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Optical-reciprocity-induced symmetry in photonic heterostructures and its manifestation
in scattering PT -symmetry breaking
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The scattering matrix S obeys the symmetry propertyPT SPT = S−1 in a parity-time (PT ) symmetric system
and the unitary relation S†S = 1 in the absence of gain and loss. Here we report a different symmetry relation
of S in a one-dimensional heterostructure, which is given by the amplitude ratio of the incident waves in the
scattering eigenstates. It originates from the optical reciprocity and holds independently of the presence of gain
and loss in the system. Guided by this symmetry relation, we probe the remnant of the spontaneous symmetry
breaking of a PT -symmetric S matrix, when the system does not have exact PT symmetry due to unbalanced
gain and loss and even in the absence of gain. We show that the additional symmetry relation provides clear
evidence of a quasitransition, even when all previously found signatures of the PT -symmetry breaking of S are
completely erased.
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Parity-time (PT ) symmetric optical systems have attracted
growing interest in the past few years. These systems are
non-Hermitian due to the presence of gain and loss, which
are delicately balanced such that the refractive index satisfies
n(x) = n∗(−x) with respect to a symmetry plane at x = 0.
The plethora of findings in these systems are tied to the
spontaneous symmetry breaking of the effective Hamiltonian
at an exceptional point (EP) [1–12]. This spontaneous sym-
metry breaking was first suggested in non-Hermitian quantum
mechanics [13–15] and later realized in wave propagation in
the paraxial regime [16–21], which takes the system from a
regime of real energy eigenvalues to complex conjugate pairs
of eigenvalues. It has been shown that qualitatively similar
behaviors exist even when such systems do not have exact PT
symmetry, which leads to, for example, enhanced transmission
with increased loss [8], reduced lasing emission with increased
gain [10–12], and other interesting phenomena [22].

Recently another type of spontaneous PT -symmetry
breaking was found for the scattering matrix of a PT -
symmetric system [23], independent of its shape and dimen-
sion: the eigenvalues of the scattering (S) matrix can remain
on the unit circle in the complex plane, conserving optical flux
despite the non-Hermiticity; the symmetry breaking results in
pairs of scattering eigenvalues with inverse moduli [23–25].
However, unlike in previous studies of the effective Hamil-
tonian, it was believed that all signatures of this symmetry
breaking are erased if PT symmetry is nonexact, e.g., in the
presence of unbalanced gain and loss [26]. Given the difficulty
of maintaining an exact PT symmetry and dealing with a
strong optical gain, this type of PT -symmetry breaking has
not been demonstrated to date among other reasons.

In this report we tackle this outstanding problem from an
alternative perspective, i.e., we search for another symmetry
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property of the scattering system that can be utilized to reveal
the remnant of PT -symmetry breaking in the presence of
unbalanced gain and loss. The key relation, we find, relies
on optical reciprocity [27–29], and more specifically, the
identical transmission coefficient through a one-dimensional
(1D) photonic heterostructure that is independent of the
propagation direction [30]. Optical reciprocity has been known
since the early days of electromagnetism, and recently its study
has been revitalized in the quest of on-chip optical isolators
for optical computing [31–34]. We find that optical reciprocity
leads to a symmetry property of the S matrix eigenstates in a
1D heterostructure, which is given in terms of the amplitude
ratio of the incident waves (referred to as ν below) and is
independent of PT symmetry of the system. We note that
this symmetry applies to the scattering eigenstates instead of
the system itself. Therefore, it plays a different role than PT
symmetry and cannot become spontaneously broken.

Guided by this relation, we probe the remnant of the
aforementioned scattering PT -symmetry breaking using the
behavior exhibited by ν when the system does not have exact
PT symmetry. When there is PT symmetry, |ν| undergoes
a bifurcation at the EP where the spontaneous PT -symmetry
breaking of the scattering matrix takes place. The EP persists
with unbalanced gain and loss and even in the absence of gain,
and we show that the additional symmetry relation enables a
clear visualization of |ν| when it undergoes a quasibifurcation
near the EP, even when all previously found signatures of
PT -symmetry breaking are completely erased, including the
bifurcation of the moduli of the scattering eigenvalues. Finally,
we show the existence of a “final” exceptional point in a
multilayer heterostructure, which is attributed to asymmetric
reflections from the two sides of the heterostructure.

