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Fluctuations of the electromagnetic local density of states as a probe for structural phase switching
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1Departamento de Fı́sica de la Materia Condensada, Universidad Autónoma de Madrid, 28049 Madrid, Spain
2Donostia International Physics Center (DIPC), Paseo Manuel Lardizabal 4, 20018 Donostia-San Sebastian, Spain

3IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
4Physics Department, University of Fribourg, Chemin du Musée 3, CH-1700 Fribourg, Switzerland

5IMM - Instituto de Microelectrónica de Madrid (CNM-CSIC), Isaac Newton 8, PTM, Tres Cantos, E-28760 Madrid, Spain
(Received 13 June 2016; published 19 October 2016)

We study the statistics of the fluorescence decay rates for single quantum emitters embedded in a scattering
medium undergoing a phase transition. Under certain circumstances, the structural properties of the scattering
medium explore a regime in which the system dynamically switches between two different phases. While in that
regime the light-scattering properties of both phases are hardly distinguishable, we demonstrate that the lifetime
statistics of single emitters with low diffusivity is clearly dependent on the dynamical state in which the medium
evolves. Hence, lifetime statistics provides clear signatures of phase switching in systems where light scattering
does not.
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I. INTRODUCTION

The sensitivity of the spontaneous-emission rate of an ex-
cited dipole emitter to the local environment [1] makes single-
molecule spectroscopy a unique tool to sense optical and
structural properties in its surroundings on the nanoscale [2–6].
Control of the emission rate has been demonstrated using a
variety of well-defined structures, such as metal surfaces [7],
cavities [8], photonic crystals [9], and nanoantennas [10].
Understanding the basic physics of spontaneous-emission
rates in complex media is of paramount importance for
many applications (molecular imaging techniques [2–6],
solar cells [11], laser technology [12,13], and single-photon
sources [14]), which explains the increasing interest in their
statistical properties in random environments [15–21].

From a fundamental point of view, the emission rate is
proportional to the number of optical modes available for
emission at the position of the emitter, i.e., proportional to
the electromagnetic local density of states (LDOS) [22]. In
a complex disordered medium, the LDOS presents strong
fluctuations due to dynamic conformational fluctuations of
the system around the emitter or when the emitter itself
diffuses through it [3–5]. The statistical fluctuations of the
LDOS [15,17,23] are directly linked to the so-called C0 speckle
correlations [24,25]. In the absence of spatial correlations, the
averaged LDOS and the transport extinction mean free path
� are linked through causality Kramers-Kronig relations [26],
and the LDOS fluctuations C0 were predicted to increase with
the scattering strength ∼ �−1 [24]. However, the correlations
between the emitter position and the surrounding scatterers,
due to the unavoidable excluded volume around the emitter,
make the LDOS and its fluctuations strongly nonuniver-
sal [25] and sensitive to both � and the local correlation
length [16,17,25,27].

The near-field effects on the LDOS close to a single
particle are relatively well understood [28]. In random media,
when the positions of the scatterers around the emitter are
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not correlated, numerical simulations show that the LDOS
fluctuations can be explained to a large extent by a single
scattering statistical model [16] and are dominated by the
near-field interaction with the nearest scatterer at the scale of
the excluded volume [16,17]. Temporal lifetime fluctuations
can then be correlated to fluctuations in the position of the
nearest scatterer and provide a suitable probe for the dynamics
of the structure around the emitter [5]. In particular, the
predicted non-Gaussian long-tailed distributions of emission
rates in disordered dielectrics [16,17] are compatible with
experimentally measured ones [21].

However, similar experiments do not show such long-tailed
distributions [20]. This result has been attributed to finite-
size effects in the scatterers. Recent experiments [29] also
suggest that hydrophobic interaction between the scatterers
and the solvent in a colloidal suspension plays an important
role in the description of the decay-rate and quantum yield
statistics. On the other hand, structural correlations in the
disorder structure have a profound effect on the lifetime
statistical distributions [17,30]. All of the reported results
show that the near-field scattering plays an essential role in
the description of lifetime statistics in disordered media. Near-
field effects also have important consequences in mesoscopic
light transport [31,32].

