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Bound states and entanglement generation in waveguide quantum electrodynamics
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We investigate the behavior of two quantum emitters (two-level atoms) embedded in a linear waveguide,
in a quasi-one-dimensional configuration. Since the atoms can emit, absorb, and reflect radiation, the pair can
spontaneously relax towards an entangled bound state, under conditions in which a single atom would instead
decay. Exploiting the resolvent formalism, we analyze the properties of these bound states, which occur for
resonant values of the interatomic distance, and discuss their relevance with respect to entanglement generation.
The stability of such states close to the resonance is studied, as well as the properties of nonresonant bound states,
whose energy is below the threshold for photon propagation.
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I. INTRODUCTION

An excited atom in free space unavoidably decays towards
its ground state through spontaneous emission. Boundary
conditions and artificial dimensional reduction can drastically
modify the picture, providing situations in which the decay is
enhanced, inhibited or even completely hindered [1–9]. While
confinement in optical cavities has long been a common way
to study the effects of geometry [10–12], one-dimensional
systems have recently emerged as another promising stage
for the observation of interesting quantum electrodynamics
(QED) phenomena. Nowadays a variety of quantum emitters
(atoms for brevity) can be coupled to quasi-one-dimensional
fields such as waveguides, optical fibers, and microwave
transmission lines [13–19]. Alternatively, the effective reduc-
tion to one dimension can be obtained by tightly focusing
photons [20–22]. These impressive experimental advances
have opened the way to unexplored nonperturbative regimes
of QED, and have motivated work on the interaction between
atoms and waveguides in different geometries [23–30].

In this context, an interesting problem is the study of
atoms in semi-infinite linear waveguides, where one end of
the guide behaves as a perfect mirror [31–33]. For selected
values of the atom-mirror distance a nontrivial bound state
exists, in which the probability of atomic excitation is finite,
even when photons emitted through spontaneous decay can
propagate in the guide [34,35]. The optical path between the
atom and the mirror is crucial for the existence of this kind of
resonance. It is worth noting that even a single atom exhibits a
mirrorlike behavior in one dimension [21,22,36–39]. One may
thus consider the interaction of two atoms, mediated by the
exchange of photons propagating in one dimension, and exploit
the dual behavior of each atom as both an emitter and a mirror.
Such interaction can give rise to stable configurations in which
the atoms display significant entanglement, while the field is
confined between the atoms and does not propagate [39–41].
Besides the fundamental interest of few-body QED in quasi-
1D geometries, where non-Markovian effects easily come into
play [42], such a system is thus interesting from the point
of view of generating entanglement, an important resource
in quantum information, by relaxation. Indeed, if a bound

state exists in which the two atoms are entangled, an initially
factorized atomic state can spontaneously relax towards a
state with finite entanglement. Relaxation occurs after an
initial transient in which photon exchange builds up quantum
correlations. Differently from other methods of entanglement
generation in waveguide QED [43], this process would not
require a continuous pumping of energy into the system, and
would ideally provide a constant entanglement in time after
the initial transient.

In this paper we show how the properties of bound
and quasibound entangled states in waveguide QED can
be studied in great depth and generality by exploiting the
resolvent formalism [44,45]. Studying the resolvent, one
notices the presence of a number of poles in the so-called
complex-energy plane. Each pole can be associated with a
(generally unstable) state, and the imaginary part of a pole is
proportional to the inverse lifetime of the state. This allows us
to immediately identify a favorable situation for entanglement
generation by relaxation: We need one of these poles to
be a long-lived entangled state (i.e., the pole must have a
negligible imaginary part), while the remaining poles must
be fast-decaying states. Under such conditions, a separable
atomic state would quickly relax onto an entangled metastable
state. While the metastable state will eventually decay due to
losses and imperfections, our analysis allows one to clearly
identify the relevant time scales of the problem. Thus, we
can give a clear indication of what degree of losses and
imperfections a given system is able to tolerate while still al-
lowing the generation of long-lived entanglement. Importantly,
our formalism automatically takes into account a number of
physical effects that are often neglected: These include non-
Markovian effects, time delay (due to the finite propagation
speed of photons), and threshold effects (due to the presence
of either high- or low- frequency cutoffs in the dispersion
relation). Even though, for definiteness, we focus for the
most part on the dispersion relation typical of rectangular
waveguides, we will also outline how a wide class of physically
relevant dispersion relations can be tackled within the same
framework.

Our paper is organized as follows. In Sec. II we introduce
the Hamiltonian of our model, and illustrate how a suitable
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choice of the interatomic distance gives rise to entangled bound
states above the frequency threshold for photon propagation.
Section III is devoted to the study of poles in the complex-
energy plane, which allows us to extract crucial information
relevant to the entanglement-by-relaxation protocol. In Sec. IV
we extend our analysis to off-resonant bound states, whose
energy is below the low-frequency cutoff of the waveguide.
We outline in Sec. V how our study can be generalized in a
straightforward manner to any dispersion relation that satisfies
appropriate conditions. Finally, we draw our conclusions in
Sec. VI.

