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Diffusive light transport in semitransparent media
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It is common knowledge that diffusion theory cannot describe light propagation in semitransparent media, i.e.,
media with a low optical thickness. However, even in an optically thin slab, late-time transport will be eventually
determined by a multiple scattering process whose characteristics are still largely unexplored. We numerically
demonstrate that, even for an optical thickness as low as 1, after a short transient, propagation along the slab
plane becomes diffusive. Nonetheless, we show that such a diffusion process is governed by modified statistical
distributions which result from a highly nontrivial interplay with boundary conditions.
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I. INTRODUCTION

The physics of light transport in scattering materials
represents an intensive research field both for its fundamental
interest and for its applications [1]. In this ubiquitous class of
media, light coherence and polarization typically do not play a
significant role and the transport problem can be modeled as a
random walk of energy packets determined by microscopic
parameters such as the scattering mean free path ls, the
absorption length la, and the scattering anisotropy g, defined
as the average cosine of the scattering angle. The problem
simplifies significantly with the onset of the multiple scattering
regime which typically characterizes thick and turbid samples.
In this case, after a short transient, transport becomes diffusive
and is characterized by an isotropic transport mean free
path lt = ls/(1 − g), allowing a description in terms of the
simple, analytic diffusive approximation (DA). Focusing on
late, multiply scattered light, the relation DDA = vlt/3 links
the diffusion coefficient DDA to the microscopic transport
mean free path lt through the energy velocity v inside
the sample [2,3]. This connection proves crucial in many
different fields, making it possible to probe the microscopic
structural properties of an unknown medium by measuring the
macroscopic rate at which light diffuses through it. In practice,
however, the validity of the diffusive approximation is limited
to samples with a thickness L0 at least 1 order of magnitude
bigger than lt [4]. When this is not the case, the sample appears
semitransparent and the diffusion approximation breaks down
in the sense that light transport will be dominated by unscat-
tered (ballistic) light, or light undergoing too few scattering
events. Despite the large relevance of optically thin membranes
in fundamental research [5–8] and applications [9–13], this
class of samples remains to date less studied given the need
for nonapproximated numerical techniques.

In this work we reveal and elucidate the peculiar features of
light transport in optically thin slabs. By performing extremely
large Monte Carlo simulations we are able to investigate the
late-time propagation of light deeply in the multiple scattering
regime, which results in a fully developed diffusive transport
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along the plane of the slab even at very low turbidity. Recent
numerical and experimental evidence [14–16] suggests that
studying transport along transverse directions provides observ-
ables that are more robust against experimental uncertainties
and easier to interpret within the diffusion approximation, as
opposed to other observables such as the decay time τ of
the spatially integrated transmission. Nevertheless, the vast
literature available for the slab geometry typically focuses on
axial rather than transverse transport [4–6,8,17–20], which
therefore remains still largely unexplored. Here we show
how investigating transverse transport provides fundamental
insight to our understanding of light propagation in scattering
media, and we illustrate how boundary conditions modify the
very statistical distributions underlying the radiative transport
process.

II. TRANSVERSE TRANSPORT IN A SLAB GEOMETRY

According to diffusion theory, the instantaneous intensity
profile transmitted through a turbid slab is Gaussian I (ρ,t) ∝
exp[−ρ2/w2(t)] with a mean square width (MSW) growing
linearly with time as w2(t) = 4DDAt [2]. Such a width
represents the variance of the profile, which is independent
of the instantaneous integrated intensity and is more generally
defined for an arbitrary distribution I (ρ,t) as

w2(t) =
∫ ∞

0 ρ2I (ρ,t)d2ρ
∫ ∞

0 I (ρ,t)d2ρ
, (1)

with ρ representing a two-dimensional vector in the trans-
mission plane. Remarkably, the mean square width w2 is
independent of absorption (which cancels out exactly at any
time [21]) and, according to the simple diffusive model,
it is also independent of both the slab thickness and its
refractive index contrast with the environment. The mean
square width therefore represents a largely appealing quantity
to be investigated, allowing one to retrieve the microscopic
transport mean free path lt, even if the thickness and the
refractive index contrasts are not known precisely [15], and
without being affected by the typical cross-talk artifacts due
to absorption [14,16].
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FIG. 1. Sketch of the configuration used for Monte Carlo simula-
tions. An infinite slab is illuminated by a pencil beam pulse δ(t)δ(r)
of energy packets performing a random walk inside the scattering
material. A few representative trajectories and normalized transmitted
intensities are shown in the case of an optically thin, index-matched
slab (nin = nout = 1) with thickness L0 = ls = 1 mm and scattering
anisotropy g = 0.

