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We study exact solutions of the steady-state behavior of several nonlinear open quantum systems which can
be applied to the field of circuit quantum electrodynamics. Using Fokker-Planck equations in the generalized
P representation, we investigate the analytical solutions of two fundamental models. First, we solve for the
steady-state response of a linear cavity that is coupled to an approximate transmon qubit and use this solution
to study both the weak and strong driving regimes, using analytical expressions for the moments of both cavity
and transmon fields, along with the Husimi Q function for the transmon. Second, we revist exact solutions
of a quantum Duffing oscillator, which is driven both coherently and parametrically while also experiencing
decoherence by the loss of single photons and pairs of photons. We use this solution to discuss both stabilization
of Schrödinger cat states and the generation of squeezed states in parametric amplifiers, in addition to studying
the Q functions of the different phases of the quantum system. The field of superconducting circuits, with its
strong nonlinearities and couplings, has provided access to parameter regimes in which returning to these exact
quantum optics methods can provide valuable insights.
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I. INTRODUCTION

The Fokker-Planck equation (FPE) is a valuable tool for
finding exact steady-state solutions of driven, dissipative
quantum oscillators. Most famously it has been used to treat the
degenerate parametric amplifier [1,2] and the quantum Duffing
oscillator [3]. Such analytical solutions are particularly valu-
able to the study of quantum systems as they allow regimes to
be studied where numerical simulation becomes unfeasible, for
example, very strongly driven systems where the Fock-state
basis required for simulation become very large. They also
enable large areas of parameter space to be studied very
quickly. As experimental setups become more complicated,
including multiple oscillators, there is increasing desire for
solutions that help to study these systems. This becomes
even more challenging when significant nonlinearities are also
present in the system. Situations where steady-state solutions
of the FPE can be obtained, which is determined by whether
the potential conditions are satisfied [4], are rare, making any
new solutions that can be found of particular interest.

Superconducting quantum circuits [5] give us the ability
to conduct quantum optics experiments in a highly controlled
and tunable environment where, unlike true atomic systems,
we are free to design most of the parameters of the system. The
Josephson junction provides strong nonlinearities enabling
both the design of qubit circuits, such as the transmon [6], and
efficient production of highly squeezed microwave fields [7].
The ability to create an effective one-dimensional resonator
which can be coupled almost perfectly to a transmission line
also allows very efficient interaction between these squeezed
fields and artificial atoms [8]. Finally, the strong coupling that
can be achieved between resonators and qubits gives us access
to the strong dispersive regime [9,10], where the qubit can be
used as a probe of the cavity state and vice versa, leading
to the development of tomographic techniques in circuit
quantum electrodynamics (circuit QED) [11,12]. All these
developments enable the study of parameter regimes which are
inaccessible to conventional optics, and it is therefore pertinent
to revisit quantum optics methods to see how they may be
adapted and extended to these systems.

Current work in circuit QED is particularly focused on
scaling up to multioscillator systems, and optimal control
is becoming increasingly relevant as devices improve in
quality [13,14]. In addition, there is great interest in using
superconducting circuits to realize quantum phases [15,16]
and phase transitions [17] in driven dissipative lattices,
while it is also hoped that a quantum simulator can be
constructed from such an array [18]. Efforts to improve the
technology further have led to increased use of nonclassical
states, for example, for improving qubit readout [19,20].
The field of quantum optomechanics [21,22] is concerned
with the same fundamental models as circuit QED, albeit
in different parameter ranges, and can therefore also benefit
from the methods discussed here. Much current work is
focused on cooling a mechanical resonator into its ground state
[23–25], and the related problem of engineering a macroscopic
vibrational superposition state [26]. Work is also being done
using a mechanical oscillator to more precisely characterize
an optical mode [27], in addition to using the cavity to
perform sensitive mechanical measurements [28,29]. Cavity
optomechanics also provides a method of converting between
microwave and optical photons [30], opening up the possibility
for hybrid quantum information systems.

In this paper, we extend the FPE method to treat two
systems of interest in circuit QED. First, we study a transmon
qubit, modeled as a quantum Duffing oscillator, coupled
to a linear readout cavity. Using an adiabatic elimination
process, we derive expressions for the steady-state moments
of both the transmon and cavity fields, in addition to Q

functions of the transmon. We show that that despite the
apparent restrictiveness of this process, we retain much
of the important behavior of the system in our effective
single-oscillator system, even when the cavity and qubit are
resonant and this approach would seem most likely to break
down. The Jaynes-Cummings model, which approximates the
transmon as a two-level system, has been studied extensively
using numerical solutions at low occupation and semiclassical
models in the limit of strong driving [31] and in the presence
of nonzero temperature [32,33]. In the case of strong driving,
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however, the higher levels of the transmon become relevant to
the dynamics and no analytical solution exists in this regime.
The high-power regime is of particular interest for performing
high-fidelity, fast-qubit readout [34]. We plot the analytic
cavity and transmon response, in both the dispersive [9] and
resonant [35] regimes, over several orders of magnitude of
drive power, observing many features of the system that are
seen experimentally.

Second, we consider a Duffing oscillator which is driven
both coherently and parametrically, while decoherence occurs
through the loss of both single protons and pairs of photons.
This system, particularly the parametrically driven Duffing
system, has been studied extensively and exact solutions for
the moments of the field already exist, but returning to these
models in the circuit-QED regime can provide additional
insights. For example, this model is important in the study
of the period doubling bifurcation [36,37] and is relevant to
a proposed scheme for high-fidelity qubit readout [38]. We
derive analytical expressions for the resonator Q function to
study the difference between the classical and fully quantum
steady states of the parametrically driven system. In addition,
we study the application of this model to a recent proposal to
stabilize Schrödinger cat states in circuit QED [39], where we
see that the distortions due to the cavity self-Kerr [40] induced
by coupling to a qubit are significantly reduced by introducing
a two-photon loss process. We also study how the presence
of a quartic nonlinearity in an otherwise ideal parametric
amplifier [1] affects the ability to generate intracavity squeezed
states.

