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Nonclassicality criteria: Quasiprobability distributions and correlation functions
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We use the exact calculation of the quantum mechanical, temporal characteristic function χ (η) and the degree
of second-order coherence g(2)(τ ) for a single-mode, degenerate parametric amplifier for a system in the Gaussian
state, viz., a displaced-squeezed thermal state, to study the different criteria for nonclassicality. In particular, we
contrast criteria that involve only one-time functions of the dynamical system, for instance, the quasiprobability
distribution P (β) of the Glauber-Sudarshan coherent or P representation of the density of state and the Mandel
QM (τ ) parameter, versus the criteria associated with the two-time correlation function g(2)(τ ).
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I. INTRODUCTION

The field of quantum computation and quantum informa-
tion, as applied to quantum computers, quantum cryptography,
and quantum teleportation, was originally based on the
manipulation of quantum information in the form of discrete
quantities like qubits, qutrits, and higher-dimensional qudits.
Nowadays the emphasis has shifted to processing quantum
information by the use of continuous-variable quantum in-
formation carriers. In this regard, use is now made of any
combination of Gaussian states, Gaussian operations, and
Gaussian measurements [1,2]. The interest in Gaussian states
is both theoretical and experimental since simple analytical
tools are available and, on the experimental side, optical
components effecting Gaussian processes are readily available
in the laboratory [1].

Quantum optical systems give rise to interesting nonclassi-
cal behavior such as photon antibunching and sub-Poissonian
photon statistics owing to the discreetness or photon nature of
the radiation field [3]. These nonclassical features can also be
quantified with the aid of the temporal second-order quantum
mechanical correlation function g(2)(τ ) and experimentally
studied using a Hanbury Brown–Twiss intensity interferometer
modified for homodyne detection [4]. Physical realizations and
measurements of the second-order coherence function g(2)(τ )
of light have been studied earlier via a degenerate parametric
amplifier [4–6].

The early work on parametric amplification [7,8] has
led to a wealth of research, for instance, in sub-Poissonian
statistics and squeezed light [9], squeezing in the output
of a cavity field [10,11], quantum noise, measurement, and
amplification [12], and photon antibunching [13].

The need to formulate measurable conditions to discern
the classical or nonclassical behavior of a dynamical system
is important and so several criteria exist for nonclassicality.
In particular, the use of the Glauber-Sudarshan P function to
determine the existence or nonexistence of a quasiprobability
distribution P (β) that would characterize whether or not the
system has a classical counterpart [14]. The existent differing
criteria for nonclassicality actually complement each other
since nonclassicality criteria derived from the one-time func-
tion P (β) are actually complemented by the nonclassicality
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criteria involving the two-time coherence function g(2)(τ ).
Note that nonclassicality information provided by g(2)(τ )
cannot be obtained solely from P (β).

In a recent work [15], a detailed study was made of
the temporal development of the second-order coherence
function for Gaussian states—displaced-squeezed thermal
states—the dynamics being governed by a Hamiltonian for
degenerate parametric amplification. The time development
of the Gaussian state is generated by an initial thermal state
and the system subsequently evolves in time where the usual
assumption of statistically stationary fields is not made [16].

In the present work, we compare the differing criteria for
nonclassicality. In Sec. II, we consider the general Hamiltonian
of the degenerate parametric amplifier. In Sec. III, we find an
exact expression for the characteristic function and introduce
the Glauber-Sudarshan coherent state or P representation of the
density matrix. In Sec. IV, we obtain, via a two-dimensional
Fourier transform, the quasiprobability distribution P (β) from
the exact expression of the characteristic function χ (η) and
obtain from P (β) the necessary and sufficient condition for
nonclassicality. In Sec. V, we present the known nonclassical-
ity criteria for the coherence function g(2)(τ ). In Sec. VI, we
study numerical examples to elucidate how all the different
criteria for nonclassicality complement each other. Finally,
Section VII summarizes our results.