Before we introduce this optical-reciprocity-induced sym-
metry property, it is worth reviewing the spontaneous sym-
metry breaking of the S matrix in a 1D PT -symmetric
heterostructure. The S matrix connects the incident waves to
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FIG. 1. Exceptional points in a two-layer heterostructure (black
dots) with weak unbalanced gain and loss. Loss is fixed at Im[n1] =
0.05 in the left half and the gain is reduced from Im[n2] = −0.05
to −0.04 in the gain half. Re[n] = 3 in the system and its length is
L = 23 μm. A false color plot of the product Re[G − i] Im[G − i]
is also shown. Nearly vertical and wavy diagonal lines show the
zeros of Re[G − i] and Im[G − i], respectively. Their intersections
show the locations of the exceptional points. G = −i does not
hold in this region. Inset: Schematic of scattering from a two-layer
heterostructure.

the scattered waves (see the inset in Fig. 1), e.g.,(
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where t ≡ tL = tR and rL,R are the transmission and reflection
coefficients from the left and right sides [35]. Using the
parametrization introduced in Ref. [24], i.e.,

S = 1

a

(
ib 1
1 ic

)
, (2)

the eigenvalues of the S matrix are given by

σ± = i

2a
[(c + b) ±

√
(c − b)2 − 4]. (3)

When the system isPT symmetric, b,c are two real parameters
and a is complex parameter. They satisfy |a|2 − 1 = bc, which
is another way of writing the generalized conservation law
|T − 1| = √

RLRR [24], where T ≡ |t |2, RL,R = |rL,R|2 are
the transmittance and reflectances. One finds |σ±| = 1 when
|c − b| < 2, which is thePT -symmetric phase of the S matrix;
when |c − b| > 2, one finds that σ± have the same phase angle
but their moduli are no longer 1, which is thePT -broken phase
of the S matrix.

Another manifestation of the spontaneous PT -symmetry
breaking, which is more relevant for the additional symmetry
of the S matrix we will introduce shortly, is exhibited in the
amplitude ratios of the incident waves from the left and right
sides in the two scattering eigenstates [i.e., ν ≡ B/C = A/D

in Eq. (1)]. They are given by

ν± = i

2
[(b − c) ±

√
(c − b)2 − 4], (4)

which display the same qualitative change as σ± when the
value of |c − b| crosses 2. The latter is an exceptional point, at
which σ± coalesce and so do ν±. We note that this condition
for an exceptional point, as well as both Eq. (3) and (4), holds
even when the system is not PT -symmetric, in which case
a,b,c are three complex parameters in general.

Now let us return to the PT -symmetric case. It can be
easily checked that |σ+σ−| = 1 and

|ν+ν−| = 1. (5)

These two relations, however, have very different origins. On
the one hand, |σ+σ−| = 1 holds only when |a2| − 1 = bc,
i.e., it is due to PT symmetry and breaks down when the
gain and loss become unbalanced. |ν+ν−| = 1, on the other
hand, only requires that the S matrix be a symmetric matrix
with two identical off-diagonal elements (i.e., the transmission
coefficient t), which is a result of optical reciprocity as we
have mentioned in the introduction [27–30]. Since the optical
reciprocity holds in general and does not rely onPT symmetry,
|ν+ν−| = 1 holds also with unbalanced gain and loss and even
in the absence of gain.

|ν+ν−| = 1 is the symmetry relation that will guide us to
probe the remnant of the spontaneous PT -symmetry breaking
of the S matrix when the system no longer has PT symmetry.
We start by considering the simplest case, a heterostructure
with two layers of equal width, the refractive index in which is
n1 and n2, respectively. The analytical expression of S is given
by