II. THE CAVITY-TRANSMON SYSTEM

Superconducting qubits are nonlinear resonators which
have sufficient large anharmonicity that the transition between
the lowest two levels can be addressed selectively [41].
One such device is the transmon, which has greatly reduced
charge noise compared with other qubits [6], can achieve long
coherence times [42], and is therefore widely used in exper-
iments [43–45]. Its relatively weak negative anharmonicity
when compared with atomic systems, however, means that at
high drive powers additional levels beyond the computational
basis must be considered, with the quantum Duffing oscillator
providing a good approximation to the level structure [46].
When coupled to a linear readout cavity, the Hamiltonian for
the full system is

H1 = ωca
†a + i(εe−iωd t a† − ε∗eiωd ta) + ig(ab† − a†b)

+ωtb
†b + χ

2
b†b†bb, (1)

in the rotating-wave approximation, where a and b are the an-
nihilation operators for the cavity and transmon modes which
have frequencies ωc and ωt respectively, ε is the coherent drive
strength, ωd is the driving frequency, g is the cavity-transmon
coupling, and χ is the transmon anharmonicity. In order to
remove the time dependence of the Hamiltonian we transform
into a frame rotating at the drive frequency,

H̃1 = �ca
†a + i(εa† − ε∗a) + ig(ab† − a†b)

+�tb
†b + χ

2
b†b†bb, (2)

where we have defined �c = ωc − ωd and �t = ωt − ωd . A
master equation allows us to study the dynamics of this system
under the influence of dissipation into a zero-temperature bath
via both the cavity and transmon. This is given by

ρ̇ = −i[H̃1,ρ] + L[
√

γca]ρ + L[
√

γtb]ρ, (3)

where L[a] = aρa† − 1
2a†aρ − 1

2ρa†a and γc and γt are the
cavity and transmon decay rates respectively. We are interested
in exact steady-state solutions of this system and therefore
rewrite this equation in the form of a FPE in the generalized P

representation [47], as has been used to solve other nonlinear
cavity systems [4],

∂P1(ααα)

∂t
=

[
− ∂

∂α1

(
−i�cα1 + ε − gα2 − γc

2
α1

)

− ∂

∂β1

(
i�cβ1 + ε∗ − gβ2 − γc

2
β1

)

− ∂

∂α2

(
gα1 − i�tα2 − iχα2

2β2 − γt

2
α2

)

− ∂

∂β2

(
gβ1 + i�tβ2 + iχβ2

2α2 − γt

2
β2

)

+ 1

2

∂2

∂α2
2

(−iχα2
2

) + 1

2

∂2

∂β2
2

(
iχβ2

2

)]
P1(ααα), (4)

where (α1, β1) are the phase-space coordinates of the cavity,
(α2, β2) are those of the transmon, and P1(ααα) is a quasiprobabil-
ity distribution over the phase space with ααα = (α1,β1,α2,β2).
In the generalized P representation, the αi and βi need only be
complex conjugate on average [47], and any moments much
be found by integrating over the full 8-dimensional space.

A. Adiabatic elimination of the cavity

In the form given by Eq. (4) the steady state of the system
cannot be solved for analytically by the potential conditions
method. If γc � γt , however, then we can perform an adiabatic
elimination of the cavity. We assume that the cavity is so fast
that it relaxes instantaneously in response to changes in the
transmon field and therefore remains in a steady state. Via a
conversion to the form of a Langevin equation, in a similar
fashion to that used in Ref. [2], we obtain relations for the
coordinates of the cavity in terms of those of the transmon,

α1 = 2

γ̃c

(ε − gα2), β1 = 2

γ̃ ∗
c

(ε∗ − gβ2), (5)

where we have defined γ̃c = γc + 2i�c (see Appendix A for
full details). We substitute these relations back into the FPE to
give the single-oscillator equation

∂P1(ααα)

∂t
=

[
− ∂

∂α2

(
ε̃ − iχα2

2β2 − γ̃t

2
α2

)

− ∂

∂β2

(
ε̃∗ + iχβ2

2α2 − γ̃ ∗
t

2
β2

)

+ 1

2

∂2

∂α2
2

(−iχα2
2

) + 1

2

∂2

∂β2
2

(
iχβ2

2

)]
P1(ααα), (6)

where we have additionally defined an effective decay constant
for the transmon γ̃t = γt + 2i�t + 2g2/γ̃c and an effective
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drive strength ε̃ = 2gε/γ̃c. This is essentially the FPE for
a driven, damped quantum Duffing oscillator [3] but with
parameters which are inherently complex numbers. This
simplified system does satisfy the potential conditions, which
allows us to find an expression for the steady-state moments
of the transmon (further details in Appendix B),

〈b†nbm〉

=
(

ε̃
iχ

)m(
ε̃∗

−iχ

)n
�(d)�(d∗)0F2

(
d + m,d∗ + n,2

∣∣ ε̃
χ

∣∣2)
�(d + m)�(d∗ + n)0F2

(
d,d∗,2

∣∣ ε̃
χ

∣∣2) ,

(7)

where �(x) is the gamma function, 0F2 is a generalized
hypergeometric function, and we have defined d = γ̃t /2iχ . In
addition it is possible to produce similar analytic expressions
for the Fock state distribution P (n) and the Husimi Q function
for the transmon mode, which are given in Appendix D.

B. Recovering the cavity moments

In a typical experimental setup with a qubit interacting
with the electromagnetic field of a two- or three-dimensional
superconducting cavity, the most accessible measurements that
can be performed are reflection from or transmission through
the cavity. We therefore wish to calculate the moments of the
cavity mode from those we have calculated for the transmon.
To do this we return to the relations in Eq. (5), which were
used to eliminate the cavity and use these to write the cavity
moments in terms of the transmon moments. This process is
outlined in Appendix C. The first two such relations are

〈a〉 = 2

γ̃c

(ε − g〈b〉), (8)

〈a†a〉 = 4

|γ̃c|2 (|ε|2 − gε∗〈b〉 − gε〈b〉∗ + g2〈b†b〉). (9)

The amplitude of the field emitted from the cavity is propor-
tional to 〈a〉. In addition we can plot the amplitude of the
reflected field R, normalized by the drive strength. This is
commonly measured in experiments where the cavity has only
a single port and is given by

R =
∣∣∣∣1 − γc〈a〉

ε

∣∣∣∣. (10)

As the result in Eq. (7) and therefore expressions for 〈a†man〉
are analytic, it is possible to plot values of all moments over
very large ranges of parameter space and in particular over
many orders of magnitude of drive power, allowing us to
explore regimes where the cavity is highly populated and
simulation is unfeasible.