II. THE MODEL

We describe the dynamics of two two-level atoms A and B,
situated in an infinite waveguide of rectangular cross section,
with sides Ly < Lz; see Fig. 1. When longitudinal propagation
occurs with long wavelength compared to the transverse size,
interaction between atoms and field can be reduced to a
coupling with the lowest-cutoff-energy TE1,0 mode, in which
the electric field vibrates along the z direction and has a
sine modulation in the y direction [46]. In this situation, the
electromagnetic field is effectively scalar and massive. The
interacting atoms and photons are described, in dipolar and
rotating wave approximations, by the Hamiltonian,

H = H0 + λV

= ω0(|eA〉〈eA| + |eB〉〈eB |) +
∫

dk ω(k)b†(k)b(k)

+ λ

∫
dk

ω(k)1/2
[|eA〉〈gA|b(k) + |gA〉〈eA|b†(k)

+ |eB〉〈gB |b(k)eikd + |gB〉〈eB |b†(k)e−ikd ], (1)

where ω0 is the bare energy separation between the atomic
ground |g〉 and first-excited states |e〉, λ is the coupling
constant (see Appendix B), d is the A-B distance, ω(k) is the
photon dispersion relation, and b(k) (b†(k)) is the annihilation
(creation) field operator, satisfying the canonical commutation
relation [b(k),b†(k′)] = δ(k − k′). Henceforth, we will focus

FIG. 1. Two two-level atoms are placed at relative distance d in
a one-dimensional waveguide, with propagation direction along the
x axis. Both atoms possess the same internal structure (for brevity
we only sketch the levels of emitter A) and interact through the
mediation of waveguide photons. The waveguide is characterized by
its one-dimensional photon dispersion relation ω(k), with k being the
photon momentum. We first focus on the TE1,0 mode of an infinite
waveguide of rectangular cross section, and then generalize to a wide
class of one-dimensional dispersion relations in Sec. V.

on the dispersion ω(k) = √
k2 + M2 of the TE1,0 mode in the

waveguide, characterized by a mass M ∝ L−1
y . However, as

discussed in Sec. V, our approach is applicable to a wide class
of one-dimensional dispersion relations. The effective mass M

provides a natural cutoff to the coupling. The Hamiltonian (1)
commutes with the excitation number,

N = Nat +
∫

dk b†(k)b(k), (2)

where Nat = |eA〉〈eA| + |eB〉〈eB | is the atomic excitation
number. The N = 0 sector is one-dimensional and is spanned
by the bare ground state |gA,gB ; vac〉. We shall focus instead
on the dynamics in the N = 1 sector, where the states read

|ψ〉 = (cA|eA,gB〉 + cB |gA,eB〉) ⊗ |vac〉 + |gA,gB〉 ⊗ |ϕ〉,
(3)

where |ϕ〉 := ∫
dk ϕ(k)b†(k)|vac〉 is a one-photon state, and

|cA|2 + |cB |2 + ∫
dk|ϕ(k)|2 = 1.

In the small-coupling regime, an isolated excited atom
with ω0 � M would decay to the ground state. We shall
demonstrate that, when two atoms are considered, a resonance
effect emerges, yielding a bound state. Using the expansion (3)
the eigenvalue equation, H |ψ〉 = E|ψ〉, reads

EcA = ω0cA + λ

∫
dk

ϕ(k)

ω(k)1/2
, (4)

EcB = ω0cB + λ

∫
dk

ϕ(k)eikd

ω(k)1/2
, (5)

ϕ(k) = λ

ω(k)1/2

cA + cBe−ikd

E − ω(k)
. (6)

The field amplitude ϕ(k) has two simple poles at k = ±k̄ =
±√

E2 − M2. Thus, when E > M , the integrals in (4) and (5)
are finite only if cA + cBe±ik̄d = 0, yielding k̄d = nπ for
positive integers n. This implies that a bound state can
exist only for discrete values of the interatomic distance d.
Moreover, in the first component of such an eigenstate (3),
the atoms are in a maximally entangled (singlet or triplet)
state, namely cA = (−1)n+1cB . To determine the distances at
which the bound state exists, let us first compute the energy
eigenvalue, which after the resonance condition is the solution
of

E = ω0 + λ2
∫

dk
1 − (−1)ne−ikd

ω(k)(E − ω(k))

= ω0 + 2λ2

M

[
1 + O

(
E − M

M

)
+ O

(
e−Md

√
Md

)]
. (7)

Corrections in the second line are negligible if |ω0 − M| � M .
This will result as a special case of the ensuing analysis of the
complex poles of the resolvent. [See Eq. (28) and following
ones.] Thus for large M , a bound state with E > M is present
only if the distance d takes one of the discrete and equally
spaced values,

dn = nπ

k̄
, with k̄ :=

√(
ω0 + 2λ2

M

)2

− M2, (8)
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and if the wave number k̄ is real (ω0 > M − 2λ2/M). The
properties of states with E < M , to which an imaginary wave
number can be associated, will be discussed in Sec. IV.

