0
∑

p �=±m

a(1)
p Ap−m + 2iz1e

−2iz0A−2m

⎫⎬
⎭. (31)

Second, we use the orthogonality of eipφ in Eq. (26a) to calculate a(2)
p as

a(2)
p = (n2 − 1)x0

Sp

{
[A0 + e−2iz0A−2m][eiz0Am−p + e−iz0A−m−p]

(
x0

Sp

∂Sp

∂x
− 1

)

+ 1

2

(
1 + x0

[
H ′

m

Hm

+ H ′
p

Hp

])
[eiz0Bm−p + e−iz0B−m−p] +

∑
k �=±m

a
(1)
k Ak−p + iz1[eiz0Am−p − e−iz0A−m−p]

}
. (32)

Hence, we have calculated all coefficients in the expansion
scheme (14) and therefore are able to calculate the optical
modes within the perturbation theory with Eqs. (12a) and
(12b). In the following we list remarks about our final second-
order results: (i) Since z1 is complex, see Eq. (30), it strongly
affects the chirality in Eq. (15). (ii) For practical evaluations
of the formulas it is useful to replace the infinite sums with
finite sums, e.g., ranging from p = −150 to p = 150. (iii) In
the formulas it is still assumed A−2m = A�

2m �= 0 to allow for a
proper evaluation. (iv) Although the boundary conditions are
evaluated in second order, the parameter z is just fixed up to
the order proportional to λ.

V. APPLICATIONS

In this section we apply the derived formulas to two classes
of example systems and demonstrate their validity. In Sec. V A
we investigate the spiral cavity and in Sec. V B notched circular
cavities are examined.

A. The spiral cavity

In this section we investigate the spiral cavity defined
by

r(φ)

R
= 1 − ε

2π
φ. (33)

This cavity has been studied experimentally and theoretically
and exhibits copropagating optical mode pairs with finite
chirality even for small notch sizes ε [3,30]. Therefore, it is an
ideal system to demonstrate the derived formulas.

For the optical modes with l = 1,2,3 in a spiral cavity
with (ε,n) = (0.04,2.0) the predicted values of x are compared
to the ones numerically determined in Fig. 2. In general a
very good agreement is obtained. Around Re x = 14 a strong
interaction between modes with l = 1 and l = 2 is observed.
Here, the predictions become slightly less accurate. The origin
of this interaction is a quasidegeneracy in Re x and therefore an
emerging period-four structure (so-called quasiscar [41]) for
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Fig. 3
Fig. 4

Re x

−Im x

BEM
PT

FIG. 2. Second-order perturbation theory results for x = kR

values of optical modes with l = 1,2,3 in the spiral cavity are shown
as magenta triangles. Corresponding BEM results are shown as black
open circles. The parameters of the spiral are (ε,n) = (0.04,2.0).

l = 1 and l = 2 modes, compare to the BEM near-field pattern
in Fig. 3(b). This occurrence of the period-four structure is also
predicted with perturbation theory; see Fig. 3(a). However, its
detailed mode pattern shows slight deviations from the BEM
results close to the quasidegeneracy [compare in Fig. 3] and
fails where the modes are quasidegenerate (not shown).

On the other hand, in the usual case of separated modes with
different mode numbers l not only the x = kR values are pre-
dicted well but also the near-field intensity pattern; see Fig. 4
for an example with the mode pair (m,l) = (14,1) with μ =

(a) PT (b) BEM

0 1normalized intensity

FIG. 3. Near-field intensity pattern of the optical modes with
(upper panels) (m,l) = (23,1) and (lower panels) (m,l) = (19,2) in
the spiral cavity with (ε,n) = (0.04,2.0). The modes are calculated
(a) with perturbation theory and (b) with BEM. The colormap ranges
from no intensity (black) to high intensity (bright yellow).

(a) PT (b) BEM

0 1normalized intensity

FIG. 4. The near-field intensity pattern of the mode pair with (top
panels) (m,l,μ) = (14,1,0) and (bottom panels) (m,l,μ) = (14,1,1)
in a spiral cavity with (ε,n) = (0.04,2.0) is shown in (a). The
corresponding BEM intensity pattern is shown in (b). The colormap
ranges from no intensity (black) to high intensity (bright yellow).