C. Transmon spectra

A standard driven quantum Duffing oscillator with nonlin-
earity χ will display evenly spaced transmission peaks when
driven at ωr + kχ , for all positive integers k, where ωr is the
resonator frequency. In a frame rotating at the drive frequency
this will correspond to �c = kχ . We generalize this notion
to predict the location of peaks in the transmon excitation for
our combined system. Taking Eq. (6), we can work backward

to obtain an effective Hamiltonian for the transmon, after the
cavity has been eliminated,

Ht =
[
�c + �ct − 4g2�c

γ 2
c + 4�2

c

]
b†b + χ

2
b†b†bb

+ 2g

γc + 2i�c

b† + 2g

γc − 2i�c

b, (11)

where we have written �t = �c + �ct , with �ct being the
cavity-transmon detuning. In addition the effective decay
rate for the transmon is γt + 4g2γc/(γ 2

c + 4�2
c), which is

consistent with the Purcell effect of coupling to the cavity.
We predict peaks will occur at

�c + �ct − 4g2�c

γ 2
c + 4�2

c

= kχ,k ∈ Z+, (12)

which in fact holds exactly in all cases we plot. The actual
device response is strongly dependant on the drive power.
The higher order peaks require the transmon and cavity to
be more significantly excited and therefore will appear at
higher powers, but this solution does not tell us at what drive
strength they will appear. For each value of k there are three
difference solutions for �c, suggesting that, in general, the
system behaves like three different nonlinear oscillators in
three distinct regions of of the drive frequency space.

In the case that the cavity and transmon are resonant
the k = 0 solutions can be expressed simply as �c = 0, ±√

g2 − γ 2
c /4. In the strong coupling limit g � γc, this gives

rise to the well-known vacuum Rabi splitting of the cavity
resonance [5]. In Fig. 1 we show the cavity spectrum as
a function of frequency and power. In the resonant regime
we see that there is almost no transmission at the bare
cavity frequency, with two peaks separated by 2g at low
power. As the drive strength increases, each peak splits into
two, displaying the supersplitting described in Ref. [35].
Transitions between higher cavity-transmon states then also
appear at higher powers, with the nonlinearity increasing as
higher levels are occupied. At very high powers there is a
single bright peak at the bare cavity frequency as the drive
overcomes the nonlinearity of the transmon. This behavior is
predicted by the Jaynes-Cummings model and [31] and seen
in experiments [33]. Despite the fact that the eigenstates of the
system in this regime are strongly mixed between the cavity
and transmon, and the vacuum Rabi splitting is caused by
the exchange of excitations between atom and cavity, these
features of the steady-state behavior all survive the adiabatic
elimination procedure.

In the strong dispersive regime g2/�ct > γc,t , which is
generally considered more relevant for quantum information
processing, the system behaves differently depending on if it is
driven near the bare cavity of bare qubit frequencies. Near the
transmon frequency, as shown in Fig. 2, the system behaves
like a quantum Duffing oscillator with a dispersively shifted
fundamental frequency of approximately −�ct − g2/�c and
peaks separated by χ . These peaks correspond to the tran-
sitions between adjacent levels of the transmon. Near the
bare cavity frequency, the oscillator behaves as though it
possesses a different nonlinearity, which decreases the more
the transmon is populated (see Fig. 3). Again, the fundamental
frequency is dispersively shifted at approximately g2/�ct . At
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FIG. 1. Plot of |〈a〉| as a function of the detuning �c of the
drive from the bare cavity and drive amplitude ε when cavity and
qubit are resonant. Other parameters are g/2π = 115 MHz, χ/2π =
−220 MHz, γc/2π = 2 MHz, and γt/2π = 0.1 MHz. We see the
characteristic vacuum Rabi splitting, with peaks (A, B) separated by
2g at low powers and then demonstrating so-called supersplitting as
the power increases. There is extremely low transmitted amplitude at
the bare cavity frequency (C). As the power increases, higher order
transitions become present in the spectrum (D) and at sufficiently
large drive strengths the resonance shifts back to the bare cavity
frequency and there is a strong transmission peak (E).

low power, there are several resolvable transmission peaks,
which correspond to the dependence of the cavity frequency
on the occupation of the first few transmon energy levels. As
the power is increased, these peaks can no longer be resolved
and a single transmission peak forms which shifts toward the
bare cavity frequency. At high powers, the system behaves like
a linear oscillator very close to the bare cavity resonance, as is
observed experimentally [31,34,42].

The reflection spectrum of the system mirrors many of the
features of the transmission, displaying multiple distinct dips
at moderately low powers, corresponding to the position of
the cavity resonance shifting as a function of the number of
excitations in the transmon. In a future paper we will show that
at low powers our solution agrees well with both experimental
reflection data and full master equation simulations [48].
As the power increases, this become a single reflection dip
which sweeps towards the bare cavity frequency. If a nonzero
temperature environment is considered, then there will be some
excited state population even for zero drive and we expect that
these dips would appear at lower powers.

In reality the transmon possesses a cosine potential [6],
which is not well approximated by our Duffing oscillator
model for all energy levels, and we must therefore consider
this when interpreting our results. The quartic approximation
is appropriate only for those levels which are contained within
the cosine potential wells, which vary in number depending
on the ratio of the Josephson and charging energies EJ /EC

for the specific device. For typical devices this is the first

FIG. 2. Plot of |〈b〉| as a function of the detuning �c of the
drive from the bare cavity frequency and drive amplitude ε when
cavity and qubit are coupled in the strong dispersive regime.
Other parameters are �ct = 2.5 GHz, g/2π = 340 MHz, χ/2π =
−220 MHz, γc/2π = 2 MHz, and γt/2π = 0.1 MHz. Around the
bare transmon frequency, the system behaves like a quantum Duffing
oscillator with a dispersively shifted fundamental frequency (A). At
higher powers we see peaks corresponding to transitions between
higher transmon levels which are separated by χ (B). Near the bare
cavity resonance the transmission peak is dispersively shifted at low
power (C), but shifts to the bare cavity frequency at high power (D).
This region in shown in greater detail in Fig. 3.

four to eight excited states of the device [49,50]. Almost all
of the features we describe above for both the resonant and
dispersive regimes occur in the regime where we expect the
Duffing model to hold. Only at very high powers, when the
transmission peak is returning to the bare cavity frequency and
becomes very bright, do we expect higher transmon levels to
become relevant. We discuss the applicability of the Duffing
model further in Appendix E in addition to plotting 〈b†b〉 to
illustrate where we expect the model to break down.