To complete the characterization of the bound state, we
shall analyze the atomic populations and the field energy
density. The former can be immediately obtained using the
normalization condition on the states (3) as

1 = 2
∣∣c(n)

A

∣∣2
(

1 + λ2
∫

dk
1 − (−1)n cos(kdn)

ω(k)(E − ω(k))2

)
. (9)

Where we use the short hands c
(n)
A ,c

(n)
B to indicate the

coefficients of the bound state with d = dn. Retaining only
the highest order in M and defining pn := |c(n)

A |2 + |c(n)
B |2 as

the probability associated with the Nat = 1 sector, one gets

pn 	
(

1 + nπ
2πλ2M

k̄3

)−1

. (10)

Notice that, despite being apparently of order λ2, the correction
to unity is given by the ratio between powers of two small
quantities, namely the effective coupling constant λ/M , and
the wave numbers ratio k̄/M . The resulting number can
be of order one, even at small coupling constants. Observe
that the probability vanishes like k̄3/n at very small k̄: This
behavior is physically motivated by the fact that, as the energy
approaches the cutoff, the distance between the atoms must
increase to infinity in all bound states. Let us finally analyze
the energy density of the electromagnetic fields. Neglecting
the exponentially suppressed contribution of the square-root
cuts, the energy density turns out to be related to the Fourier
transform of the photon amplitude,

ϕ̃n(x) =
∫

dk

2π
ϕn(k)eikx

	 λc
(n)
A 2M√
2πE

∫
dk

1 − (−1)ne−ikdn

k̄2 − k2
eikx, (11)

as

En(x) 	 E|ϕ̃n(x)|2 	
(

2
√

πλM

k̄

)2

pn sin(k̄x)2, (12)

for x ∈ [0,dn], and En(x) 	 0 outside. Thus, the field is con-
fined between the two atoms, and modulated with periodicity
π/k̄, with nodes at the positions of the atoms which act as
mirrors. This explains the occurrence of such bound states for
discrete values (8) of the interatomic distance.

Moreover, the structure of the bound state is

|ψn〉 = √
pn|�s〉 ⊗ |vac〉 + |gA,gB〉 ⊗ |ϕn〉, (13)

where s = (−1)n+1 and |�±〉 = (|eA,gB〉 ± |gA,eB〉)/√2 are
(maximally entangled) Bell states. This is a key feature which
enables entanglement generation by atom-photon interaction.
Indeed, suppose that d = dn: a factorized initial state, say
|ψ(0)〉 = |eA,gB〉 ⊗ |vac〉, can be expanded into a “stable”
and a “decaying” part as

|eA,gB ; vac〉 =
√

pn

2
|ψn〉 +

√
1 − pn

2
|ψ⊥

n 〉, (14)

with 〈ψ⊥
n |ψn〉 = 0. After a transient of the order of |ψ⊥

n 〉’s
lifetime (see discussion in the following), the atomic density

FIG. 2. Behavior of the concurrence C = p2
n/2 of the asymptotic

states ρat(∞) as a function of the atomic excitation energy, for λ =
10−2M and a factorized initial state. The solid (blue) line, dashed
(red) line, and dotted (black) line are referred to the resonant states
with n = 1,2,3, respectively.

matrix ρat(t) := Trfield|ψ(t)〉〈ψ(t)| approaches

ρat(∞) = p2
n

2
|�s〉〈�s | +

(
1 − p2

n

2

)
|gA,gB〉〈gA,gB |, (15)

in which the atoms have a finite probability, determined
by (10), to be maximally entangled. In Fig. 2 we display the
atomic entanglement in the asymptotic state, as measured by
the concurrence [47]. However, one could also measure the
photon state and obtain, with a finite probability, a maximally
entangled atomic state. The strategy is therefore the following:
One prepares a factorized state, and measures whether a photon
is emitted. If (after a few lifetimes) no photon has been
observed, the atomic state is projected over the maximally
entangled Bell state |�s〉. This can be achieved with higher
probabilities for larger values of ω0. In realistic scenarios this
simplified picture is challenged by the presence of losses, such
that it is no longer possible to prepare an exact Bell state.
Nevertheless, if losses occur on sufficiently long time scales
(as compared to the decay rate of the fast pole—see Sec. III
below), and provided the detector efficiency is high enough, it
remains possible to achieve high fidelity with a Bell state.

III. TIME EVOLUTION AND BOUND STATE STABILITY

Let us now study the general evolution of an initial state
in the atomic sector Nat = 1. We will use the resolvent
formalism [44,45] to illustrate that the system relaxes towards
the bound state, and to quantify the robustness of the bound
state against small variations in the model parameters (such
as the A-B distance). We remark that the usefulness of the
resolvent formalism goes beyond the analysis of stable states,
in that it provides crucial information on the relevant time
scales of the problem. Indeed, the entanglement-by-relaxation
protocol described in the previous section relies on the fast
decay of the unstable Bell state. The analysis of the resolvent
enables one to determine the lifetime of this unstable state,
which must be much shorter than the typical time scales of
waveguide or atomic losses, as well as the inevitably finite
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lifetime of the bound state (due, for example, to imperfect
control of the A-B distance). Whenever these conditions are
met, the effectiveness of the protocol is guaranteed and a
long-lived entangled state may be prepared by relaxation.