In this work, we show that the statistics of emission rates
in correlated disordered media is extremely sensitive to the
details of the radial distribution function around the emitter. We
analyze the emission statistics for a single emitter embedded in
a finite cluster of resonant particles in a model system similar
to that described in previous works [17]. However, instead
of generating random configurations of scatterers [16,17],
we compute the emission rates as the system evolves with
time under equilibrium conditions. Assuming a standard
Lennard-Jones (L-J) interaction between particles, this system
is known to present a peculiar solid-liquid-like phase transition
at finite temperature: Due to finite-size effects, the two phases
cannot coexist at the melting temperature and the whole cluster
presents an interesting dynamical behavior, switching between
an amorphous solidlike phase and liquidlike phases [33,34].
This makes it an ideal model system to analyze the effects of
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FIG. 1. Normalized decay-rate (equal to the LDOS normalized
to the vacuum one) spectrum of a single emitter placed at the center
of a cluster at T = 0 (see text for further details). Inset: the system
under study. Each point scatterer is replaced by a sphere of radius
rm/2. The translucid sphere represents the confining sphere.

local order on the emission rates. At very low temperatures, the
system is a well-ordered structure that in the limit of infinite
size, would correspond to a face-centered-cubic lattice. Due
to this order, the spectrum of emission rates presents a strong
chromatic dispersion reminiscent of the band structure of an
infinite crystal of resonant dipoles [35], including spectral
windows where the emission is enhanced and pseudogaps
where it is dramatically inhibited [36,37]. At the melting
temperature, the total scattering cross section of the system
does not present significant differences between the two
phases, while the emission rate jumps following the dynamic
of the system. While light-scattering measurements would be
blind to such dynamical changes, the lifetime statistics would
then provide a direct signature of a phase-switching behavior.

II. STRUCTURAL MODEL AND LIGHT SCATTERING
STATISTICS

In our model system, sketched in the inset of Fig. 1, we
consider a three-dimensional cluster of N = 515 particles
confined inside a spherical cavity. The particles interact
through a Lennard-Jones (L-J) potential:

VLJ (r) = ε

[( rm

r

)12
− 2

( rm

r

)6
]
, (1)

where ε is the depth of the potential well, r is the distance
between particles, and rm is the equilibrium distance of the
potential. The confining spherical volume is chosen in such a
way that near crystal density is achieved [34].

From the ensemble of N particles, the one closest to the
center of the distribution is considered to be a point emitter. The
remaining N − 1 particles are considered to be resonant light
scatterers with an electric polarizability, α = i6π/k3 (where
k = 2π/λ is the light wave number and λ the wavelength).
The electrodynamic response is obtained by using a coupled
dipole method described elsewhere [16,17] (which involves the
solution of 3N self-consistent multiple scattering equations;
see Appendix A). We compute both the total scattering cross
section (assuming an external incoming plane wave) and the

LDOS at the emitter position; details of both computations
are given in Appendix A. The vacuum normalized LDOS is
also the ratio �/�0 of the emission decay rate � of a point
emitter (placed at the considered position and emitting at the
considered wavelength λ) to its emission decay rate in vacuum
�0. In Fig. 1, we plot the normalized LDOS at the center of the
cluster (after complete relaxation of the structure at T = 0),
as a function of rm/λ, i.e., the ratio between the potential
equilibrium distance rm and the emission wavelength λ.

The rich, peaked structure in this pseudospectrum (remi-
niscent of the band structure of an infinite crystal of resonant
dipoles [35]) is a consequence of the interplay between
diffraction and multiple scattering effects of light with the
crystal structure, enhanced by the resonant character of the
scatterers. We highlight two representative points in the
decay-rate pseudospectrum: rm/λ = 0.466, where the decay
rate is much larger than in vacuum, and rm/λ = 0.872, where
the decay rate is similar to the one in vacuum.