0,1. Here, the modes almost look like modes in a circular cavity
but note that also the phase of the mode in azimuthal direction
is a nontrivial information which is predicted almost precisely.

For the same mode pair as in Fig. 4 the far-field intensity
pattern is shown in Fig. 5. Also here a very good agreement
of the predicted, Eq. (16), and the numerically determined
pattern is observed. Note that all far-field intensity patterns are
normalized to the area below the curves.

In the following we keep the mode numbers (m,l) = (14,1)
fixed and vary the notch size ε of the spiral and thereby the
strength of the perturbation. In Figs. 6(a) and 6(b) the real
and imaginary part of x for the mode pair is shown. Already
first-order results are able to predict Re x well since it is almost
proportional to ε1. For a reasonable prediction of Im x, second-
order perturbation theory is needed to capture the proportion-
ality with ε2. Figure 6(c) shows the chirality of the optical
mode pair as function of notch size ε. As one expects from
ray dynamics [30,41,42,46] the optical modes propagate in the
CCW direction. Both modes have the same preferred sense of
rotation, i.e., they copropagate. The chirality of both modes
increases with increasing notch size. This is surprisingly well
described by using only properties proportional to λ, and it is
slightly improved by including also a(2)

p to the prediction.
In the following we analyze the error of the perturba-

tion theory with increasing notch size ε, i.e., increasing
perturbation strength. Therefore we calculate the difference
δx = xBEM − xPT of numerically determined and predicted
x = kR values. The results are shown in Fig. 7 for the mode
pair with (m,l) = (14,1). As expected the error increases for

043850-6



PERTURBATION THEORY FOR ASYMMETRIC DEFORMED . . . PHYSICAL REVIEW A 94, 043850 (2016)
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1.5

|F (φ)|2

(a) PT
BEM

0 π 2π
0.0

1.5

φ

|F (φ)|2

(b) PT
BEM

FIG. 5. The far-field intensity pattern |F (φ)|2, see Eq. (16),
of optical modes with (a) (m,l,μ) = (14,1,0) and (b) (m,l,μ) =
(14,1,1) in a spiral cavity with (ε,n) = (0.04,2.0) is shown as a solid
magenta curve. The corresponding BEM result is shown as a dashed
black curve. Both intensity patterns are normalized according to the
area below the curves.

larger ε and is roughly proportional to ε3 which indicates the
next (third)-order in a perturbative expansion of x. Note that
Re δx and Im δx contribute equally to the absolute error, but
since Im x � Re x the relative error of Im x is larger. This is
already visible in Figs. 6(a) and 6(b).

Furthermore, we analyze the complex frequency splitting
�x which is also of experimental relevance [47–49] and
advantageous for polarization control [50]. The real part of
�x corresponds to the difference in the peak positions of the
spectra, and the imaginary part reflects the difference in the line
widths of the two modes. As shown in Fig. 8 for the mode pair
with (m,l) = (14,1), �x is dominated by its real part which
is almost proportional to ε1. This is predicted correctly by
the perturbation theory. The splitting in the imaginary part is
very small up to ε ∼ 0.05 and increases nonlinearly afterwards
which is beyond a perturbative description in the second order.
Note that in this regime the splitting of the imaginary part is
below the error of the perturbation theory; compare to Fig. 7(c).

In the Appendix we present an improvement of the
perturbation theory using a scaling of the boundary. This
procedure is demonstrated at the spiral cavity.

B. The notched circular cavity

The second class of systems we study here is the notched
circle defined by the boundary

r(φ)

R
= 1 +

Nν∑
ν=0

∞∑
ξ=−∞

εν exp

(
− (φ − φν − 2πξ )2

2σ 2
ν

)
, (34)

where Nν is the number of notches each is placed at an angle
φν and each has a width parameter σν > 0. Note, since σν � 1,
it is numerically sufficient to use just a few terms in the sum
over ξ , e.g., ξ ∈ {−1,0,1}.