The resolvent G(z) = (z − H )−1, with z the complex
energy variable, has singularities only on the real axis (on the
first Riemann sheet) and the study of additional singularities
(on the other Riemann sheets) yields crucial information about
the dynamical stability of the system: In particular, a pole with
a nonvanishing imaginary component signals a decay process.
The resolvent approach yields results that are consistent with
those obtained from the analysis of the Laplace transform of
the time evolution [41].

For λ = 0, the free resolvent G0(z) = (z − H0)−1 has a pole
on the real axis, at z = ω0, corresponding to the excited states
of atoms A or B. When interaction is turned on, this singularity
splits into two simple poles, which generally migrate into the
second Riemann sheet. We shall see from a nonperturbative
analysis that, under resonance conditions, one of the poles falls
on the real axis (and is therefore very long lived), while the
other one has a very short lifetime. Let G(z) and G0(z) be
the restrictions to the Nat = 1 sector of the interacting and free
resolvent, respectively. In the basis {|eA,gB〉,|gA,eB〉} one gets

G0(z) = 1

z − ω0

(
1 0
0 1

)
, (16)

and

G(z) = [G0(z)−1 − λ2
(z)]−1 = [z − ω0 − λ2
(z)]−1,

(17)

where


(z) =
(


AA(z) 
AB(z)

BA(z) 
BB(z)

)
(18)

is called self-energy.
The resolvent G(z) is analytic in the whole complex energy

plane, except at points on the real axis that belong to the
spectrum of the Hamiltonian H . In particular it exhibits simple
poles at the eigenvalues of H and cuts along its continuous
spectrum [44,45]. However, it can happen that some complex
poles show up on the second Riemann sheet, through the
analytic continuation of the resolvent GII(z) from the upper
half-plane to the lower half-plane under the cut [45,48]. These
poles physically correspond to unstable states with energy and
decay rates given by their real and imaginary part, respectively.

The particular form of the interaction Hamiltonian V in (1)
enables one to exactly evaluate the self energy:


AA(z) = 
BB(z) =
∫

dk
1

ω(k)(z − ω(k))
, (19)


AB(z) = 
BA(z) =
∫

dk
cos(kd)

ω(k)(z − ω(k))
. (20)

Due to the bare energy degeneracy and the symmetric structure
of the self-energy, the propagator can be diagonalized as

G(z) = |�+〉〈�+|
z − ω0 − λ2
+(z)

+ |�−〉〈�−|
z − ω0 − λ2
−(z)

, (21)

where


s(z) = 2
∫ ∞

M

dω
κs(ω)

z − ω
, s = ±1, (22)

with spectral densities,

κ±(E) = 1 ± cos(
√

E2 − M2d)√
E2 − M2

θ (E − M), (23)

with θ the Heaviside step function. The self-energy functions

±(z) are analytic in the cut complex energy plane C \
[M,+∞) and have a purely imaginary discontinuity across
the cut proportional to the spectral density:


s(E − i0+) − 
s(E + i0+) = 2πiκs(E). (24)

During the continuation process into the second Riemann
sheet through the cut, the self-energy (22) will thus get an
additional term,


s(z) −→ 
II
s (z) = 
s(z) − 2πiκs(z), z ∈ C. (25)

Note that the new term has in general a nonvanishing imaginary
part and is the analytical continuation of the discontinuity of
the self-energy function across the cut. Now, a pole,

zp = Ep − iγp/2, (26)

of G(z) on the second sheet must satisfy the equation,

zp = ω0 + λ2
II
s (zp), (27)

for s = +1 or s = −1, where 
II
s (z) is the branch (25) of the

self-energy in the second sheet. By plugging (25) and (23)
into (27) we get

zp = ω0 + λ2

⎛⎝
±(zp)−4πi
1 ± cos

(√
z2

p − M2d
)

√
z2

p − M2

⎞⎠. (28)

It is evident from (28) how the energetic degeneracy at λ = 0
is lifted by interactions. Notice the presence of an imaginary
component, detecting decay.

The last ingredient we need in order to get a closed
expression for the complex energy poles is the evaluation of

s(z) in (28). Thus, let us rewrite (22) as an integral over k:


±(z) =
∫ +∞

−∞

dk√
k2 + M2

1 ± eikd

z − √
k2 + M2

. (29)

The integrand function can be analytically continued to the
complex k plane using the principal determination of the
square root, which has nonnegative real part for all values
of its argument, and is characterized by a branch cut for
k2 + M2 < 0, that is,

k = ±iχ, with χ ∈ (M,∞). (30)

Two first-order poles, symmetric with respect to the origin of
the k plane, are also present whenever Re(z) > 0:

k = ±k0(z) = ±
√

z2 − M2. (31)