In order to generate a suitable statistical ensemble at
fixed temperature, we perform standard dynamic Monte
Carlo (DMC) simulations [38] using the canonical ensemble.
We depart from a crystalline structure and perform 108 of
DMC steps (single-particle moves) to thermalize the system.
After this process, an extensive DMC sampling is performed
computing the scattering efficiency and LDOS for 2 × 104

configurations; each of these configurations is obtained after
105 single-particle DMC steps. Details of the statistical DMC
simulations are given in [34]. If the temperature of the system
is T̃ , we define a normalized temperature T ≡ KBT̃ /ε, where
KB is Boltzmann’s constant, and ε is the L-J potential-well
depth. In particular, at temperature T = 0.6 ≡ Tm, the sys-
tem presents the aforementioned dynamical phase switching
between low-energy (solidlike) and high-energy (liquidlike)
branches. In Fig. 2(a), we plot the energy per particle sampling
as a function of the number of DMC cycles and a switch event
from high to low energy is clearly observed. The average of the
self-diffusion coefficients was found to largely vary from the
liquidlike to the solidlike phases, providing an unambiguous
signature of the actual phase state [34]. Interestingly, the
same simulations showed that the pair-correlation function
g(r) is essentially the same for both phases, as shown in
Fig. 2(b) [34]. This indicates that the system switches from
liquid to an amorphous solid phase rather than crystal-like
and suggests that light-scattering experiments could not be
sensitive to this subtle dynamical switching. As a matter of
fact, this is consistent with our numerical results shown in
Fig. 2(c), where we present the energy sampling versus the
computed normalized scattering cross section Qscat (scatter-
ing efficiency) for rm/λ = 0.872. To guide the eye, points
corresponding to high and low internal energy are rendered
in different colors. Integrating the sampling in energy, we
obtain scattering efficiency histograms, as shown in Fig. 2(d).
Differences in Qscat histograms corresponding to high- and
low-energy phases can hardly be distinguished. The Qscat

histogram obtained by considering all the values of Qscat for
all possible energies [shaded gray area in Fig. 2(d)] shows a
single peak and no signature of the two-state switching.

It is well known that positional correlations between
scatterers can strongly affect the wave-transport properties,
i.e., the transport mean free path, in bulk disordered media.
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They are responsible, for example, for the large conductivity
of liquid metals [39], the cornea transparency [40], the
strong chromatic dispersion in colloidal suspensions [41] and
amorphous photonic materials [42], and natural structural
coloration [43]. The correlations in wave transport through
a translationally invariant system are encoded in the pair-
correlation function g(r). As expected, we conclude that light-
scattering experiments would not provide a way to distinguish
between phases in the switching regime due to the indistin-
guishability of the g(r) in the different dynamical regimes.

III. LDOS STATISTICS

Emission decay-rate statistics (or LDOS) shows clear signa-
tures of the phase-switching regime. In Figs. 3(a) and 3(c), we
present an energy decay-rate sampling performed at T = 0.6
at two different ratios of the interaction potential characteristic
length to emission wavelength rm/λ (the ones highlighted in
Fig. 1). In the present model, the point emitter is chosen to
be located at the position of the interacting particle closest to
the origin. In this way, the dynamics of the emitter and the
remaining scatterers is indistinguishable. The direction of the
radiating dipole is random and considered to be uniformly
distributed among the whole 4π angles. We have verified
that despite the fact that the spatially averaged self-diffusion
constant varies by a factor of three between the two phases,
the particle located initially at the center of the cluster hardly
diffuses along the DMC calculation. Hence, we can consider
the emitter as a low-diffusivity one.
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FIG. 2. (a) Energy-per-particle sampling at T = 0.6 as a function
of the MC steps. (b) Corresponding pair-correlation function among
scatterers g(r) for the high-energy branch [red (gray)] and for the
low-energy branch (black). (c) Energy-scattering efficiency sampling
at the switching region (T = 0.6,rm/λ = 0.872); red (gray) dots
correspond to high-energy states and black dots correspond to low-
energy states. (d) Corresponding scattering efficiency distributions for
the upper energy branch [red (gray) curve] and lower energy branch
(black curve) corresponding to liquid and solid phases, respectively.
The shaded area corresponds to the sum of both high- and low-energy
distributions.
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FIG. 3. Energy-per-particle decay-rate sampling at the switching
region (T = 0.6) for different ratios rm/λ: (a) rm/λ = 0.466, (c)
rm/λ = 0.872. (b), (d) The corresponding decay-rate distributions
are shown after integrating in energies: black histograms correspond
to the solid phase, red (gray) ones correspond to the liquid phase, and
the shaded gray areas correspond to the total measured decay rates
(sum of both solid and liquid distributions).