Taking advantage of these properties, we make use of
the MSW growth to study transverse diffusive transport in
optically thin slabs. This makes our analysis exactly indepen-
dent from absorption, which can be therefore ignored in the
simulations. In our Monte Carlo simulations, a pencil beam
pulse δ(t)δ(r) of energy packets impinges on a thin slab of
scattering material (see Fig. 1). The energy packets propagate
performing a random walk according to an exponential step
length distribution and a Heyney-Greenstein phase function.
For the sake of convenience, given that Fresnel reflection
coefficients depend solely on the ratio n, we kept nin = 1
constant in order to have a consistent time scale for each
simulation. Results for any arbitrary nin and nout = nin/n pair
can be retrieved exactly with a simple rescaling operation. For
each transmitted particle, we consider the distance ρ between
its exit point and the optical axis. The integrals in Eq. (1)
are then evaluated as finite summations over the particles
transmitted within a certain time window. We considered
scattering slabs with an optical thickness (OT) of L0/lt = 1,
with L0 = lt = 1 mm. We observe that, after a short transient,
the mean square width grows linearly in time as shown in
Fig. 2(a), which is a clear hallmark of diffusive propagation.
Excluding a time window of 4τ is always sufficient to reach
the diffusing regime for all values of n and g, at OT = 1.
Expressing time axes in units of the decay time τ of the
corresponding spatially integrated transmission allows one to
get an estimate of the fraction of energy packets involved
at each point. For example, the fraction of packets reaching
this diffusive regime is of the order of percent [∼ exp(−4)],
which is largely significant experimentally given that common
time-resolved techniques span up to 8 decades of dynamic
range [22]. For each simulated configuration, an observed
diffusion coefficient D can be extracted from a linear fit of
the w2(t > 4τ ) curves, as 1/4 of the asymptotic slope.

To our knowledge, the validity range of the simple linear
prediction w2(t) = 4DDAt = 4vltt/3 cast by diffusion theory
has not been tested to date. Obviously, at an OT as low as
1, high deviations are observed [Fig. 2(b)]. Remarkably, the
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FIG. 2. (a) MSW expansion for three slab configurations with
lt = L0, g = 0, and different refractive index contrasts, showing a
perfectly linear growth after a short transient (shaded). (b) Depen-
dence on the refractive index contrast n and scattering anisotropy g

of the diffusion coefficient D as inferred from a linear fit of the mean
square width w2(t > 4τ ) for different samples with OT = 1. Solid
points represent the values retrieved from the linear fits shown in
panel (a).

largest deviations are found in the proximity of n = 1, which
is usually quoted as a safer configuration for the diffusion
approximation [20]. It is also worth noting that the MSW
slope of the simulated data is always greater than the value
expected from diffusion theory, i.e., the diffusion coefficient
appears to be enhanced. A first, qualitative explanation for this
enhancement can be attempted based on the d-dimensional
modeling of diffusion as a random walk process, which, given
a step length distribution P (l) with finite moments 〈l〉 and 〈l2〉,
predicts a mean square d-dimensional displacement growing
as 2dDt with

D = 1

2d
v
〈l2〉
〈l〉 = 1

d
vlt, (2)

where the last equality holds for an exponential step-length
distribution with average step length lt [23]. As the optical
thickness of the simulated slab decreases, transport occurs in an
increasingly planar geometry. Hence, as suggested by Eq. (2),
the effective diffusion coefficient D as inferred from the MSW
slope might be up to 3/2 times higher than its bulk nominal
value. The perceived spatial dimensionality is also affected by
the refractive index contrast. Near n = 1, any energy packet
leaving the sample at long times will have performed an almost
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planar trajectory, akin to a purely two-dimensional walk. On
the contrary, strong boundary reflections allow trajectories
to fold back into the sample, which is therefore perceived
more as a three-dimensional environment [which also explains
why the diffusive approximation recovers gradually for high
values of the refractive index contrast, see Fig. 2(b)]. A
closer look at the data, however, shows that diffusion exhibits
a local minimum at n = 1, rather than a maximum, with
the D/DDA ratio exhibiting a sharp modulation across the
index-matching condition. Around n = 1, diffusion appears to
be asymmetrically enhanced, reaching an absolute maximum
around n = 1.016 for g = 0.