By deforming the integration contours as in Fig. 3 and
applying Jordan’s theorem, 
s is split in two terms,


s(z) = 
cut
s (z) + 
pole

s (z), (32)
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FIG. 3. Integration contours (red) in the complex k plane for the
computation of the integral in Eq. (22) with Im(z) > 0 (upper panel)
and Im(z) < 0 (lower panel).

coming from the upper branch cut and from one of the two
poles (see Fig. 3). Specifically, when Im(z) > 0, the pole
k0(z) lies in the upper half plane, and the integral involves
the residue,



pole
± (z) = 2πi lim

k→k0(z)

(k − k0(z))(1 ± eikd )√
k2 + M2(z − √

k2 + M2)

= −2π i
1 ± ei

√
z2−M2d

√
z2 − M2

. (33)

Instead, when Im(z) < 0, the deformed contour in the upper
plane encircles −k0(z), where the residue yields



pole
± (z) = 2πi lim

k→−k0(z)

(k + k0(z))(1 ± eikd )√
k2 + M2(z − √

k2 + M2)

= 2πi
1 ± e−i

√
z2−M2d

√
z2 − M2

. (34)

Finally, the integrals along the cut read


cut
± (z) = 2z

∫ ∞

M

dχ
1 ± e−χd√

χ2 − M2(z2 + χ2 − M2)

= 2√
z2 − M2

Log

(
z + √

z2 − M2

M

)
± O(e−Md ),

(35)

where the contribution from e−χd , that is not amenable to
an explicit closed form in terms of simple functions, is
nevertheless suppressed like e−Md and can be neglected for
large values of Md.

FIG. 4. Trajectories of the poles E(+)
p − iγ (+)

p /2 (dashed blue
line) and E(−)

p − iγ (−)
p /2 (solid red line) on the second Riemann

sheet of the complex energy plane, for Md = 15 and λ = 10−2M ,
with varying 0.95 � ω0/M � 1.35. The trajectories are tangent to the
real axis [they touch it whenever condition (8) is satisfied], showing
that the approximate bound states are robust against variation of ω0.
Notice that the behavior of both poles becomes nonperturbative in λ

as ω0 ∼ M .

We are now able to recognize the real resonant poles
discussed in the first part of the paper as special solutions of
Eq. (28). Indeed, assuming that the complex energy pole (26) is
far from the branching point z = M and that its imaginary part
is almost vanishing, one can decouple the real and imaginary
parts of (28) and obtain from Eqs. (32)–(35),

Ep 	 ω0 + 2λ2

kp
Log

(
Ep + kp

M

)
± 2πλ2 sin(kpd)

kp
, (36)

γp 	 4πλ2 1 ± cos(kpd)

kp
, (37)

where kp =
√

E2
p − M2 . Hence, we find that the poles in the

second Riemann sheet have a cyclic behavior with respect to d.
This result is in agreement with the one obtained in Ref. [40] in
the Markovian approximation. In particular, when d = dn, as
defined in Eq. (8), the real part of the pole equations is solved
by Ep = √

k̄2 + M2. In this case, one of the poles corresponds
to the entangled bound state, and has a vanishing imaginary
part, while the other signals an unstable state with an associated
decay rate,

γ (u)
p = 8πλ2/k̄. (38)

Even if, strictly speaking, bound states only occur for discrete
values of d, it can be readily checked that while the energy
shift is linear, the decay rate of the stable pole is quadratic for
d → dn

γ (s)
p 	 2πλ2k̄(d − dn)2, (39)

implying that the state |ψn〉 remains very long lived close to
resonance. Equation (39) quantifies the robustness of the bound
states against variations of the parameter d. Note how Eqs. (38)
and (39) provide essential information on the feasibility and
effectiveness of the entanglement generation protocol: first, it
is necessary that the condition γ (s)

p � γ (u)
p is satisfied, which
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is equivalent to the condition k̄2(d − dn)2 � 1. Second, γ (u)
p

must be much larger than any decay rate associated with loss
processes (e.g., waveguide losses). Even though approximate
analytical expressions such as Eqs. (38) and (39) are extremely
valuable, we emphasize that our methodology is capable of
capturing the exact behavior of the poles against variations
in the model parameters. To illustrate this, in Fig. 4 we
show the trajectories of the poles (26) in the complex energy
plane, obtained by fixing M and d and varying the bare
excitation energy ω0. On the one hand, we are thus able to
assess quantitatively the robustness of bound states against
variations in ω0. On the other hand, Fig. 4 demonstrates how
our methodology allows one to interpolate seamlessly between
perturbative and nonperturbative regimes.