II. DEGENERATE PARAMETRIC AMPLIFICATION

The Hamiltonian for degenerate parametric amplification,
in the interaction picture, is

Ĥ = câ†2 + c∗â2 + bâ + b∗â†. (1)

The system is initially in a thermal state ρ̂0, and after a
preparation time t the system temporally develops into a
Gaussian state and so [15]

ρ̂G = exp (−iĤ t/�)ρ̂0 exp (iĤ t/�)

= D̂(α)Ŝ(ξ )ρ̂0Ŝ(−ξ )D̂(−α), (2)

with the displacement D̂(α) = exp (αâ† − α∗â) and the
squeezing Ŝ(ξ ) = exp ( − ξ

2 â†2 + ξ∗
2 â2) operators, where â

(â†) is the photon annihilation (creation) operator, ξ =
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r exp (iθ ), and α = |α| exp (iϕ). The thermal state is given by

ρ̂0 = exp (−�ωn̂/kBT )/Tr[exp (−�ωn̂/kBT )], (3)

with n̂ = â†â and n̄ = Tr[ρ̂0n̂].
The parameters c and b in the degenerate parametric

Hamiltonian, (1), are determined [15] by the parameters α

and ξ of the Gaussian density of state, (2), via

tc = −i
�

2
r exp(iθ ) (4)

and

tb = −i
�

2
(α exp (−iθ ) + α∗ coth(r/2))r, (5)

where t is the time that it takes for the system governed by
Hamiltonian (1) to generate the Gaussian density of state ρ̂G

from the initial thermal density of state ρ̂0.
The quantum mechanical second-order degree of coherence

is given by [15]

g(2)(τ ) = 〈â†(0)â†(τ )â(τ )â(0)〉
〈â†(0)â(0)〉〈â†(τ )â(τ )〉 , (6)

where all the expectation values are traces with the Gaussian
density operator, viz., a displaced-squeezed thermal state.
Accordingly, the system is initially in the thermal state ρ̂0.
After time t , the system evolves to the Gaussian state ρ̂G and
a photon is annihilated at time t , the system then develops
over time and after a time τ another photon is annihilated [15].
Therefore, two photon are annihilated in a time separation τ

when the system is in the Gaussian density state ρ̂G.
It is important to remark that we do not suppose statistically

stationary fields [16]. Therefore, owing to the τ dependence
of the number of photons in the cavity in the denominator of
Eq. (6), the system asymptotically, as τ → ∞, approaches
a finite limit without supposing any sort of dissipative
processes [15]. The coherence function g(2)(τ ) is a function
of �τ = (r/t)τ , α, ξ , and the average number of photons n̄

in the initial thermal state, (3), where the preparation time t is
the time that it takes the system to dynamically generate the
Gaussian density ρ̂G given by (2) from the initial thermal state
ρ̂0 given by (3). Note that the limit r → 0 is a combined limit
whereby � = r/t also approaches 0, resulting in a correlation
function which has a power-law decay as τ/t → ∞ rather
than an exponential-law decay as τ/t → ∞ as is the case in
the presence of squeezing when r > 0 [15].

III. CHARACTERISTIC FUNCTION

The calculation of the correlation function, (6), deals with
the product of two-time operators. However, a complete
statistical description of a field involves only the expectation
value of any function of the operators â and â†. A characteristic
function contains all the necessary information to reconstruct
the density matrix for the state of the field.

Now [15]

ρ̂(t + τ ) = exp [−iĤ (t + τ )]ρ̂0 exp [iĤ (t + τ )]

= exp(−iĤ τ )ρ̂G exp(iĤ τ ). (7)

Accordingly, for any operator function Ô(â,â†), one has that

Tr[ρ̂(t + τ )Ô(â,â†)] = Tr[ρ̂GÔ(â(τ ),â†(τ ))]

≡ 〈Ô(â(τ ),â†(τ ))〉. (8)

One obtains for the characteristic function

χ (η) = Tr[ρ̂(t + τ ) exp (ηâ† − η∗â)] exp (|η|2/2)

= Tr[ρ̂(t + τ ) exp (ηâ†) exp (−η∗â)]

= exp (|η|2/2) exp (ηA∗(τ ) − η∗A(τ ))

× exp ( − (n̄ + 1/2)|ξ (τ )|2), (9)

where

A(τ ) = α
(

cosh(�τ ) + 1
2 coth(r/2) sinh(�τ )

− 1
2 (cosh(�τ ) − 1) + exp[i(θ − 2ϕ)]

[− 1
2 sinh(�τ )

− 1
2 coth(r/2)( cosh(�τ ) − 1)

])
(10)

and

ξ (τ ) = η cosh(�τ + r) + η∗ exp(iθ ) sinh(�τ + r). (11)

The expectation value Tr[ρ̂(t + τ )â†mân] can be cal-
culated by differentiation of the characteristic function
χ (η) with respect to η and η∗ as independent variables,
viz., Tr[ρ̂(t + τ )â†mân] = (∂/∂η)m(−∂/∂η∗)nχ (η)|

η=0
. Ac-

cordingly, knowledge only of the characteristic function can
determine only one-time properties of the dynamical system.