III. EFFECTIVE RANDOM WALK STATISTICS

In order to explain the origin of such deviations, we focus on
three significant configurations [highlighted as solid symbols
in Fig. 2(b)] representing key points of the observed peak
for g = 0, i.e., n = 1, 1.016, and 1.1. These three particular
configurations were further investigated to collect detailed
statistics at long times, with 1014, 0.5 × 1014, and 1013 energy
packets each. Dealing with simulations of this magnitude
required the development of a dedicated implementation of the
standard Monte Carlo method, in order to accurately generate
and represent the large number of random variates involved in
the simulations [15].

As suggested by Eq. (2), the most straightforward insight
on the diffusion coefficient D is obtained by directly looking
at the distribution of the step lengths performed during
the random walk. In principle, each trajectory is generated
according to the same exponential step-length distribution
P (l) = l−1

s exp(−l/ ls). However, we find that the finite thick-
ness of the slab configuration induces a positive correlation
between a long permanence inside the sample and a higher
probability of drawing longer step lengths. Figure 3 shows the
histograms of the step lengths and scattering angles between
two consecutive scattering events for those energy packets
that were transmitted at t = 90 ps (corresponding to a path
length of ≈ 27L0) compared with their nominal distributions
implemented in the Monte Carlo algorithm (dashed lines).
The step-length distributions [Fig. 3(a)] exhibit enhanced tails
for all three simulated refractive index contrasts, consistently
with the observed enhancement of the diffusion rate [cf.
Eq. (2)]. In this thin slab geometry, the nominal step-length
distribution provided by the pseudorandom number generator
is sampled unevenly in such a way that all its moments are
significantly modified: despite the fact that a long step in a
very thin sample will generally cause the packet to exit the
slab, those few packets that happen to remain inside will be
able to reach long surviving times without undergoing many
scattering events. In the case of refractive index contrasts close
to 1, the distribution of the step lengths features a selective
enhancement of the longer values, which is slightly more
marked for n = 1.016. This is due to the fact that, even for
such a small refractive index contrast, total internal reflection
is already significant (θc = 79.8◦). If internal reflections are
absent, extremely narrow angular conditions must hold in
order for the packet not to exit the slab. Conversely, even
a tiny contrast allows one to largely relax such a condition,
introducing a significant increase in the survival probability of
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FIG. 3. Late-time modification of the step-length and scattering-
angle distributions for an optically thin slab with OT = 1, g = 0, and
n = 1, 1.016, and 1.1. Panel (a) shows the probability distribution
of step lengths between consecutive scattering events performed by
those energy packets that are transmitted at t = 90 ps. The retrieved
distributions exhibit heavier tails than the nominal one (dashed line).
Scattering angles become unevenly sampled at late times as well, as
shown in panel (b).

a long-stepping energy packet while only marginally affecting
others. In short, there is a positive correlation between long
steps and shallow incidence angles, whose effects become
apparent when such angles are the only ones undergoing total
internal reflection [which also explains why the enhancement
shown in Fig. 2(a) is asymmetric around n = 1]. On the other
hand, with increasing contrast, more energy packets will be
held inside the slab irrespective of their incidence angle (and
hence of the length of their step), thus weakening the observed
enhancement in the MSW growth rate.