8.7

8.9

9.1

9.3

∼ε

Re x

(a)PT O(λ)
PT O(λ2)

BEM

0.000

−0.002

−0.004

−0.006

−0.008

∼ε2

Im x

(b)

PT O(λ)
PT O(λ2)

BEM

0.00 0.05 0.10
0.0

0.2

0.4

0.6

0.8

1

ε

αch

(c)PT O(λ)
PT O(λ2)

BEM

FIG. 6. The (a) real and (b) imaginary part of x = kR is
shown as a function of notch size ε for the optical modes with
(m,l,μ) = (14,1,0) and (m,l,μ) = (14,1,1). (c) shows the chirality,
Eq. (15), of the modes vs notch size ε. Black crosses and magenta
triangles correspond to first- and second-order perturbation theory,
respectively. BEM results are shown as black open circles. The
refractive index of the spiral cavity is n = 2.0. Insets show the
boundary of the cavity for ε = 0.0 and ε = 0.1. A dashed curve
illustrates the scaling with (a) ε and (b) ε2.

Single-notched cavities have been reported to show unidi-
rectional light emission, see, e.g., [2] for a notched ellipse. In
the case of a symmetric local boundary perturbation as, e.g., in
a single-notched circular cavity, the perturbation theory from
Dubertrand et al. [19] can be simplified [21].

Two (and more) notches have been used to select the lasing
mode in a cavity, i.e., to spoil the Q factor of undesired
modes [44]. Furthermore, a fine tuning of the position and size
of the local perturbations allow for an investigation of EPs
[35,43]. Near an EP the mode pair exhibits a strong chirality,
see Eq. (15), and becomes sensitive to slight boundary
perturbations. Although this sensitivity is valuable, e.g., for
sensors, it results in larger deviations between perturba-
tively predicted and numerically determined modes close to
an EP.

In this paragraph we first investigate a cavity far away
from an EP. Therefore we fix the parameters of two
notches in Eq. (34) to (ε1,σ1) = (−0.08,0.07), and (ε2,σ2) =
(−0.09,0.03); see Fig. 1(d). The angle φ1 = 0 of the first notch
is fixed and the angle φ2 of the second notch is varied. The
results for x of the optical modes (m,l) = (8,1) are shown in
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∼ ε3
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FIG. 7. The error of second-order perturbation theory for the
mode pair (m,l) = (14,1) in a spiral cavity with refractive index
n = 2.0 is shown as function of notch size ε (black dots).

Figs. 9(a) and 9(b). Here, the predicted values of x are in a
very good agreement with numerical (BEM) results. Around
φ2 ∼ 1.35 where the two modes come close in x, the chirality
αch is enhanced; see Fig. 9(c), which is well described by the
perturbation theory.

Next, we tune the system closer to an EP for the mode pair
(m,l) = (10,1) by changing the parameters of the notches
to (ε1,σ1) = (−0.056,0.06) and (ε2,σ2) = (−0.06,0.035).
The angle φ1 = 0 is fixed and the angle φ2 is again varied.
The results for x and the chirality αch of the mode pair

0

6

12

10
3
|R

e
Δ

x
| (a)

PT
BEM

0.00 0.05 0.10
0.0

0.2

0.4

ε

10
3
|Im

Δ
x
| (b)

PT
BEM

FIG. 8. Black open circles (BEM) and magenta triangles (second-
order perturbation theory) show the (a) real and (b) imaginary part of
the splitting of the optical mode pair (m,l) = (14,1) in a spiral cavity
with n = 2.0.

5.39

5.40

5.41

5.42

5.43

Re x

(a)

PT
BEM

−0.010

−0.012

−0.014

−0.016

Im x

(b)

PT
BEM

1.1 1.2 1.3 1.4 1.5 1.6
−1.0

0.0

1.0

φ2

αch

(c)

PT
BEM

FIG. 9. The (a) real and (b) imaginary part of x = kR is shown
as function of the angle φ2 for the mode pair with (m,l) = (8,1) in the
double-notched cavity with n = 2.0. (c) shows the chirality, Eq. (15),
of the modes vs angle φ2. Magenta triangles represent second-order
perturbation theory and BEM results are shown as black open circles.