Define

|ξ (τ )|2 = η2T ∗(τ ) + η∗2T (τ ) + ηη∗S(τ ), (12)

with

T (τ ) = 1
2 exp (iθ ) sinh[2(�τ + r)] (13)

and

S(τ ) = cosh[2(�τ + r)]. (14)

In the Glauber-Sudarshan coherent state or P representation
of the density operator ρ̂ one has that [3]

ρ̂ =
∫

d2β P (β)|β〉〈β|, (15)

where |β〉 is a coherent state and nonclassicality occurs
when P (β) takes on negative values and becomes more
singular than a Dirac delta function. One has the normalization
condition

∫
P (β)d2β = 1; however, P (β) would not describe

the probabilities, even if positive, of mutually exclusive states
since coherent states are not orthogonal. In fact, coherent states
are over complete.

The quasiprobability distribution P (β) is related to the
characteristic function χ (η) via the two-dimensional Fourier
transform

P (β) = 1

π2

∫
d2η χ (η) exp (−β∗η + βη∗). (16)

The characteristic function χ (η) is a well-behaved function,
whereas the integral, (16), is not always well behaved; for
instance, if χ (η) diverges as |η| → ∞, then P (β) can only
be expressed in terms of generalized functions. Nonetheless,
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P (β) can still be used to calculate moments of products of â

and â†.
It is important to remark that knowledge of P (β) without

further knowledge of the dynamics governing the system can
only be used to calculate equal-time properties of the system
and does not allow us to calculate, for instance, correlation
functions, in particular, the quantum mechanical second-order
degrees of coherence g(2)(τ ). The determination of the latter
requires, in addition to P (β), the temporal behavior â(τ ).

IV. P REPRESENTATION

The integral, (16), can be carried out for the characteristic
function, (9), and so

P (β) = 2

π

1√
4a2b2 − c2

e−(a2f 2+b2d2+cf d)/(4a2b2−c2), (17)

where

a2 = − 1
2 + (n̄ + 1/2)(T (τ ) + T ∗(τ ) + S(τ )),

b2 = − 1
2 − (n̄ + 1/2)(T (τ ) + T ∗(τ ) − S(τ )),

c = −2i(n̄ + 1/2)(T ∗(τ ) − T (τ )), (18)

d = i(A(τ ) − A∗(τ ) − β + β∗),

f = A(τ ) + A∗(τ ) − β − β∗.

The existence of a real-valued function P (β) requires that
(4a2b2 − c2) � 0, which, with the aid of (18), gives that

1 � (2n̄ + 1)e−2(�τ+r), (19)

where the equality holds when n̄ = 0 and r = 0 at τ = 0. Note
that criterion (19) does not depend on the coherent amplitude
α, which appears via A(τ ). Also, if inequality (19) is initially
satisfied at τ = 0, then as time goes on the inequality will be
violated since the squeezing continues indefinitely, and so no
matter the value of n̄, eventually as τ increases the dynamics
will always lead to nonclassical states.

The existence of P (β) requires also that it must vanish
as |β| → ∞. The bilinear form (a2f 2 + b2d2 + cf d) in the
exponential in (17) can be diagonalized in the variables
Re(A(τ ) − β) and Im(A(τ ) − β), resulting in the eigenval-
ues 2[−1 + (2n̄ + 1)e2(�τ+r)] and 2[−1 + (2n̄ + 1)e−2(�τ+r)],
which must be nonnegative; this requirement gives rise to the
same condition, (19), for the existence of a genuine probability
distribution P (β).

Two simple examples follow directly from (16). For the
displaced vacuum state for τ � 0, one obtains, since � =
r/t = 0, that P (β) = δ(β − α), the coherent state. Similarly,
for n̄ > 0 one obtains for the displaced thermal state that
P (β) = (1/(πn̄)) exp (−|β − α|2/n̄), which becomes the pre-
vious example in the vacuum limit when n̄ → 0.

The necessary and sufficient condition for nonclassicality
is then

(2n̄ + 1)e−2(�τ+r) < 1, (20)

which is based only on knowledge of P (β). Note that (20) is
independent of the value of the coherent parameter α.