Interestingly, the sampling of the angular variables is also
modified at late times, as shown in Fig. 3(b) for the same set of
simulations. While tracing each random trajectory, the cosines
of the scattering (polar) angles θ are generated uniformly in
[−1,1] through the pseudorandom number generator. On the
contrary, the observed asymptotic cos θ distribution exhibits
two peaks for backwards and forward scattering. This can
be intuitively understood by considering the fact that typical
steps in a very long trajectory will be mostly aligned with
the slab plane. As such, scattering angles close to θ = 0◦ or
180◦ guarantee that the trajectory will continue within the
slab irrespective of what azimuthal angle is drawn. Actually,
since a typical step will not be in general perfectly parallel to
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FIG. 4. Time evolution of the ratio 〈l2〉/2〈l〉 appearing in Eq. (2)
and of 〈cos θ〉, as obtained by the simulations. Each point is
obtained considering only the energy packets transmitted within the
corresponding time bin. Dashed lines represent the nominal values
for the two distributions.

the interfaces, a scattering angle of θ ≈ 180◦ should provide
higher chances of staying inside the sample, hence its higher
probability. This results in a cos θ distribution with a slightly
negative average value (Fig. 4, left axis), which also plays a
role in determining the effective diffusion properties exhibited
by the sample.

With reference to Eq. (2), we plot the quantity 〈l2〉/2〈l〉
in Fig. 4 (right axis), along with its nominal value of 1
(dashed line). At long times, each curve seems to saturate to an
asymptotic value, suggesting the existence of a well-defined
effective diffusion coefficient. The random-walk-based picture
of diffusion as expressed by Eq. (2) is qualitatively supported
by the fact that also this figure of merit is enhanced for
n = 1.016 (red curve), in accordance with Fig. 2(a). In
principle, the overall diffusion process will be influenced by
both the modified step length and angular statistics, which in
the investigated configurations appear to have opposite effects,
as also shown in Fig. 4. While the latter would indeed tend to
slightly slow down diffusion, the predominant effect is coming
from the step lengths being substantially increased, leading
to the observed enhanced in-plane diffusion especially for
n = 1.016. Notably, different configurations might lead to a
different balance between these two effects, which also appear
to saturate to their respective asymptotic values on slightly
different time scales, further illustrating the need for additional
investigations even for the simple model of a homogeneous and
isotropic single slab.

The asymptotic nature of the effective diffusion coefficient
in a thin slab is further highlighted in Fig. 5, where the time
evolution of the step-length distribution is shown for n = 1 (the
n = 1.016 and 1.1 cases are analogous). The time-resolved
distributions seem to converge towards a single asymptotic
envelope distribution with a well-defined asymptotic decay
rate which seems to be uniquely determined by the properties
of the sample. It is interesting to compare the histogram of the
actual steps performed inside the sample (blue curves) with
the histogram of the ones drawn through the pseudorandom
number generator (gray curves). The two differ only for the last
step, whose length is respectively considered either partially
(up to the interface) or totally. At late times the two sets
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FIG. 5. Time evolution of the step length distribution for n = 1
for energy packets transmitted at t = 10, 20, 30, 40, 50, 60, 70, 80,
and 90 ps. The gray curves and the blue curves show, respectively,
the histogram of the step lengths drawn through the pseudorandom
number generator and of the steps taken inside the sample. The two
only differ for the last step of each trajectory.

of curves become indistinguishable since, as expected, the
contribution of the last step to the whole trajectory becomes
eventually statistically negligible.

As a result of the transport statistics being directly altered
by the sample configuration, an optically thin sample generally
appears to be less scattering than it actually is. In other words,
once the diffusive regime is reached, energy packets propagate
as if scatterers were further apart than they actually are, i.e.,
with an effective transport mean free path greater than the one
intrinsic to the material. Albeit smaller, similar discrepancies
have been reported even in samples with an optical thickness
as high as 8 [16], suggesting that modifications of transport
statistics could be still appreciable in more turbid media.

IV. DECAY TIME OF INTEGRATED TRANSMISSION

Before drawing conclusions, it is interesting to note that
a qualitatively similar behavior to what we described for the
mean square width [Figure 2(b)] is also found in the relative de-
viations of decay times from the diffusive prediction [Fig. 6(a)]
and is therefore not strictly limited to the propagation of
light along the slab plane. It is worth discussing this point
separately, especially given that decay time measurements
of integrated transmittance have long been experimentally
accessible and exploited to estimate the diffusion coefficient
via the expression (for a nonabsorbing medium)

τDA = L2
eff

π2DDA
, (3)

where Leff = L0 + 2ze is the effective thickness of the medium
and ze represents the extrapolated length for a given refractive
index contrast.