D. Transmon bistability

Plots of the transmon Q function allow us to study addi-
tional features of the oscillator state. In particular, a bimodal
Q function is indicative of bistability in the steady state,
with switching occurring due to tunneling between the two
states [51]. In our model we see that when the system is driven
near the cavity resonance at sufficient power, a bistability
occurs simultaneously for both the cavity and transmon fields.
This is different to the Duffing-type behavior of the cavity
in the lower power regime, where it is possible to consider
the qubit as providing only a small nonlinear perturbation to
the cavity field. In Fig. 4 we show that the characteristic dip
in |〈b〉|, corresponding to the coherent cancellation of the two
steady states with opposite phases, can be seen in the transmon
field at high powers. The form of |〈b〉| as a function of �c

looks identical to the quantum Duffing oscillator [3], with the
dip shifting towards the bare cavity frequency as the power
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FIG. 3. Plots of cavity reflection R and |〈a〉| as a function
of the detuning �c of the drive from the bare cavity frequency
and drive amplitude ε when cavity and qubit are coupled in
the strong dispersive regime. Other parameters are �ct/2π =
2.5 GHz, g/2π = 340 MHz, χ/2π = −220 MHz, γc/2π = 2 MHz
and γt/2π = 0.1 MHz. At lower power, multiple dips in the reflection
(less visible peak in the transmission) are visible, corresponding to the
cavity frequency changing as a function of transmon state occupation.
The reflection dip shifts toward the cavity resonance as the power is
increased, approaching it asymptotically at very high power. The same
shift of the cavity resonance is seem in the transmission spectrum, in
agreement with recent experimental results [34].

is increased. At very high powers, when the dip has shifted
to the cavity frequency, this dip stops being present as the
whole system begins to behave linearly. At lower powers, we
see multiple peaks in the transmon occupation, corresponding
to the peaks in the cavity field seen in Fig. 3, which arise
from the dependence of the cavity frequency on the transmon
occupation. Even though the dip can no longer be seen at such
powers, the bistability still persists and can be clearly seen in
the transmon Q function.
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FIG. 4. (a) Plot of transmon field amplitude |〈b〉| as a function
of drive detuning from the bare cavity �c, plotted for various
values of the drive amplitude ε for a cavity transmon system
with parameters �ct/2π = 2.5 GHz, g/2π = 350 MHz, χ/2π =
−220 MHz, γc/2π = 2 MHz, and γt/2π = 0.1 MHz. Values of
ε/2π (from darkest to lightest) are 1, 18, 30, 40, 56, 75, and
100 MHz. (b) Q function of the transmon field with ε/2π = 30 MHz
and �c/2π = 40 MHz and (c) Q function of the transmon field
with ε/2π = 100 MHz and �c/2π = 25 MHz. These two points are
marked with black circles in panel (a). We see that, in addition to the
bifurcation of the cavity, the model predicts bistability for the qubit
when the system is driven near to the cavity resonance. At higher
powers the behavior of the system becomes very similar to that of
the standard quantum Duffing oscillator with the characteristic dip
due to coherent cancellation of the two steady states. The frequency
at which the transmon (and cavity) bifurcation occurs shifts toward
the bare cavity frequency as the power is increased, as seen in Fig. 3
for the cavity. A low power, the transmon field response splits into
several peaks, corresponding to transmission peaks of the cavity at
different transmon occupation numbers, but bistability can still be
seen in the transmon Q function.

III. THE PARAMETRICALLY DRIVEN
DUFFING OSCILLATOR

Our second system is a single Duffing oscillator which
is driven both parametrically and coherently. Parametrically
driven oscillators have been studied extensively in circuit QED
for applications including squeezing generation [52] and qubit
readout [53,54]. The parametrically driven Duffing model has
also been investigated more fundamentally, including switch-
ing rates near bifurcation points [51,55], critical exponents
of the phase transitions [56], and metastable lifetimes of the
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steady state [2]. The Hamiltonian of the system is

H2 = ωrc
†c + i(ε1e

−iωd1 t c† − ε∗
1eiωd1 t c)

+ i

2
(ε2e

−iωd2 t c†c† − ε∗
2eiωd2 t cc) + U

2
c†c†cc, (13)

where c is the annihilation operator for the resonator mode,
ωr is the resonator frequency, ε1 and ε2 encode the amplitude
and phases of the coherent and parametric drives respectively,
and U is the strength of the quartic nonlinearity of the system.
So that this system can be cast in time-independent form, we
require that ωd2 = 2ωd1 . In this case we can transform into a
rotating frame at the drive frequency with the Hamiltonian

H̃2 = �c†c + i(ε1c
† − ε∗

1c) + i

2
(ε2c

†c† − ε∗
2cc)

+ U

2
c†c†cc, (14)

where � = ωr − ωd1 is the detuning of the two drives from the
cavity frequency. Additionally, we account for single-photon
loss at rate 2γ1 and the loss of pairs of photons at rate γ2, so
that the master equation for the system is given by

ρ̇ = −i[H̃2,ρ] + L[
√

2γ1c]ρ + L[
√

γ2cc]ρ. (15)

The FPE for this system can then be easily written down using
the standard rules, producing

∂P2(α,β)

∂t
=

[
− ∂

∂α
[ε1 − κ1α + (ε2 − κ2α

2)β]

− ∂

∂β
[ε∗

1 − κ∗
1 β + (ε∗

2 − κ∗
2 β2)α]

+ 1

2

∂2

∂α2
(ε2 − κ2α

2) + 1

2

∂2

∂β2
(ε∗

2 − κ∗
2 β2)

]
×P2(α,β), (16)

where (α,β) are the phase space coordinates of the resonator
and we have defined κ1 = γ1 + i� and κ2 = γ2 + iU . The
solution to this system is of the form of that in Ref. [2], but with
the coefficient of the nonlinearity replaced by κ2, which allows
the strength of the nonlinearity to be varied independently of
the other parameters through U and additionally includes the
two-photon loss. The moments of the oscillator can be written
in terms of the hypergeometric function 2F1 and are given by

〈c†mcn〉 = Imn

I00
, (17)

with

Inm =
∞∑

j=0

2j

j !

(
−

√
ε2

κ2

)j+m(
−

√
ε∗

2

κ∗
2

)j+n

× 2F1(−j − m,A − B,2A; 2)

× 2F1(−j − n,A∗ − B∗,2A∗; 2), (18)

where we have defined two constants A = κ1/κ2 and B = −ε1/√
ε2κ2. As with the cavity-transmon system, it is also possible

to derive exact expressions for P (n) and the Q function,
which are of a similar form and are given in Appendix D.