V. NONCLASSICALITY CRITERIA

As indicated above, mere knowledge of P (β) does not
allow the calculation of the quantum mechanical correlation
functions; additional knowledge of the the dynamics of the
system is necessary, for instance, â(τ ) for τ � 0. Nonclassical
light can be characterized differently, for instance, with the aid
of the quantum degree of second-order coherence g(2)(τ ) by
the nonclassical inequalities

g(2)(0) < 1 and g(2)(0) < g(2)(τ ), (21)

where the first inequality represents the sub-Poissonian statis-
tics, or photon-number squeezing, while the second gives rise
to antibunched light. Hence a measurement of g(2)(τ ) can be
used to determine the nonclassicality of the field. The two
nonclassical effects often occur together but each can occur
in the absence of the other. Similarly, one can derive the
nonclassical inequality [17]

|g(2)(0) − 1| < |g(2)(τ ) − 1|, (22)

that is, g(2)(τ ) can be farther away from unity than it was
initially at τ = 0.

Accordingly, in the determination of the nonclassicality
of the field, situations may arise where some of the observ-
able nonclassical characteristics such as squeezing and sub-
Poissonian statistics are lost while P (α) remains nonclassical,
that is, inequality (20) holds true while some of the inequalities
in (21) and (22) are violated. These situations do arise since
the nonclassicality condition, (20), is independent of the value
of the coherent amplitude α, whereas the nonclassicality
conditions, (21) and (22), do depend on the value of α.

Another sufficient condition for nonclassicality is deter-
mined by the Mandel QM (τ ) parameter related to the photon-
number variance [3,16]

QM (τ ) = �n2(τ ) − 〈n̂(τ )〉
〈n̂(τ )〉 , (23)

where −1 � QM (τ ) < 0 implies that P (α) assumes negative
values and thus the field must be nonclassical with sub-
Poissonian statistics. Condition QM (0) < 0 is equivalent to the
first condition in Eq. (21) since QM (0) = 〈n̄(0)〉[g(2)(0) − 1].
It is important to remark that the latter equality holds only
at τ = 0 when both QM (0) and g(2)(0) represent one-time
functions. The correlation function g(2)(τ ) is a two-time
function for τ > 0, whereas QM (τ ) is a one-time function for
τ � 0. Note that if the Mandel QM (τ ) parameter is positive,
then no conclusion can be drawn about the nonclassical nature
of the radiation field.

The evaluation of GM (τ ) requires knowledge of the char-
acteristic function χ (η) or the quasiprobability distribution
P (β) and taking successive derivatives. Such knowledge
involves only one-time functions, whereas the correlation
function g(2)(τ ) is a two-time function, thus the nonclassicality
determined by differing criteria complement each other.

VI. NUMERICAL COMPARISONS

Owing to the equivalence of the nonclassical conditions
given by the first Eq. (21) and the Mandel condition QM (0) <

0, we need study only numerically the relation of the
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nonclassical inequalities (21) and (22) for the coherence
function g(2)(τ ) and compare them to the nonclassical condi-
tion, (20), for the quasiprobability distribution P (β). It is im-
portant to remark that the nonclassicality criteria, (21) and (22)
for g(2)(τ ), depend strongly on the value of the coherent
amplitude α, whereas the nonclassicality criterion, (20), for
P (α) is actually independent of the value of α. The coherence
function g(2)(τ ) is rather sensitive to the value of α. This
will allow us to determine whether the system can exhibit
quantum behavior even though the known nonclassicality
conditions given by both Eqs. (21) and (22) for the coherence
function g(2)(τ ) are violated or, conversely, if the system
exhibits nonclassical behavior even though the nonclassicality
criterion, (20), for P (α) is violated.

It is interesting that Eq. (20) for the nonclassicality of
P (β) is independent of the coherent parameter α since the
eigenvalues of the quadratic form (a2f 2 + b2d2 + cf d) in the
exponential in (17) are independent of α, while the coherence
function g(2)(τ ) is rather sensitive to the value of α. The validity
of any one of the inequalities in Eqs. (21) and (22) is sufficient
but none of them is actually necessary for nonclassicality.
On the other hand, the nonclassicality criterion, (20), for the
one-time function P (α) may not determine the nonclassicality
of the two-time correlation function g(2)(τ ) and conversely.
Therefore, condition (20) cannot be a necessary and sufficient
condition for nonclassicality since when violated, implying
thereby that the system is in a classical state; nonetheless, the
two-time correlation function exhibits nonclassical behavior.
The numerical results for g(2)(τ ), as given in Figs. 5 and 6,
attest to this conclusion, where (20) gives classical behavior
from condition (20) for P (β) for �τ � 0.4493, since (2n̄ +
1)e−2(�τ+r) = 2.4562e−2�τ � 1 for �τ � 0.4493, whereas
both Figs. 5 and 6 indicate nonclassical behavior for 0 < �τ <

0.5605. To minimize intensity fluctuations, it is always optimal
to squeeze the amplitude quadrature, that is, to choose θ = 2ϕ,
which we impose on all our numerical work.