A similar dependence on n with respect to the previous
case can be appreciated in Fig. 6(a), where we plot the
ratio between the decay time τ as fitted from the Monte
Carlo simulations and the decay time τDA as computed from
Eq. (3). As opposed to the previous case, however, the τ/τDA

ratio can evidently take values both above and below 1,
depending subtly on the scattering anisotropy and the refractive
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FIG. 6. (a) Dependence on the refractive index contrast n and
scattering anisotropy g of the decay time τ as inferred from a single-
exponential fit of the spatially integrated transmitted intensity for
OT = 1. Especially for lower g factors, the ratio can clearly go above
1 for certain values of the refractive index contrast. The dependence
of τ on OT for values highlighted as filled symbols is shown in panel
(b). Dashed lines represent the DA prediction; solid lines serve as
guides to the eye.

index contrast of the sample. This observation might explain
why retrieving the diffusion coefficient from a decay time
measurement using Eq. (3) is sometimes regarded as a poor
estimation, since this can lead both to over- or underestimated
values [4]. This is further illustrated in Fig. 6(b) for a
couple of representative cases exhibiting opposite deviations
that can persist even at higher optical thicknesses. This
behavior is particularly interesting considering that, to date,
experimental data and theoretical predictions are inconsistent.
While the former bring generally evidence suggesting that
retrieving DDA through a decay time measurement would
lead to a decreasing diffusion coefficient with decreasing
thickness [24,25], the latter have so far mainly provided
arguments in favor of the opposite behavior [4,19,26,27]. In
this respect, our simulations show that there is a region in
the parameter space where the τ/τDA ratio exceeds 1, which
can lead to the experimentally observed decreasing diffusion
coefficient with decreasing thickness. The analysis on the
decay times confirms the importance of an accurate and precise
modeling of the index contrast, which we think has been often
overlooked, for example, by considering a symmetric averaged
contrast to model asymmetric experimental configurations
[4,19,26].

V. CONCLUSIONS

To conclude, we have studied the diffusive transport regime
in optically thin samples, which develops at late times in the
slab plane and shows peculiar features especially for small
refractive index contrasts. Due to the asymptotic nature of this
transport regime, our results apply indifferently to transmission
and reflection collection geometries.

Our investigation revealed a subtle interplay occurring
between the actual thickness of the slab, the refractive index
contrast, and the scattering anisotropy, determining a transport
regime that is diffusive on long time scales but which cannot
be described in terms of the simple diffusive approximation.
A different and asymptotic diffusion coefficient naturally
emerges from the overall optical and geometric boundary
conditions of the sample and is univocally determined by them
through yet unknown relations. In this respect, our findings
recall a recently published work where it is analogously
demonstrated that the link between microscopic (i.e., the
scattering coefficient) and macroscopic (i.e., the diffusion co-
efficient) transport parameters remains unknown for diffusive
anisotropic media [28]. Analogously, our results show that this
link should be further investigated even in the isotropic case,
especially for weakly scattering media. In particular, concern-
ing microscopic optical properties such as g or lt, it seems
appropriate to introduce a distinction between an intrinsic and
an effective counterpart, where the former is the one that we are
typically interested in retrieving while the latter might have a
very different value and nature (e.g., tensorial instead of scalar)
depending on incidental geometric conditions. It must be noted
that the lack of an analytical description of the deviations
that we unveiled does not hinder their practical utility. On the
contrary, this effect provides a unique opportunity to directly
infer the unknown intrinsic optical parameters through, e.g.,
parametrization or a look-up table approach [15].

The enhanced diffusive regime that we described should
not be confused with faster-than-diffusion transport phenom-
ena [29,30], which describe very different systems where
diffusion does not apply. Analogously, it is worth stressing
that the effect that we unveiled is fundamentally different from
apparently similar boundary effects described in the litera-
ture [31,32], which can be usually taken into account through
some refined extrapolated boundary conditions. This cannot
be the case here, since extrapolated boundary conditions
correct significantly quantities such as the total transmittance
which, conversely, would be hardly affected by asymptotic
modifications of the effective diffusion coefficient. Indeed,
because of the asymptotic nature of these effects, only a small
fraction of the incoming light is actually subject to this effective
transport mean free path when studying thin samples. Yet, the
effect is largely accessible experimentally [22] and similar
deviations have in fact already been observed directly [16].
Moreover, other applications can be envisioned where multiple
scattering in thin layers, even if limited to a very small fraction
of incident light, could play a significant role (e.g., random
lasers). In this respect, we demonstrated how the interplay
between transport properties and the environment geometry
can give rise to sharp and unexpected macroscopic migration
features, which represent an effect to be taken into account and
possibly exploited to design novel scattering materials.
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[25] J. Gómez Rivas, R. Sprik, A. Lagendijk, L. D. Noordam, and C.
W. Rella, Phys. Rev. E 63, 046613 (2001).