A. Mean-field phases

In the case where ε1 = γ2 = 0, it is simple to solve a
classical mean-field equation of motion for the steady state
of this system:

∂α

∂t
= ε2α

∗ − iUα2α∗ − γ1α − i�α = 0. (19)

This system has up to three solutions for the amplitude:
α = 0 and

|α|2 =
−� ±

√
|ε2|2 − γ 2

1

U
. (20)

Solving for the phase shows that these solutions come in pairs
with opposite phases. Additionally, the stability of these fixed
points can be determined by finding the eigenvalues of the
Jacobian matrix of the system [57]. This allows us to divide the
(�,ε2) plane into three distinct phases based on the numbers
of solutions at each point in parameter space, as shown in
Fig. 5 [37,51]. Classical phases with one, two, and three stable
states exist, with the boundary between the one- and two-
solution phases appearing in the same place as the threshold of
an ideal parametric amplifier. The existence of the nonlinearity
U does not affect the structure of the classical phase diagram
but does reduce the amplitude of the steady states.

�4 �2 0 2 4
0

1

2

3

4

5

	 1

2	
1

One Stable

Two Stable, One Unstable

Three Stable,

Two Unstable

FIG. 5. Classical phase diagram of the parametrically driven
Duffing oscillator in the (�,ε2) plane based on number of fixed points.
The plane is dived into three regions by the lines ε2

2 − �2 = γ 2
1 and

ε2 = γ1, corresponding to the well-known threshold of the parametric
oscillator. The system has up to five fixed points, of which up to three
can be stable. The classical diagram is unaffected by the value of
U , which only modifies the amplitude and therefore separation of the
solutions. Figures 6 and 7 show the evolution of the steady state as the
phase space is traversed parallel to the arrow, but for larger negative
detunings.
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B. Phase transitions in the quantum system

In the full quantum system, the hard phase boundaries of
the classical system are not present, and analytical Q functions
allow us to to study how these states develop as the classical
boundary is crossed. The regime that is of particular interest is
where U � γ1, first because as U → 0, the system reverts to
the ideal degenerate parametric amplifier, but also because the
presence of the nonlinearity resists the addition of excitations
to the system. This means that the stable states of the system are
kept closer together in phase space, allowing multistabilities of
the quantum system to be more easily observed and preventing
the system from behaving classically. In Figs. 6 and 7 we
plot Q functions for increasing drive strengths with a fixed
value of U = 5γ1 and two values of the detuning � = −8γ1,

−12γ1. For the larger detuning, we see all three phases
manifest themselves. The first phase transition, from a single
stable point to three, occurs later than predicted classically due
to the nonlinearity, while the transition from three to two stable
points seems to occur earlier, as while there is a probability of
being in the α = 0 state, it is extremely small for much of the
phase.
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FIG. 6. Analytical Q-function plots for a parametrically driven
Duffing oscillator with γ1/2π = 1MHz, U = 5γ1, and � = −12γ1

driven at four different drive strengths: (a) ε2 = 2γ1, (b) ε2 = 4.25γ1,
(c) ε2 = 4.75γ1, and (d) ε2/2π = 6.25 MHz. Over this range of
drives, the resonator state crosses two classical phase boundaries
and we see the emergence of three stable points, followed by a return
to two. The addition of a significant U makes the threshold at ε2 = γ1

appear much later than when U = 0, as it is harder to add photons
to the resonator, while the second boundary seems to appear much
earlier than predicted, as there is extremely low probability of being
in the α = 0 state in much of the phase.
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FIG. 7. Analytical Q-function plots for a parametrically driven
Duffing oscillator with γ1/2π = 1MHz, U = 5γ1, and � = −8γ1

driven at four different drive strengths: (a) ε2 = 2.75γ1, (b) ε2 =
3.5γ1, (c) ε2 = 3.75γ1, and (d) ε2 = 5γ1. At a smaller detuning than
in Fig. 6, the effect of a large U is to prevent all of the stable states
from being resolved. While the system crosses two classical phase
boundaries, we see only a single transition, with the single fixed point
becoming bistable at sufficiently high driving powers.

When the drive is less detuned from the cavity frequency,
the separation of the fixed points is smaller; therefore, we only
see two distinct phases in the resonator Q functions and the
state appears to move directly from one fixed point to two,
without every clearly displaying three. When we include a
small classical drive (ε1 > 0), we see that, for both values of
the detuning, the steady state is pushed toward either of the
nonzero amplitude fixed points, depending on the phase of the
signal, with the probability of being found in the other states
reducing. Controlling this type of transition has recently been
studied by another group [58]. For a sufficiently large signal
the resonator will always be found in a coherent steady state. It
is therefore possible to use this system in the three-stable point
phase as a detector of small coherent signals, which forms the
basis for proposed period-doubling bifurcation detectors [37].

IV. GENERATION OF SQUEEZING

When driven below threshold and on resonance, in the
phase with a single steady state, the system can behave as a
degenerate parametric amplifier and produce squeezing of the
resonator state. Generation and measurement of squeezing has
been the subject of much recent research in the field of circuit
QED [59–62]. When U = 0, it is known that the maximum
squeezing that can be achieved is a factor of 2, reducing the
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fluctuations in one field quadrature to 50% of those of the
vacuum state [1]. A complete treatment of the parametric
down-conversion process that includes both modes and then
eliminates the pump mode introduces a small quartic term,
but a nonlinearity could also be introduced, for example, by
the presence of a Josephson junction or a dispersively coupled
qubit. The strong coupling that is possible in circuit QED when
compared with most systems in the optical regime means that
this nonlinear term can in principle be very large. The nonlin-
earity has the potential to limit the degree of squeezing that can
be achieved, while also shifting the threshold due to U resisting
the addition of excitation to the system, as discussed above. A
reduction in the squeezing of the internal field will also lead
to a corresponding fall in the squeezing of the emitted field.
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FIG. 8. Minimum quadrature uncertainty for a nonideal degen-
erate parametric amplifier as a function of parametric drive ε2 for
different values of the nonlinearity U (given in MHz). Dissipation
occurs at a rate γ1 = 1MHz. (a) For very small nonlinearities,
the system behaves like an ideal degenerate parametric amplifier
with a sharp threshold at ε2 = γ1, where the minimum quadrature
uncertainty goes to 1/2 of that of the vacuum, corresponding to an
uncertainty �Xmin = 0.25. As U is increased, this threshold is moved
initially slightly lower, and then to higher powers, while the maximum
squeezing that can be achieved is reduced. Past the minimum there is
a period where the steady state has bifurcated, but the uncertainty in
some direction is still less than that of the vacuum. (b) For U � γ1,
�Xmin has a fixed minimum value at around 0.36 (dashed line) and
the position of the minimum is at approximately U/3. For very large
drives the state is made up of two well-separated coherent states, each
with the same uncertainty as the vacuum.