(m,l) = (10,1) are compared to BEM results in Figs. 10(a)
to 10(c). Again an overall good agreement is observed over
a large range of φ2. But close to two EPs near φ2 = 1.1
some structural differences occur: (i) In Re x the perturbation
theory predicts a crossing while BEM does not; see inset
in Fig. 10(a). Therefore, the system is not exact on the EP
but very close to it. (ii) The crossing in Im x is predicted for
different angles and its curve shape between the predicted EPs
is different; see inset in Fig. 10(b). (iii) Perturbation theory
predicts a sudden drop in the chirality while BEM calculations
suggest a smooth transition from αch ≈ 1 to αch ≈ −1; see
insets in Fig. 10(c). Therefore, we suggest that EPs limit the
perturbation theory presented here. Note that it is intuitive that
the perturbation theory breaks down close to an EP because
there two modes coalesce which is the strongest deviation
from the unperturbed symmetric case where both modes are
orthogonal. Nevertheless, for system parameters away from
the EP the mode properties are predicted well.

To compare our perturbation theory for asymmetric cavities
with the formulas derived by Dubertrand et al. [19] for
symmetric cavities, we investigate a double-notched circle
where both notches have the same width parameter σ1 =
σ2 = 0.035 and fixed ε1 = −0.06 and (φ1,φ2) = (0,1.375).
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−0.003
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FIG. 10. The (a) real and (b) imaginary part of x = kR is shown
as function of the angle φ2 for the mode pair with (m,l) = (10,1) in the
double-notched cavity with n = 2.0. (c) shows the chirality, Eq. (15),
of the modes vs angle φ2. Second-order perturbation theory results
are shown as magenta triangles and BEM results are shown as black
open circles. A dotted black line in the insets of (c) at φ2 = 1.0996 is
a guide to the eye.

Varying ε2 allows us to cover the case of a symmetric cavity
for ε2 = −0.06 and ε2 = 0. As shown in Figs. 11(a) and 11(b),
employing Eqs. (23) and (31) for symmetric cavities results
in the same values for x as predicted by Dubertrand et al.;
see blue crosses. Additionally, our perturbation theory shows
a good agreement to numerically determined values also for
other ε2 where the cavity is asymmetric.

VI. CONCLUSION AND OUTLOOK

In this paper we derived analytical formulas for optical
modes in slightly deformed microdisk cavities. Our calcula-
tions are based on a perturbative expansion of the boundary
conditions up to second order in the perturbation parameter. In
contrast to the previous work by Dubertrand et al. we extended
the theory to a degenerate perturbation theory applicable to
cavities without a mirror-reflection symmetry. We show the
validity of the derived formulas at two example systems: a
spiral cavity and a notched circular cavity. In both cases we
observe a good agreement to numerically exact solutions with
the BEM. Furthermore, we demonstrated that scaling the cav-
ity size can be used to minimize the area of perturbation which
results in an improved prediction of complex wave numbers.

5.39

5.40

5.41

Re x
(a)

PT
BEM

sym. PT

−0.08 −0.06 −0.04 −0.02 0.00

−1.12

−1.19

−1.26
ε2

102Im x

(b)

FIG. 11. The (a) real and (b) imaginary part of x = kR for the
mode pair (m,l) = (10,1) is shown as a function of the size ε2 of
the second notch. Both notches have the same width parameter σ1 =
σ2 = 0.035. For ε2 = −0.06 (two notches of equal size) and ε2 =
0 (a single notch), perturbation theory for symmetric deformations
[19] can be applied (blue crosses). Second-order perturbation theory
results for asymmetric cavities, Eqs. (23) and (31), are shown as
magenta triangles and BEM results are shown as black open circles.

In the following we list some advantages and disadvantages
of the derived formulas: (i) A disadvantage of the formulas
is that they fail for special combinations of mode numbers
and boundary shapes, i.e., if the Fourier harmonic A2m of
the boundary deformation function vanishes the formulas
cannot be evaluated properly. (ii) Close to exceptional points
the predictions become inaccurate, e.g., the chirality changes
discontinuously. Note that this is a natural feature of an
exceptional point where small changes in a parameter have
a large effect on the involved modes. (iii) Our perturbation
theory works also for cavities with chaotic ray dynamics as
long as the deformation area is small. (iv) Especially in the
spiral cavity the boundary function r(φ) is not continuous at
the notch but in the perturbation theory the Fourier harmonics
of the deformation function enter which always represent a
contiguous version of the boundary. Our results suggest that
this can be seen as a mathematical detail without effecting
the obtained results strongly. (v) The derived formulas
are an analytical proof that mode pairs are copropagating
with a finite chirality if the cavity’s boundary is deformed
asymmetrically. (vi) The numerical effort of evaluation is very
low in comparison to the BEM which allows, e.g., parameter
studies or to use them as an initial guess for precise numerical
methods. (vii) The presented scaling improvement is easy to
implement and can result in valuable enhanced accuracy.