Figures 1 and 2 show the strictly classical features of the
correlation function g(2)(τ ) for n = 0.1, r = 0.1, and |α| = 0
since g(2)(τ ) violates the nonclassical inequalities given by
Eqs. (21) and (22). Note, however, that the nonclassical
inequality, (20) is satisfied for �τ � 0 since (2n̄ + 1)e−2r =
0.9825 < 1. Accordingly, a quasiprobability distribution P (β)
does not exist since P (β) does not vanish as |β| → ∞;
nonetheless, the correlation g(2)(τ ) exhibits classical behavior.
Thus the nonclassical nature of the radiation field, according
to the P (β) criteria, does not imply that the correlation g(2)(τ )
must behave nonclassically.

In order to show the strong dependence of the coherence
function g(2)(τ ) on the coherent parameter α, we show in Fig. 3
the behavior of g(2)(τ ) for the same values n̄ = 0.1 and r = 0.1
as those in Figs. 1 but with the value of |α| = 2. In Fig. 3, both
nonclassical inequalities in (21) are satisfied. In Fig. 4, we plot
the variable associated with inequality (22), which shows clas-
sicality for 0 � �τ � 2.5793 and nonclassicality for �τ >

2.5793. Thus the nonclassical nature of the radiation field,
according to the P (β) criteria, (20), can give rise also to mixed
classical-nonclassical behavior in the correlation g(2)(τ ).

The limτ→∞(g(2)(τ ) − g(2)(0)) = 0 gives the critical value
of |α|, for given n̄ and r , for which the inequality sign of the
second inequality in (21) changes direction, that is, a critical
point from classicality to nonclassicality occurs. For instance,

FIG. 1. Temporal second-order correlation function g(2)(τ ) for
n̄ = 0.1, r = 0.1, and |α| = 0. One has g(2)(0) = 3.1625 and
limτ→∞ g(2)(τ ) = 1.6603. Both nonclassical inequalities in (21) are
violated and the statistics is super-Poissonian.

for the cases in Figs. 1 and 3, n̄ = 0.1, r = 0.1, the critical
value is |αc| = 0.45397. That is, g(2)(∞) > g(2)(0) for |α| >

0.45397 and g(2)(∞) < g(2)(0) for |α| < 0.45397.
Figures 5 and 6 show the mixed classical-nonclassical

nature of both g(2)(τ ) and (|g(2)(0) − 1| − |g(2)(τ ) − 1|) for
n̄ = 1.0, r = 0.1, and |α| = 0. In view of inequalities (21) and
(22), both functions have nonclassical behavior for 0 < �τ <

0.5605 and classical for �τ � 0.5605. The nonclassicality
criterion, (20), indicates that a quasiprobability distribution
P (β) exhibits classical behavior for 0 � �τ � 0.4493 and
nonclassical for �τ > 0.4493. Therefore, studies of the tem-
poral second-order quantum mechanical correlation function

FIG. 2. Plot of [|g(2)(0) − 1| − |g(2)(τ ) − 1|] for n̄ = 0.1, r =
0.1, and |α| = 0, which asymptotically approaches 1.5022. The
nonclassical inequality, (22) is violated and g(2)(τ ) is strictly classical.
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FIG. 3. Temporal second-order correlation function g(2)(τ ) for
n̄ = 0.1, r = 0.1, and |α| = 2. One has g(2)(0) = 0.9975 and
limτ→∞ g(2)(τ ) = 1.0180. The correlation is strictly nonclassical
since both inequalities in (21) are satisfied. The statistics is sub-
Poissonian.

g(2)(τ ), for instance, using a Hanbury Brown–Twiss intensity
interferometer modified for homodyne detection [4], will show
the nonclassical nature of the correlation. This is contrary to
what the nonclassicality criterion, (20), would indicate. One
must recall that the difference between criterion (20) and
criteria (21) and (22) is that the former is based on one-time
measurement or behavior of the system, whereas the latter
involve two-time measurements.