The degree of squeezing present in the cavity field can
be characterized by the uncertainty in the field quadratures.
Specifically we use the minimum uncertainty

�Xmin = min
θ∈[0, π

2 ]

(
2〈c†c〉 + e2iθ 〈cc〉 + e−2iθ 〈c†c†〉 + 1

2

)
, (21)

where θ determines the direction in phase space that the
uncertainty is measured in. In Fig. 8, we show the minimum
quadrature uncertainty as a function of drive strength for non-
linearities that range from much smaller than the dissipation to
many times greater. While our solution for the moments is not
defined for U = 0, we can produce a plot for U = 0.001γ1,
where the nonlinearity is insignificant compared with the
dissipation, and see that the maximum squeezing is very close
to the ideal value of 0.25. We see that even a very small
nonlinearity of U = 0.02κ causes a significant increase in the
minimum uncertainty and that this damage to the squeezing
increases as U approaches γ1. Once U � γ1, however, this
trend stops. Even for very large nonlinearities, it is always
possible to achieve a small amount of squeezing. The minimum
quadrature uncertainty tends towards 0.36 and does not reduce
further as the nonlinearity strength increases.

As in the previous section, increasing U modifies where
the classical threshold of the parametric amplifier appears. This
effect can be clearly seen in Fig. 8. For each value of U there is
a minimum in �Xmin as a function of ε2. Below this minimum,
the state is an ideal Gaussian squeezed state, while above it the
state is bimodal, although it retains some degree of squeezing
in one quadrature as this bifurcation occurs. The semiclassical
treatment of this system places this threshold at ε2 = γ1, and
we see that the behavior of the quantum system as U → 0 tends
toward a sharp jump in the uncertainty as the bifurcation occurs
at this point. As U is increased, the region over which this
transition occurs is increasingly broadened, with the minimum
uncertainty still occuring just as the bifurcation begins. Note
that while plots of a particular field quadrature, such as those
in Ref. [1], show cusps in the uncertainty as this transition
occurs, �Xmin always varies smoothly. The initial effect of
introducing a small U is to lower the position of the threshold
slightly, but it then rises as the nonlinearity resists the addition
of photons to the resonator. For U � γ1 the the threshold is at
approximately ε2 = U/3.

V. STABILIZATION OF CAT STATES

Schrödinger cat states are a class of coherent-state su-
perpositions consisting of two coherent states with the same
amplitude and opposite phase. These states can now be realized
in circuit QED [63]. There is currently considerable interest in
using these states to store and process quantum information,
taking advantage of the fact that cavity lifetimes are much
longer than those of qubits [43,64,65]. Storing information in
these multiphoton states is also partially robust against the loss
of single photons, whereas losing the excitation from a qubit
will cause complete decoherence. Manipulation and readout
of these cavity states is generally achieved via coupling to a
superconducting qubit. In a strong dispersive circuit, QED, it
is common to perform an elimination of the qubit, producing
an effective model of the form of Eq. (13) with an (a†a)2

term [66], known as the cavity self-Kerr. There is interest in

043840-8



APPLICATIONS OF THE FOKKER-PLANCK EQUATION IN . . . PHYSICAL REVIEW A 94, 043840 (2016)

using networks of such nonlinear cavities to perform quantum
computation [67,68].

Recently, it has been demonstrated that driving a cav-
ity parametrically via a four-wave mixing process, while
simultaneously using this to remove pairs of photons from
the resonator (γ2 > 0), could enable stabilization of a cat
state [39]. This system has been studied using the positive
P representation [69], showing that if γ1 = 0 then all possible
superpositions of the coherent steady states are themselves
stable. If γ1 > 0, then a recent paper has shown, by comparing
analytical and master equation results, that eventually the
superposition decays into a mixture of odd and even cat
states, with single-photon loss causing switching between the
two [70]. A parity measurement can then be used to project
the state back into the correct subspace.

The presence of the Kerr nonlinearity in this system will
distort the stabilized cat and reduce the fidelity of information
storage. Even if U is small, then this effect will become
increasingly relevant as the combination of two-photon driving
and parity measurements is used to preserve the state for many
cavity lifetimes. This may lead to the need to increase the size
of the cat to prevent overlap between the two states, increasing
vulnerability to other loss mechanisms, for example, via
the qubit. A recent work showed that transient distortions
in cat-state preparation can be reduced using a two-photon
driving and a large U in the presence of only single-photon
loss [71], but the phase information is still lost in the steady
state. We investigate whether altering the ratio of one- and
two-photon loss can alleviate distortions in the steady state. As
the steady state of the system is mixed, the Wigner function
is identical the state Q function, and there are no interference
fringes, but the shape and overlap between the two coherent
states can still tell us whether cats will be stabilized with good
fidelity after the projective measurement.

In Fig. 9, we plot Q functions for the system for a constant
U and different values of γ2, with γ1 fixed and ε2 adjusted
to keep the number of photons constant at 2.2. This size
of cat is large enough that the overlap between the two
coherent states is negligible in the ideal case [65]. We see
that when the dominant source of energy loss is by single
photons, there are significant distortions to the steady state
and there is significant overlap between the two peaks, making
it impossible to store information in the state. When the two
rates are of comparable size, this overlap is already greatly
reduced, with a small bridge in the Q function between the two
stable points, suggesting a small amount of switching between
the two states. When γ1 � γ2, the states are separated and
almost completely Gaussian. These plots show that using this
specially engineered dissipation cannot only be used (along
with parity measurements) to stabilize cat states, but that
increasing its strength also reduces the distortions caused by
the cavity self-Kerr, increasing the fidelity of the stored state.
This also enables weaker pumping and smaller cats to be used
without fear of the two parts of the cat overlapping, reducing
exposure to other loss mechanisms.