IV. OFF-RESONANT BOUND STATES

Let us briefly discuss the behavior of bound states with
E < M . In this case, the atoms are not expected to decay.
Nonetheless, they interact by coupling to the evanescent modes
of the waveguide. Scrutiny of Eqs. (4) and (5) shows that there
are bound states for all d, whose energy satisfies(

E − ω0 − α(E) −β(E)
−β(E) E − ω0 − α(E)

)(
cA

cB

)
= 0, (40)

with

α(E) = − λ2

√
M2 − E2

(
π + 2 arctan

E√
M2 − E2

)
, (41)

β(E) = − λ2

√
M2 − E2

2πe−√
M2−E2d, (42)

where we have again neglected the O(e−Md ) contributions
from branch-cut integration in the complex k plane. If the
coupling is small and the excitation energy ω0 is far from the
threshold M for photon emission, the above equations reduce
to an effective Hamiltonian eigenvalue equation in the Nat = 1
sector. The eigenvalues read

E(±) = ω0 + α(ω0) ± β(ω0), (43)

with cA = cB for the plus sign (ground state) and cA = −cB for
the minus sign. These bound states are not associated with any
resonance. It is also possible to check that the electromagnetic
energy density falls like exp(−√

M2 − E2|x|) away from the
atoms.

Since the eigenstates of the effective Hamiltonian are
Bell states, the evolution of an initially factorized state is
characterized by oscillations between two orthogonal max-
imally entangled states with period 2π/β(ω). Compared
to entanglement by relaxation, this mechanism yields unit
concurrence [41]. On the other hand, the process can be very
slow, since the energy splitting is exponentially suppressed
with the interatomic distance, and requires the fine tuning of
an optimal time to stop the interactions, which is not required
in the spontaneous entanglement process described in Sec. II.

The case E → M is more interesting, since the physics
becomes nonperturbative. Equations (4) and (5) admit a singlet
and a triplet solution. For the singlet case, the bound state with

E = M is obtained at a finite excitation energy:

ω0 = M − 2λ2

M
+ 2πλ2d, (44)

in which, due to a cancellation of divergences, the correction to
the bare energy is still perturbative in λ2. This singlet solution
approximates the dark eigenstate |�−〉 ⊗ |vac〉 occurring at
d = 0. The triplet, instead, survives as a real eigenstate even
for ω0 � M . However, since cA = cB implies that the integrals
over the field become divergent in this limit, the population in
the Nat = 1 sector is suppressed to fulfill normalization, and
the contribution of this pole to the expansion (14) can be safely
neglected.

V. EXTENSION TO GENERIC DISPERSION RELATIONS

While we have worked out in detail the case of a rectangular
waveguide, we emphasize that our methods can be applied to
a generic dispersion relation ω(k). We start by noticing that
Eqs. (4)–(6) lead in full generality to the implicit condition,

E = ω0 + λ2
∫

dk
1 − (−1)ne−ikd

ω(k)(E − ω(k))
, (45)

which must be satisfied by the bound state energy E. For the
existence of a resonant (i.e., above threshold) bound state, it
is evident that also the condition k̄d = nπ, n ∈ N must hold,
where k̄ > 0 satisfies E = ω(±k̄). If this were not the case, the
right-hand side of Eq. (45) would diverge. We assume that such
k̄ exists and is unique. This is the case, for example, when ω(k)
is an increasing lower-bounded function of |k|. Moreover, the
possibility of nonresonant eigenstates below threshold follows
as in the case of a rectangular waveguide.

Moving on to the complex energy plane, the analysis of
poles proceeds along the same lines as in Sec. III, albeit the
existence of compact analytical expressions will rely on the
specific functional form of ω(k). The pole contribution to the
self-energies can be generalized by replacing the denominators
in Eqs. (33) and (34) with ω(k0)ω′(k0), and the square root
in the exponentials with k0. In the perturbative regime, this
change does not affect formally the ratio of the decay rates
of stable and unstable poles close to a resonance, namely [see
Eqs. (38) and (39)]

γ (s)
p

γ
(u)
p

= 1

4
k̄2(d − dn)2, (46)

where dn = nπ/k̄. We can see that quantitative differences
between models arise in the inversion of the dispersion relation
as a function of the energy. The quantity in Eq. (46) gives a
clear indication of the potential of a given model to generate
entanglement by relaxation. While losses would inevitably
degrade the quality of the achievable entangled state, Eq. (46)
may be seen as posing a fundamental limit to the entangling
capabilities of a given system, a limit which would persist even
in an idealized lossless scenario.

VI. CONCLUSIONS AND OUTLOOK

We analyzed stable and unstable states of a pair of atoms in
a waveguide, finding that an entangled bound state exists for
discrete values of the interatomic distance. This implies that
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an initially factorized atomic state can spontaneously relax
towards a long-lived entangled state. By analyzing the poles
of the resolvent operator, we have shown how to quantify the
robustness of the entangled bound state to small variations
in the model parameters, and how to identify the time scales
that are crucial for the preparation of an entangled state by
relaxation.