The derived formulas provide a foundation to generalize
the inverse problem [39] to find optimal boundary shapes for
generic far-field intensity patterns. This will be part of future
work. Another future challenge is the derivation of appropriate
formulas for TE modes. The simplification of the presented
formulas for local boundary perturbations as done in Ref. [21]
for the symmetric case is also under consideration.
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(a) (b)

FIG. 12. (a) Spiral cavity with ε = 0.2 and (b) rescaled spiral
cavity with η as in Eq. (A4) is shown as a black solid curve. The dashed
curve is a circle of radius R, and the cyan filled region illustrates
the area δa where the deformation function changes the refractive
index.
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APPENDIX: IMPROVING PERTURBATION
THEORY USING SCALING

In this Appendix we explain how a rescaling of the cavity
size can be used to get an improved perturbative prediction of
x = kR. This improvement is valuable in cases where the
boundary perturbation function f (φ) enlarges (or reduces)
the overall cavity size. A typical example is the spiral where
f (φ) < 0 for all φ > 0.

The key idea of the scaling improvement is not to use r(φ)
directly but to introduce a rescaled radius rη(φ)

rη(φ) = ηr(φ) (A1)

of the cavity. Consequently, the rescaled boundary deformation
function is

fη(φ) = rη(φ) − R. (A2)

The scaling factor η is then chosen such that it minimizes the
area where fη(φ) changes the refractive index of the circular
cavity of radius R; see Fig. 12 for a rescaled spiral with
ε = 0.2.

Using the rescaled deformation function for the Fourier
harmonics Aq and Bq in Eqs. (20) and (27) results in a
prediction xη of the rescaled cavity. Thereby, the complex
wave number x of the original nonrescaled cavity is obtained
by

x = ηxη. (A3)

In the following we illustrate the rescaling improvement at
the spiral cavity; see Eq. (33). First, we have to deduce the
optimal scaling η for a given notch size ε. Therefore, Fig. 13
shows the perturbation area as function of the scaling factor η

and notch size ε. The optimal scaling factor is well described
by

η = 1 + ε

2
, (A4)

which is shown as white line in Fig. 13. Using this scaling
factor for the perturbation theory results in a better agreement

0.0 0.05 0.10 0.15 0.20
0.98

1.02

1.06

1.10

1.14

ε

η

0

R2

FIG. 13. Area of the perturbation δa depending on notch size ε

of the spiral and the scaling factor η is color encoded from dark
(small perturbation area) to bright (large perturbation area). Black
solid curves are contour lines. The white line is the optimal scaling
to minimize the perturbation area; see Eq. (A4).

of the predicted x and determined BEM values as shown
in Fig. 14 for the modes (m,l) = (18,1) in the spiral with
n = 2.0.

Note that additionally to the scaling improvement, also
shifting the cavity in the x-y plane can be used to minimize
the area of perturbation. This procedure has already been
demonstrated in Ref. [20] to be valuable, e.g., for the
Limaçon.
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FIG. 14. (a) Real and (b) imaginary part of complex wave number
x of the optical modes (m,l) = (18,1) in a spiral cavity with n =
2.0 is shown as function of notch size ε. Dark blue crosses and
magenta triangles represent perturbation theory with [η as in Eq. (A4)]
and without (η = 1) scaling. BEM results are shown as black open
circles.
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[45] J. Wiersig, A. Eberspächer, J.-B. Shim, J.-W. Ryu, S. Shinohara,

M. Hentschel, and H. Schomerus, Phys. Rev. A 84, 023845
(2011).

[46] J. Kullig and J. Wiersig, New J. Phys. 18, 015005 (2016).
[47] H. A. M. Leymann, C. Hopfmann, F. Albert, A. Foerster, M.

Khanbekyan, C. Schneider, S. Höfling, A. Forchel, M. Kamp, J.
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