S = 1

D

(
G + iF 1

1 −G + iF

)
, (6)

where D ≡ c1c2 − gs1s2 − i(h1s1c2 + h2s2c1), G ≡ qs1s2,
F ≡ u1s1c2 + u2s2c1, and g = (n1/n2 + n2/n1)/2,
q = (n1/n2 − n2/n1)/2, hj = (nj + 1/nj )/2, uj = (nj −
1/nj )/2, sj = sin(njωLj/2c), cj = cos(njωLj/2c) (j =
1,2). ω is the frequency of the incident light, and we note that
sj ,cj are complex if nj is complex, i.e., when there is gain or
loss. The eigenvalues of this S matrix are given by

σ± = iF ± √
1 + G2

D , (7)

which indicates that if there is an exceptional point, then it
occurs at

G = ±i, (8)

where the radicand in Eq. (7) vanishes.
In the PT -symmetric case we have n1 = n∗

2 ≡ n + iτ , and
it is straightforward to show that the S matrix given by Eq. (6)
satisfies PT SPT = S−1 [23], or simply PS∗P = S−1, using
s1 = s∗

2 , c1 = c∗
2, h1 = h∗

2, u1 = u∗
2, Re[q] = 0, and Im[g] =

0. The superscript “ ∗ ′′ denotes the complex conjugate as
usual, and P = (0 1

1 0) is the matrix representation of the parity
operator P; it exchanges the incoming/outgoing waves on the
left side of the heterostructure with those on the right side. We
also note that G = inτ |s1|2/(n2 + τ 2) is purely imaginary in
this case, and hence the above condition (8) for an exceptional
point is reachable even if only one system parameter is varied,
in contrast to the general requirement of sweeping at least a
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FIG. 2. Contrast of the scattering behaviors when gain and loss
are balanced [(a), (c), (e): Im[n2] = − Im[n1] = −0.05] or weakly
unbalanced [(b), (d), (f): Im[n1] = 0.05 and Im[n2] = −0.04].
Re[n] = 3 and L = 23 μm as in Fig. 1. Shadowed areas in (a),
(c), and (e) indicate the broken symmetry phase. The dashed line
in (f) marks the wavelength of the closest exceptional point at
{Im[n2] = −0.0401, λ = 1326 nm} shown in Fig. 1. Note that we
have chosen Im[n2] to be slightly different from the value of this
EP intentionally, since the exact value of the latter is unknown in an
actual setup before we conduct the experiment.

two-dimensional parameter space in non-PT systems [2]. This
property guarantees the two distinct phases of the S matrix.

In the absence of PT symmetry, the S matrix still has
exceptional points for complex values n1 and n2, since it is
a non-Hermitian matrix [2]. For example, in Fig. 1 we show
a two-layer heterostructure with fixed loss (Im[n1] = 0.05) in
one half and weakly unbalanced gain (Im[n2]) in the other.
We found that its exceptional points are given by G = i in this
regime, which exist at discrete pairs of {Im[n2],λ}. λ = 2πc/ω

is the wavelength in vacuum, and its value at the exceptional
points reduces with Im[n2]. Since G now is complex in general
and has an arbitrary phase angle, it no longer leads to two
distinct phases of the S matrix.

To be more specific, we note that |σ±| display a bifurcation
at an exceptional point when the system is PT symmetric
[see Fig. 2(a)], which delineates the two phases of S men-
tioned previously. We also note that the relation |σ+σ−| = 1
mentioned previously is satisfied in both phases of S. This
bifurcation no longer exists when there is a weak imbalance
between gain and loss [see Fig. 2(b)], letting alone the case
in which there is only loss in the heterostructure. Another
indication of the spontaneous PT -symmetry breaking is the
transition of the difference (RL + RR)/2 − T from sub-unitary