While it has been pointed out that quantum computation
may be achievable in waveguide-QED trough effective photon-
photon interactions [49], focusing on the atomic degrees of
freedom may also hold significant potential for applications
in quantum information [50]. Further investigation will thus
be devoted to the analysis of many-atom systems [51–54], in
which photon-mediated interactions could possibly produce
stable configurations such as W states or cluster states.
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APPENDIX A: DERIVATION OF THE QUASI-1D FREE
FIELD HAMILTONIAN

We derive here the Hamiltonian in Eq. (1) of the main
text from first principles. Let us consider a waveguide of
infinite length, parallel to the x axis, characterized by a
rectangular cross section with y ∈ [0,Ly] and z ∈ [0,Lz]. We
conventionally assume that Ly > Lz. A common choice is
Ly/Lz = 2. In a generic guide made of a linear dielectric
with uniform density and coated by a conducting material, the
boundary conditions for the electric and magnetic fields on the
surface S read

Ex |S = 0 and
∂Bx

∂n

∣∣∣∣
S

= 0, (A1)

with ∂/∂n denoting the normal derivative with respect to the
surface. Transverse electric (TE) modes are characterized by
Ex = 0 everywhere in the guide and obtained by imposing
∂Bx/∂n = 0 on the surface. On the other hand, transverse
magnetic (TM) modes have Bx = 0 identically. If the waveg-
uide is rectangular, the boundary conditions for TE modes
reduce to

∂Bx

∂y

∣∣∣∣
y=0

= ∂Bx

∂y

∣∣∣∣
y=Ly

= ∂Bx

∂z

∣∣∣∣
z=0

= ∂Bx

∂z

∣∣∣∣
z=Lz

= 0, (A2)

which limits the form of the longitudinal magnetic field to the
real part of

Bx = B0 cos

(
mπy

Ly

)
cos

(
nπz

Lz

)
ei(kx−ωm,n(k)t), (A3)

with m,n ∈ N2\{(0,0)} and B0 a constant.
The integers m and n label the mode TEm,n. The dispersion

relation with respect to the longitudinal momentum has the

same form as a massive relativistic particle,

ωm,n(k) =
√

(vk)2 + ωm,n(0)2, (A4)

with ωm,n(0) = v[(mπy

Ly
)2 + ( nπz

Lz
)2]

1
2 , where the mass term is

called the cutoff frequency of the mode, and v = (με)−1/2 is
the phase velocity in the waveguide, assumed isotropic and
nondispersive with magnetic permeability μ and dielectric
constant ε. Since Ly < Lz, the TE1,0 mode has the lowest
cutoff frequency. It can be proved [46] that ω1,0(0) is also
lower than the cutoffs of all TM modes. Thus, at sufficiently
low energy the contribution of the higher energy modes
can be neglected, and propagation occurs effectively in one
dimension.

The TE1,0 mode is characterized by the following behavior
of the fields:

Bx = B0 cos

(
πy

Ly

)
ei(kx−ω1,0(k)t), (A5)

By = −i
kLyB0

π
sin

(
πy

Ly

)
ei(kx−ω1,0(k)t), (A6)

Ez = i
ω1,0(k)LyB0

π
sin

(
πy

Ly

)
ei(kx−ω1,0(k)t), (A7)

with the other three components vanishing. These fields can
be derived from the (transverse) vector potential,

Az = LyB0

π
sin

(
πy

Ly

)
ei(kx−ω1,0(k)t). (A8)

The mode can be quantized by introducing the time-0 field
operators,

A(1,0)(r) =
∫

dk

(
�

2πεω1,0(k)LyLz

) 1
2

sin

(
πy

Ly

)
× [a(k)eikx + a†(k)e−ikx]ûz, (A9)

E(1,0)(r) = i

∫
dk

(
�ω1,0(k)

2πεLyLz

) 1
2

sin

(
πy

Ly

)
× [a(k)eikx − a†(k)e−ikx]ûz, (A10)

with [a(k),a†(k′)] = δ(k − k′) and ûz = (0,0,1). The electric
field energy operator associated with the mode thus reads

E (1,0)
el = ε

2

∫
d r :

(
E(1,0)

z (r)
)2

:

= 1

2

∫
dk �ω1,0(k)

[
a†(k)a(k)

− a(k)a(−k) + a†(k)a†(−k)

2

]
, (A11)

with : (...) : denoting normal ordering, while the magnetic field
energy can be evaluated using the relation B(1,0) = ∇ × A(1,0):

E (1,0)
mag = ε

2

∫
d r :

(
∂yA

(1,0)
z (r)

)2+( − ∂xA
(1,0)
z (r)

)2
:

= 1

2

∫
dk �ω1,0(k)

[
a†(k)a(k)

+ a(k)a(−k) + a†(k)a†(−k)

2

]
. (A12)
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Thus, the free Hamiltonian for the electromagnetic field takes
the diagonal form,

H (1,0) = E (1,0)
el + E (1,0)

mag

=
∫

dk �ω1,0(k)a†(k)a(k)

= �v

∫
dk

√
k2 +

(
π

Ly

)2

a†(k)a(k). (A13)

It is worth noticing that the analogy with a massive boson is not
limited to the dispersion relation. Indeed, the quantum theory
of the mode can be mapped onto a real scalar theory in one
dimension, by introducing the operators,

α(x) =
∫

dx

√
�

2(2π )ω1,0(k)
[a(k)eikx + a†(k)e−ikx],

�(x) = −i

∫
dx

√
�ω1,0(k)

2(2π )
[a(k)eikx − a†(k)e−ikx],

(A14)

satisfying

[α(x),�(x ′)] = i�δ(x − x ′), (A15)

and related to the vector potential and the electric field by
multiplication. The Hamiltonian can be expressed in terms
of the field operator α(x) and its canonically conjugated
momentum �(x ′) as

H (1,0) = 1

2

∫
dx :

[
[�(x)]2 + v2[∂xα(x)]2

+ v4

(
M

�

)2

[∂xα(x)]2

]
: (A16)

with M := π�

vLy
, which also allows one to identify a linear

Hamiltonian density H(x) such that H (1,0) = ∫
dxH.