FIG. 4. Plot of (|g(2)(0) − 1| − |g(2)(τ ) − 1|) for n̄ = 0.1, r =
0.1, and |α| = 2, which asymptotically approaches −0.0155. The
behavior is classical for �τ � 2.5793 and nonclassical for �τ >

2.5793 according to (22).

FIG. 5. Temporal second-order correlation function g(2)(τ )
for n̄ = 1.0, r = 0.1, and |α| = 0, where g(2)(0) = 2.0859 and
limτ→∞ g(2)(τ ) = 1.9402. The behavior is nonclassical for 0 < �τ <

0.5605 and classical for �τ � 0.5605.

Finally, Fig. 7 shows the Mandel QM (τ ) parameter for
n̄ = 0.1, r = 0.1, and |α| = 2. The system exhibits nonclas-
sical behavior for 0 � �τ < 1.7704 and classical for �τ �
1.7704. The field is photon number squeezed and exhibits
sub-Poissonian statistics since −1 � QM (τ ) < 0. Note from
Figs. 3, 4, and 7 that nonclassical effects often occur together
but each can occur in the absence of the others.

FIG. 6. Plot of (|g(2)(0) − 1| − |g(2)(τ ) − 1|) for n̄ = 1.0, r =
0.1, and |α| = 0, which asymptotically approaches 0.1457. The
behavior is nonclassical for 0 < �τ < 0.5605 and classical for
�τ � 0.5605.
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FIG. 7. Plot of the Mandel parameter QM (τ ) for n̄ = 0.1, r = 0.1,
and |α| = 2. The behavior is nonclassical for 0 � �τ < 1.7704 and
classical for �τ � 1.7704 since QM (0) = −0.0104.

VII. SUMMARY AND DISCUSSION

We calculate the one-time quasiprobability distribution
P (β) and the two-time, second-order coherence function
g(2)(τ ) for Gaussian states, (2), viz., displaced-squeezed
thermal states, where the dynamics is governed solely by the
general, degenerate parametric amplification Hamiltonian, (1).
We use these exact results to analyze the different char-
acterization of nonclassicality. We find from our numerical
studies that satisfying any of the conditions for the coherence
function g(2)(τ ) given in Eqs. (21) and (22) is sufficient for
nonclassicality; however, violation of both condition (21) and
condition (22) does not ensure strictly classical behavior.
We find examples where the nonclassicality condition, (20),

for P (β) is satisfied, while the coherence function g(2)(τ )
satisfies all the known classical conditions and, conversely,
where the nonclassicality condition, (20), is violated, that
is, the quasiprobability distribution P (β) exists; nonetheless,
the coherence function g(2)(τ ) exhibits nonclassical behavior.
Therefore, it does not seem possible to find a single set of
necessary and sufficient conditions, based on the state of the
system and measurements of observables of the system, which
would unequivocally establish the classical or nonclassical
nature of the radiation field.

APPENDIX: SECOND-ORDER COHERENCE

The degree of second-order temporal coherence is [15]

g(2)(τ ) = 1 + n2(τ ) + s2(τ ) + u(τ )n(τ ) − v(τ )s(τ )

〈â†(0)â(0)〉〈â†(τ )â(τ )〉 , (A1)

where

n(τ ) = (n̄ + 1/2) cosh (�τ + 2r) − (1/2) cosh(�τ ), (A2)

s(τ ) = (n̄ + 1/2) sinh (�τ + 2r) − (1/2) sinh(�τ ), (A3)

u(τ ) = αA∗(τ ) + α∗A(τ ), (A4)

and

v(τ ) = αA(τ ) exp (−iθ ) + α∗A∗(τ ) exp (iθ ), (A5)

where A(τ ) is defined by Eq. (10).
The time development of the photon number is given by

Tr[ρ̂(t + τ )â†â] = 〈â†(τ )â(τ )〉 = 〈n̂(τ )〉
= (n̄+ 1/2) cosh[2(�τ + r)] + |A(τ )|2 − 1

2 .

(A6)

Equation (10) is the correct expression for A(τ ) and not that
given in Ref. [15], where in their Eq. (13) the purely imaginary
number i should not be there. Similarly, there is no i in the
square brackets in Eq. (A2) in Ref. [15].
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