[26] S. A. Ramakrishna and N. Kumar, Phys. Rev. E 60, 1381 (1999).
[27] V. Gopal, S. Anantha Ramakrishna, A. Sood, and N. Kumar,

Pramana 56, 767 (2001).
[28] E. Alerstam, Phys. Rev. E 89, 063202 (2014).
[29] P. Barthelemy, J. Bertolotti, and D. S. Wiersma, Nature (London)

453, 495 (2008).
[30] L. Levi, Y. Krivolapov, S. Fishman, and M. Segev, Nat. Phys. 8,

912 (2012).
[31] N. G. Chen and J. Bai, Phys. Rev. Lett. 80, 5321 (1998).
[32] G. Popescu, C. Mujat, and A. Dogariu, Phys. Rev. E 61, 4523

(2000).

043846-6

https://doi.org/10.1364/AO.36.004587
https://doi.org/10.1364/AO.36.004587
https://doi.org/10.1364/AO.36.004587
https://doi.org/10.1364/AO.36.004587
https://doi.org/10.1364/JOSAA.23.001106
https://doi.org/10.1364/JOSAA.23.001106
https://doi.org/10.1364/JOSAA.23.001106
https://doi.org/10.1364/JOSAA.23.001106
https://doi.org/10.1364/JOSAA.21.001430
https://doi.org/10.1364/JOSAA.21.001430
https://doi.org/10.1364/JOSAA.21.001430
https://doi.org/10.1364/JOSAA.21.001430
https://doi.org/10.1103/PhysRevLett.64.2647
https://doi.org/10.1103/PhysRevLett.64.2647
https://doi.org/10.1103/PhysRevLett.64.2647
https://doi.org/10.1103/PhysRevLett.64.2647
https://doi.org/10.1103/PhysRevA.45.825
https://doi.org/10.1103/PhysRevA.45.825
https://doi.org/10.1103/PhysRevA.45.825
https://doi.org/10.1103/PhysRevA.45.825
https://doi.org/10.1103/PhysRevE.59.6517
https://doi.org/10.1103/PhysRevE.59.6517
https://doi.org/10.1103/PhysRevE.59.6517
https://doi.org/10.1103/PhysRevE.59.6517
https://doi.org/10.1103/PhysRevE.60.4843
https://doi.org/10.1103/PhysRevE.60.4843
https://doi.org/10.1103/PhysRevE.60.4843
https://doi.org/10.1103/PhysRevE.60.4843
https://doi.org/10.1364/AO.32.005475
https://doi.org/10.1364/AO.32.005475
https://doi.org/10.1364/AO.32.005475
https://doi.org/10.1364/AO.32.005475
https://doi.org/10.1088/0031-9155/40/6/001
https://doi.org/10.1088/0031-9155/40/6/001
https://doi.org/10.1088/0031-9155/40/6/001
https://doi.org/10.1088/0031-9155/40/6/001
https://doi.org/10.1103/PhysRevLett.80.627
https://doi.org/10.1103/PhysRevLett.80.627
https://doi.org/10.1103/PhysRevLett.80.627
https://doi.org/10.1103/PhysRevLett.80.627
https://doi.org/10.1117/1.3369003
https://doi.org/10.1117/1.3369003
https://doi.org/10.1117/1.3369003
https://doi.org/10.1117/1.3369003
https://doi.org/10.1364/OL.36.002824
https://doi.org/10.1364/OL.36.002824
https://doi.org/10.1364/OL.36.002824
https://doi.org/10.1364/OL.36.002824
https://doi.org/10.1364/OL.34.003379
https://doi.org/10.1364/OL.34.003379
https://doi.org/10.1364/OL.34.003379
https://doi.org/10.1364/OL.34.003379
https://doi.org/10.1088/1367-2630/18/2/023036
https://doi.org/10.1088/1367-2630/18/2/023036
https://doi.org/10.1088/1367-2630/18/2/023036
https://doi.org/10.1088/1367-2630/18/2/023036