APPENDIX B: INTERACTION HAMILTONIAN

The interaction between the field and an artificial atom,
made up of a particle trapped in a potential V (r), can be
obtained by the minimal coupling prescription:

Hat = 1

2me

( p − eA(1,0)(r))2 + V (r)

= H 0
at − e

me

p · A(1,0)(r) + e2

2me

(A(1,0)(r))2,

(B1)

with r and p the canonically conjugated position and mo-
mentum of the artificial “electron.” The transverse choice
∇ · A = 0 for the vector potential makes the ordering with
respect to p immaterial. We adopt a two-level approximation
for the atom, retaining only the ground state |g〉 and the first
excited state |e〉, satisfying

H 0
at|g〉 = 0, H 0

at|e〉 = �ω0|e〉. (B2)

Furthermore, we apply long-wavelength approximations to
the interaction terms, which enable one to neglect the O(e2)
contribution, whose relevance is suppressed like the ratio of
the photon momentum to the particle momentum [44], and to
apply a dipolar approximation to the O(e) term. The position
operator r is replaced by a nondynamical center-of-mass
position r0. The interaction Hamiltonian thus reads

H
(dip)
int = − e

me

A(1,0)
z (r0)[〈g|pz|g〉|g〉〈g| + 〈e|pz|e〉|e〉〈e|

+ 〈g|pz|e〉|g〉〈e| + 〈e|pz|g〉|e〉〈g|]. (B3)

The assumption that the expectation value of momentum
vanishes in the eigenstates of the free Hamiltonian simplifies
the interaction. Moreover, the canonical commutation relation
can be used to obtain

〈e|pz|g〉 = im

�
〈e|[H 0

at,z
]|g〉 = imω0〈e|z|g〉 =: imωzeg

= imω0|zeg|eiθeg , (B4)

by which the mass me disappears from the theory, and
the Hamiltonian takes the form of a coupling between the
dipole moment Deg = e|zeg| and the electric field. Finally,
we can define new canonically conjugated field operators
b(k) := e−i(θeg+π/2)a(k) and retain only the rotating-wave
terms b(k)|e〉〈g| and b†(k)|g〉〈e|, to obtain the interaction
operator,

H
(dip,RW)
int = ω0Deg

(
�

2πεvLyLz

) 1
2
∫

dk

(k2 + (vM/�)2)1/4

× [b(k)|e〉〈g|eikx0 + b†(k)|g〉〈e|e−ikx0 ].

(B5)

Notice that y0 = Ly/2 has been used. The dynamics for the
atom pair is thus determined by

H = H 0
at,A + H 0

at,B + H (1,0) + H
(dip,RW)
int,A + H

(dip,RW)
int,B , (B6)

with atom A in x0 = 0 and atom B in x0 = d.

APPENDIX C: ENERGY DENSITY

The study in the main text has been focused on the N = 1
sector, spanned by the wave functions,

|ψ1〉 = cA|eA,gB ; vac〉 + cB |gA,eB ; vac〉
+

∫
dkF (k)|gA,gB ; k〉. (C1)

Using the scalar Hamiltonian density defined in Sec. A, one
can compute the energy density,

〈ψ1|H(x)|ψ1〉 = 1

2

[
〈ψ1| : (�(x))2 : |ψ1〉

+ v2〈ψ1| : (∂xα(x))2 : |ψ1〉

+ v4

(
M

�

)2

〈ψ1| : (∂xα(x))2 : |ψ1〉
]
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=
∣∣∣∣∣
∫

dk

√
�ω1,0(k)

2(2π )
F (k)eikx

∣∣∣∣∣
2

+
∣∣∣∣∣
∫

dk
�vk√

2(2π )�ω1,0(k)
F (k)eikx

∣∣∣∣∣
2

+
∣∣∣∣∣
∫

dk
v2M√

2(2π )�ω1,0(k)
F (k)eikx

∣∣∣∣∣
2

.

(C2)

This structure can be simplified if one assumes that the
dominant contribution to the integrals comes from the poles
of F (k) ∼ A+(k − k0)−1 + A−(k + k0)−1. Neglecting the cor-
rections yielded by square-root branch-cut integration, one
obtains

〈ψ1|H(x)|ψ1〉 	 �ω1,0(k0)

∣∣∣∣∫ dk

2π
F (k)eikx

∣∣∣∣2

=: �ω1,0(k0)|F̃ (x)|2, (C3)

which is used to compute the energy density for the resonant
states.
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