+
+

FIG. 3. Amplitude ratios ν in the scattering eigenstates of the
S matrix with strongly unbalanced gain and loss (a) and loss only
(c). Im[n2] = −0.0168 in (a) and 0.04 in (c), and Im[n1] = 0.05
is fixed. Dashed lines in (a) and (c) mark the wavelength of the
closest exceptional point at {Im[n2] = −0.0170, λ = 1440 nm} and
{Im[n2] = 0.038, λ = 1440 nm}, respectively [see (b) and (d)]. The
system length is chosen to be L = 36 μm and the other parameters
are the same as in Figs. 1. (b) and (d) Similar to Fig. 1 for (a) and
(c), showing the EPs near the quasitransition of |ν±|. In (d) G − i is
replaced by G + i.

to super-unitary at an exceptional point [see Fig. 2(c)], which
was derived using |c − b| = 2 at an exceptional point in Eq. (3)
and the PT symmetry relation |a|2 − 1 = bc mentioned
previously [24]. This signature is also erased completely even
when the gain and loss are weakly unbalanced [see Fig. 2(d)].

Now using the symmetry relation (5) of the scattering
eigenstates, the spontaneous PT -symmetry breaking of the
S matrix can also be visualized as a bifurcation of |ν±| where
the system is PT symmetric [see Fig. 2(e)]: they are equal
in the PT -symmetric phase and reciprocal of each other in
the broken-PT phase. This behavior survives qualitatively
when there is a weak imbalance between gain and loss,
as we show in Fig. 2(f). We note that the quasitransition
point shown in Fig. 2(f) moves to a shorter wavelength with
Im[n2] = −0.04 when compared with thePT -symmetric case
(where Im[n2] = −0.05). This is due to the blueshift of the
exceptional point with reduced gain mentioned above (see
Fig. 1). We can also check explicitly that the symmetry
relation (5) holds here: it is easy to convince oneself that the
eigenstates of the S matrix given by Eq. (6) are the same as
those of (G 1

1 −G), and we find

ν± = G ±
√
G2 + 1; (9)

their product is indeed −1.
As the imbalance between gain and loss increases, so does

the amplitude of the oscillations of |ν±| shown Fig. 2(f). They
weaken the distinctiveness of the quasitransition but do not
smear out the latter completely (see Fig. 3(a) at Im[n2] =
−0.17, for example). Interestingly, this observation holds even
if the system only has loss, i.e., with both Im[n1], Im[n2] > 0.
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In Fig. 3(c) we show the case when Im[n2] = 0.04, where
|ν±| approach each other and become interwoven beyond an
exceptional point. We note that this exceptional point is now
given by G = −i, instead of G = i in the quasi-PT symmetric
case shown in Figs. 1 and 3(b). There is one special point at
which the quasitransition of |ν±| vanishes completely, that
is when Im[n1] = Im[n2]. The system at this point is parity
symmetric about the center of the heterostructure (x = 0), and
the two scattering eigenstates are even and odd functions of
x, i.e., |ν±| is always 1. We note that exceptional points in a
loss-only system were previously studied in transmission [8]
and reflection [21] experiments.

Next we discuss heterostructures with more than two
layers. If the additional layers are identical and attached
symmetrically to the two sides of the central region, we find
that ν± do not change their values and hence the quasitransition
of |ν±| persists, no matter whether the additional layers have
gain or loss. This observation can be shown analytically
by generalizing the “mirror theorem” in PT -symmetric
heterostructures [25], with the central layers now having
unbalanced gain and loss. For this purpose we utilize the
transfer matrix M , which is defined by(

A

B

)
= 1

t

(
t2 − rLrR rL

−rR 1

)(
C

D

)
≡ M

(
C

D

)
(10)

using the same notations as in Eq. (1) for the central region.
Likewise, a transfer matrix ML and MR can be defined
for the added left and right layers, and here they satisfy
PMLP = M−1

R , where P is the same matrix representing the
parity operator introduced before. The total transfer matrix of
the system with the mirrors is then given by M ′ = MLMMR .
As Eq. (4) shows, ν± of the central PT -symmetric region only
depend on (c − b), or equivalently � ≡ (rL − rR)/t , which is
the sum of the two off-diagonal elements of M in Eq. (10).
Therefore, to prove that ν± do not change with the added
mirrors, we only need to show that the sum of the two off-
diagonal elements of M ′, denoted by �′ ≡ (r ′

L − r ′
R)/t , equals

�. It is straightforward to show that �′ = det(MR)�. Since
the determinant of a 1D transfer matrix is 1 in general [36],
this result concludes our proof.