VI. CONCLUSIONS

We have used and extended solutions of the FPE in the
generalized P representation to study various system that are
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FIG. 9. Q functions of nonlinear oscillator driven by a
two-photon process and with different ratios of single-photon
to two-photon loss rates. The system has U/2π = 0.1 MHz,
γ1/2π = 1 MHz, and the drive ε2 adjusted so that the average
number of photons in the mode is 2.2. The other parameters
are (a) γ1/γ2 = 20, ε2/2π = 1.15 MHz; (b) γ1/γ2 = 2, ε2/2π =
2.28 MHz; (c) γ1/γ2 = 1, ε2/2π = 3.4 MHz; and (d) γ1/γ2 = .1,
ε2/2π = 23.5 MHz. When single-photon loss is the dominant loss
mechanism, the resonator nonlinearity causes distortions of the stable
coherent states, reducing the fidelity of any stored state. Once γ2

becomes comparable to γ1, however, the distortions are reduced, with
only a small bridge between the two states. Once the two-photon
loss is much faster than the single-photon loss, the distortions are
eliminated completely.

relevant to state of the art circuit QED experiments, with the
analytical nature of the solutions allowing us to access wide
areas of parameter space and multiple different regimes. We
have shown that a two-mode cavity-transmon system can be
analyzed using the FPE following an adiabatic elimination of
the cavity and that this method produces results that agree
with other experimental and theoretical work in both the
resonant and dispersive regimes, achieving good results for
the steady state of the transmon and cavity even when there is
strong hybridization between the two systems. By returning
to a known solution of the parametrically driven Duffing
oscillator, we have studied the nature of the steady states of the
system near classical phase boundaries by deriving analytical
Q functions. We also investigated the applications of this
solution to the problems of generating squeezing in a nonideal
parametric amplifier and increasing the fidelity of Schrödinger
cat state stabilization. We believe that this demonstrates the
potential benefits of revisiting these analytical methods as new
circuit technology allows us to explore different parameter
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regimes, even as systems become more complex and include
multiple oscillators.
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APPENDIX A: ADIABATIC ELIMINATION
OF THE CAVITY

A Fokker-Planck equation of the form

∂P (x)

∂t
=

[
− ∂

∂xj

Ai + 1

2

∂

∂xi

∂

∂xj

Dij

]
P (x), (A1)

where Ai is known as the drift vector and Dij is the diffusion
matrix, can be written equivalently as a quantum Langevin
equation, provided that the diffusion matrix can be written as
D = BBT for some matrix Bij , given by

dxi

dt
= Ai + Bijηηη(t), (A2)

where ηηη(t) is a vector of zero-mean, δ-correlated stochastic
processes representing noise acting on the phase space
coordinates. As in our system, the cavity has no diffusive
processes acting directly on it, so the Langevin equation for
this subsystem is

∂

∂t

(
α1

β1

)
=

(−i�cα1 + ε − gα2 − γc

2 α1

i�cβ1 + ε∗ − gβ2 − γc

2 β1

)
. (A3)

In the limit that the cavity is much faster than the qubit
(γc � γt ) we can then assume that the cavity state relaxes
extremely quickly in response to changes in the qubit field and
is therefore in a steady state. By setting the equation equal to
0, we can obtain expressions for the variables of the first cavity
in terms of those of the second:

α1 = 2

γ̃c

(ε − gα2), β1 = 2

γ̃ ∗
c

(ε∗ − gβ2). (A4)

We can use these expressions to eliminate the first mode from
the system completely, by substituting them back into the FPE.

APPENDIX B: SOLVING THE FPE

The FPE we wish to solve, after the cavity has been
eliminated, is simply that for a driven, damped quantum
Duffing oscillator with the parameters replaced by functions
of the original system parameters. The solution is very similar
to that given in Ref. [4], which we follow, but the elimination
means that all of the parameters are complex and some of the
simplifying assumptions are not possible. The system satisfies
the potential conditions ∂Fi/∂xj = ∂Fj/∂xi , where

Fi ≡ 2D−1
ij

(
Ak − 1

2

∂Djk

∂xk

)
, (B1)

and it is therefore possible to find the steady state of the system.
In this case there are only two terms to calculate,

F1 = 2

iχ

(
iχβ2 + γ̃t − 2iχ

2α2
− ε̃

α2
2

)
, (B2)

F2 = − 2

iχ

(
− iχα2 + γ̃ ∗

t + 2iχ

2β2
− ε̃∗

β2
2

)
, (B3)

and the cross derivatives are indeed equal. The steady-state P
function is then obtained by integrating

P1(ααα) = N exp

[ ∫
1

iχ

(
iχβ2 + γ̃t − 2iχ

2α2
− ε̃

α2
2

)
dα2

−
∫

1

iχ

(
− iχα2 + γ̃ ∗

t + 2iχ

2β2
− ε̃∗

β2
2

)
dβ2

]

= N exp

[
α2β2 +

(
γ̃t

2iχ
− 2

)
ln α2

+ ε̃

iχα2
+ α2β2 +

(
γ̃ ∗

t

−2iχ
− 2

)
ln β2 + ε̃∗

−iχβ2

]

= Nαd−2
2 βd∗−2

2 exp

[
ε̃

iχ

1

α2
+ ε̃∗

−iχ

1

β2
+ 2α2β2

]
,

(B4)

where we have defined d = γ̃t /(2iχ ) and N is some normal-
ization constant. In order to find N , we integrate P (ααα) again,
making use of the substitution x = 1/α2,y = 1/β2 and Taylor
expanding the second term of the exponential to give

1

N =
∫ ∞∑

n=0

2n

n!
x−d−ny−d∗−n exp

[
ε̃

iχ
x + ε̃∗

−iχ
y

]
dxdy.

(B5)

These integrals are related to the gamma function by the
identity

2πi
tn+d−1

�(d + n)
=

∫
C

x−n−dextdx, (B6)

which implies that

1

N = −
∞∑

n=0

2n

n!

(
ε̃

iχ

)d+n−1(
ε̃∗

−iχ

)d∗+n−1 4π2

|�(d + n)|2 ,

(B7)

where we have also used the fact that (xy)∗ = x∗y∗
. Finally

we note that the infinite sum is of the same form as the
definition of the hypergeometric function 0F2(a,b; x) and that
the normalization can be written

1

N = −4π2

(
ε̃

iχ

)d−1(
ε̃∗

−iχ

)d∗−1 F
(
d,d∗,2

∣∣ ε̃
χ

∣∣2)
�(d)�(d∗)

. (B8)

The moments of the transmon field in the generalized P

representation are defined as

〈b†nbm〉 =
∫ ∫

αm
2 βn

2 P1(α2,β2)dα2dβ2 (B9)

and are of the same form as the normalization integral but
with d → d + m,d∗ → d∗ + n. We therefore have the final
expression for the moments

〈b†nbm〉 =
(

ε̃

iχ

)m(
ε̃∗

−iχ

)n

×
�(d)�(d∗)F

(
d + m,d∗ + n,2

∣∣ ε̃
χ

∣∣2)
�(d + m)�(d∗ + n)F

(
d,d∗,2

∣∣ ε̃
χ

∣∣2) . (B10)
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APPENDIX C: CAVITY MOMENTS

The moments of the cavity field in the generalized P

representation are given by

〈a†nam〉 =
∫

αm
1 βn

1 P (ααα)dααα. (C1)

If we instead substitute in the relations given in Eq. (5), then
we obtain a different expression for the moments

〈a†nam〉 =
(

2

γ̃c

)m(
2

γ̃ ∗
c

)n

×
∫

(ε − gα2)m(ε∗ − gβ2)nP (ααα)dααα. (C2)

This can be expanded out for any value of m and n and written
in terms of moments of the transmon subsystem. For example,
〈a〉(m = 1,n = 0) is given by

〈a〉 = 2

γ̃c

∫
(ε − gα2)P (ααα)dααα

= 2

γ̃c

[
ε

∫
P (ααα)dααα − g

∫
α2P (ααα)dααα

]

= 2

γ̃c

(ε − g〈b〉), (C3)

where we have used the fact that the P function is normalized
over phase space.