https://doi.org/10.1038/lsa.2016.90
https://doi.org/10.1038/lsa.2016.90
https://doi.org/10.1038/lsa.2016.90
https://doi.org/10.1038/lsa.2016.90
https://doi.org/10.1364/OL.15.000320
https://doi.org/10.1364/OL.15.000320
https://doi.org/10.1364/OL.15.000320
https://doi.org/10.1364/OL.15.000320
https://doi.org/10.1103/PhysRevE.57.4498
https://doi.org/10.1103/PhysRevE.57.4498
https://doi.org/10.1103/PhysRevE.57.4498
https://doi.org/10.1103/PhysRevE.57.4498
https://doi.org/10.1103/PhysRevE.66.016612
https://doi.org/10.1103/PhysRevE.66.016612
https://doi.org/10.1103/PhysRevE.66.016612
https://doi.org/10.1103/PhysRevE.66.016612
https://doi.org/10.1364/OL.38.000437
https://doi.org/10.1364/OL.38.000437
https://doi.org/10.1364/OL.38.000437
https://doi.org/10.1364/OL.38.000437
https://doi.org/10.1103/PhysRevE.82.056603
https://doi.org/10.1103/PhysRevE.82.056603
https://doi.org/10.1103/PhysRevE.82.056603
https://doi.org/10.1103/PhysRevE.82.056603
https://doi.org/10.1364/OE.19.010735
https://doi.org/10.1364/OE.19.010735
https://doi.org/10.1364/OE.19.010735
https://doi.org/10.1364/OE.19.010735
https://doi.org/10.1103/PhysRevE.87.022120
https://doi.org/10.1103/PhysRevE.87.022120
https://doi.org/10.1103/PhysRevE.87.022120
https://doi.org/10.1103/PhysRevE.87.022120
https://doi.org/10.1103/PhysRevLett.79.4369
https://doi.org/10.1103/PhysRevLett.79.4369
https://doi.org/10.1103/PhysRevLett.79.4369
https://doi.org/10.1103/PhysRevLett.79.4369
https://doi.org/10.1103/PhysRevE.63.046613
https://doi.org/10.1103/PhysRevE.63.046613
https://doi.org/10.1103/PhysRevE.63.046613
https://doi.org/10.1103/PhysRevE.63.046613
https://doi.org/10.1103/PhysRevE.60.1381
https://doi.org/10.1103/PhysRevE.60.1381
https://doi.org/10.1103/PhysRevE.60.1381
https://doi.org/10.1103/PhysRevE.60.1381
https://doi.org/10.1007/s12043-001-0077-x
https://doi.org/10.1007/s12043-001-0077-x
https://doi.org/10.1007/s12043-001-0077-x
https://doi.org/10.1007/s12043-001-0077-x
https://doi.org/10.1103/PhysRevE.89.063202
https://doi.org/10.1103/PhysRevE.89.063202
https://doi.org/10.1103/PhysRevE.89.063202
https://doi.org/10.1103/PhysRevE.89.063202
https://doi.org/10.1038/nature06948
https://doi.org/10.1038/nature06948
https://doi.org/10.1038/nature06948
https://doi.org/10.1038/nature06948
https://doi.org/10.1038/nphys2463
https://doi.org/10.1038/nphys2463
https://doi.org/10.1038/nphys2463
https://doi.org/10.1038/nphys2463
https://doi.org/10.1103/PhysRevLett.80.5321
https://doi.org/10.1103/PhysRevLett.80.5321
https://doi.org/10.1103/PhysRevLett.80.5321
https://doi.org/10.1103/PhysRevLett.80.5321
https://doi.org/10.1103/PhysRevE.61.4523
https://doi.org/10.1103/PhysRevE.61.4523
https://doi.org/10.1103/PhysRevE.61.4523
https://doi.org/10.1103/PhysRevE.61.4523