When the two layers added are different, the S matrix of
the PT -symmetric system has multiple regions of symmetric
and broken symmetry phases in general [23], each bounded by
two exceptional points. The separations of these exceptional
points in terms of wavelength are comparable to the oscillation
periods of |ν±| and can be fairly close. Hence these oscillations
become more detrimental and obscure the bifurcations of |ν±|.
However, in the strong gain/loss limit of a PT -symmetric
heterostructure, achieved with either a large τ , a short
wavelength, or a long system size, there seems to be a “final”
exceptional point, beyond which the system stays in the broken
symmetry phase [see Fig. 4(a)]. The existence of this final
bifurcation point persists with unbalanced gain and loss and
even in the absence of gain [see Fig. 4(b)], similar to the
simplest two-layer waveguide discussed above.

This final exceptional point provides a good opportunity
to gain a deeper understanding of the correspondence be-
tween the scattering behaviors in PT -symmetric and non-
PT heterostructure. As we have discussed, the exceptional
points of the S matrix is given by c − b = ±2 in Eqs. (3)
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FIG. 4. Amplitude ratios ν in the scattering eigenstates of
the S matrix in a four-layer heterostructure. Re[n] = 3 and L =
72 μm, and the four layers have equal length. (a) Im[n] =
0.05,0.01,−0.01,−0.05 for a PT -symmetric heterostructure [37].
(b) Im[n] = 0.05,0.01,0.005,0.025 for a loss-only waveguide.

and (4), or equivalently, rL − rR = ±2it . In a PT -symmetric
heterostructure, rL and rR are in phase if |t | < 1 and π out-of-
phase otherwise [24]. When combined with a different form
of the generalized conservation law, i.e., |t |2 − 1 = −r∗

LrR =
−rLr∗

R , the above condition for the exceptional points becomes

||rL| − |rR|| = 2|t |, |rL| + |rR| = 2 (if |t | < 1), (11)

||rL| − |rR|| = 2, |rL| + |rR| = 2|t | (if |t | > 1). (12)

For all the final exceptional point in PT -symmetric het-
erostructures, including those in Fig. 2(e) and 4(a), we always
find the first scenario above [i.e., Eq. (11)] to be true, which
indicates a significant difference of |rL|,|rR| when compared
with |t |. In other words, it is this asymmetric reflection that
leads to the final broken phase of the S matrix in terms of the
wavelength. Such asymmetric reflection does occur when the
system is not PT symmetric, for example, when one half of
the system has loss and the other half has unbalanced gain,
or when the two halves have different average losses. This is
especially the case in the short wavelength or large system
limit, where the reflection from one side does not “see” the
other side of the system and |t | → 0.

In conclusion, we have shown that the optical reciprocity
leads to the symmetry relation |ν+ν−| = 1, which holds in
all 1D heterostructure. It is accompanied by a bifurcation
of |ν±| in PT -symmetric systems when the spontaneous
symmetry breaking of the S matrix takes place, and this
bifurcation persists qualitatively for the final exceptional point
with unbalanced gain and loss and even in the absence of gain.
Since tuning into the scattering eigenstates requires comparing
the amplitudes and phases of the scattered waves to those of the
incident waves, measuring ν± directly in the scattering eigen-
states may be challenging. One alternative is to measure ν±
indirectly using Eq. (4), with b,c replaced by −irL/t,−irR/t .
Experimental designs on a silicon platform with Cr/Ge
structures on top are currently underway, and the results will be
reported elsewhere once properly characterized and measured.
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