APPENDIX D: TRANSMON P(n) AND Q FUNCTIONS

The photon number distribution of the transmon can be
written in the generalized P representation as [72]

P (n) = 1

n!

∫∫
αn

2βn
2 e−α2β2P (α2,β2)dα2dβ2. (D1)

This integral is the same as that for the moments, up to the
coefficients in the Taylor expansion and with m = n, so the
number distributions is given by

P (n) =
∣∣∣∣ ε̃

χ

∣∣∣∣
2n �(d)�(d∗)F

(
d + n,d∗ + n,

∣∣ ε̃
χ

∣∣2)
�(d + n)�(d∗ + n)F

(
d,d∗,2

∣∣ ε̃
χ

∣∣2) . (D2)

The Q function is defined by performing the trace of the
density matrix over a basis of coherent states

Q(α) = 1

π
〈α|ρ|α〉. (D3)

In the generalized P representation, this can be written as

Q(α) = e−αβ

∫∫ ∞∑
k,l=0

(−1)k+l

k!l!
αkβlα′kβ ′le−α′β ′

×P (α′,β ′)dα′dβ ′. (D4)

Again, this is just an infinite sum of the type of integrals done
to calculate the moments of the field, and the Q function can

be written as

Q(x,y) = e−x2−y2
∞∑

k,l=0

(−1)k+l

k!l!

(
x + iy√

2

)k

×
(

x − iy√
2

)l(
ε̃

iχ

)k(
ε̃∗

−iχ

)l

�(d)�(d∗)F
(
d + k,d∗ + l,

∣∣ ε̃
χ

∣∣2)
�(d + k)�(d∗ + l)F

(
d,d∗,2

∣∣ ε̃
χ

∣∣2) , (D5)

where, for the purposes of plotting the functions, we have
written α = x + iy.

APPENDIX E: VALIDITY OF THE DUFFING MODEL

As discussed in Sec. II C, we do not expect the Duffing
model of the transmon that we use to hold for all levels of the
transmon, as the higher order terms in the expansion of the
cosine potential will begin to contribute significantly at high
energies. If we reach a steady state of the driven dissipative
system, however, where 〈b†b〉 is kept low, then these levels
remain unpopulated and the accuracy of the steady state is
expected to be high. Therefore, in Fig. 10, we plot the number
of excitations in the transmon mode for the same parameters
as in Figs. 1 and 2. We see that, even while there are tens or
hundreds of photons in the cavity, there are very few excitations
in the transmon mode across the majority of the parameter
space. As the fundamental frequency of the transmon is
given by ωt = √

8EJ EC [6], a good estimate of how many
excited states will fit within the cosine potential, and therefore
which levels are well approximated by the Duffing model,
is EJ /ωt = √

EJ /8EC . The model therefore improves as
EJ /EC is increased. In our system with Ec = |χ | = 220 MHz
and, taking ωr = 9.2 GHz, we expect the first five excited
states to be contained within the cosine potential.
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FIG. 10. Plots of the number of excitations in the transmon field
〈b†b〉 as a function of the detuning of the drive from the bare cavity
�c and drive amplitude ε in (a) the resonant regime and (b) the
dispersive regime. The system parameters are the same as in Figs. 1
and 2. Contours mark boundaries with one, three, and five excitations.
There are fewer than three excitations over most of the parameter
space, suggesting that the Duffing approximation of the transmon
holds in these regions. Only the very bright peaks where the cavity
frequency has almost returned to the bare cavity frequency do we see
the number of excitations increase above five, suggesting that further
terms in the cosine potential are required to describe these regions.
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In the resonant regime almost all of the features in
Fig. 1, including the supersplitting of the Rabi peaks and the
movement of the transmission peak back toward the bare cavity
resonance as the number of excitations increases, occur with
〈b†b〉 < 3. Only when the peak has returned to within 10 MHz
does the average number of excitations increase above three
and excited states above the fifth begin to become significantly
populated. As the power is increased further and the cavity
peak becomes very bright, the average number increases
greatly and the model breaks down, requiring further terms
from the potential.

In the dispersive case (as shown in Figs. 2 and 3), the peaks
associated with the bare transmon transitions, along with the
cavity peaks associated with the higher transmon levels, occur
at low transmon occupation. The transmon bistability of Fig. 4
is also found in the region of parameter space where we expect
the model to hold. The cavity resonance has shifted halfway
back to the bare cavity frequency before the higher transmon
levels become significantly populated. At even higher powers
near this bright cavity transmission peak, higher order terms
from the cosine potential should be added to the model, but the
behavior of the system still qualitatively matches experimental
results from these devices.

APPENDIX F: PARAMETRICALLY DRIVEN DUFFING
P(n) AND Q FUNCTIONS

In a very similar fashion to the cavity-transmon sys-
tem above, we can also obtain an expression for the

Fock state distribution of the parametrically driven Duffing
oscillator

P (n) = 1

I00

∞∑
j=0

1

n!j !

∣∣∣∣ ε2

κ2

∣∣∣∣
j+n

|2F1(−j − n,A − B,2A; 2)|2,

(F1)

where the normalization is as defined in Eq. (18):

I00 =
∞∑

j=0

2j

j !

∣∣∣∣ ε2

κ2

∣∣∣∣
j

|2F1(−j,A − B,2A; 2)|2. (F2)

An analytical expression for the Q function can also be
written for this system and is given by

Q(x,y) = e− x2+y2

2
1

I00

∞∑
j,k,l=0

(−1)k+l

k!l!

(
x + iy√

2

)k

×
(

x − iy√
2

)l(
−

√
ε2

κ2

)j+k(
−

√
ε∗

2

κ∗
2

)j+l

× 2F1(−j − k,A − B,2A; 2)

× 2F1(−j − l,A∗ − B∗,2A∗; 2). (F3)
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