On the other hand, as discussed in more detail in Ap-
pendix A, we calculate the emission decay rates of the dipole
emitter considering all the multiple scattering in the system.
We nevertheless do not take into account any far-field radiation
delay due to radiation trapping. Those effects might be present
and would be caused by coupling to long-lived modes into
the sample. However, it can be argued that the sample is in
the diffusive regime (see Appendix B), where such long-lived
modes should be rare. In fact, as demonstrated in [31], at least
in collections of uncorrelated disordered point scatterers, such
long-lived modes do not exist.

The emission rates evolve with time, following the fast
structural changes in the dynamic coexistence region. As it can
be observed in Figs. 3(a) and 3(c), the decay-rate distributions
corresponding to lower-energetic levels (solid phase, black
dots and lines) are different from the higher-energetic levels
(liquid phase, red dots and lines). In particular, its average
values and fluctuations are appreciably different. Collecting
all the emission rates in a histogram results in the statistical
distributions of emission rates shown as shaded gray areas in
Figs. 3(b) and 3(d). For the selected working wavelengths, the
distributions are always bimodal, showing a clear signature of
the phase switching.

In order to clarify the origin of the statistical signatures of
phase switching in single-emitter decay rates, we analyze in the
following the normalized emitter radial distribution function
(ERDF) of scatterers around the emitter. The ERDF is defined
as the probability of finding a particle at a distance r from the
emitter P (r) normalized to the probability in the absence of any
correlation (∝ r2). In this paper, we make a distinction between
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FIG. 4. Emitter radial distribution function (ERDF) for scatterers
surrounding the emitter at the phase-switching region (T = 0.6).
Black and red (gray) curves represent the solid and liquid region,
respectively.

ERDF and the pair-correlation function. While for g(r) we
consider all pairs of scatterers, we reserve the term ERDF only
for the distributions of distances between the emitter and the
scatterers. In a translationally invariant system, both distribu-
tions should be the same since we consider the emitter to have
the same dynamics as the scatterers. Nevertheless, as shown in
the next paragraphs, in our relatively small and strongly con-
fined system, the emitter, despite being subjected to the same
interaction potential, behaves in a singular way as compared
to the remaining scatterers pairs because it is placed very close
to the center and, at the temperatures of interest, remains close
to its initial position during the course of the simulation.

In contrast to the pair-correlation function g(r), the ERDF
at constant temperature shows dramatic variations that follow
the phase switching. In Fig. 4, we show the ERDF at T = 0.6
calculated in the low-energy regime, or amorphous solid phase,
and in the high-energy regime, or liquid phase. As can be
observed in this figure, the solid phase exhibits a richer peak
structure than the liquid phase. This fact might be related to a
better layering of the structured around its center. In particular,
we observe that the probability of finding particles close to the
emitter, represented by the height of the first peak, is much
higher in the solid phase than in the liquid one.

With the above considerations, the physical picture we
devise is as follows. The ensemble-averaged scattering cross
section is determined by the pair-correlation function g(r).
Hence, for identical scatterers, similar g(r) shall lead to similar
scattering properties. The dynamics of light emission by single
emitters, however, is controlled not only by the multiple
scattering properties of the whole ensemble, but also by the dis-
tribution of scatterers around the emitter, in turn described by
the ERDF [16]. Hence, if we have a system showing disparate
ERDFs for a slowly diffusing emitter, the lifetime emission
statistics of such an emitter can be controlled by the ERDF
variations even when the g(r) remains almost unchanged.

IV. CONCLUSIONS

In summary, we have presented a model system of interact-
ing light scatterers that present a solid-liquid phase transition.

In the case where the system is relatively small (few hundreds
of scatterers) and strongly confined, the system presents a
phase-switching regime where it switches between phases
in its entirety for a certain range of temperatures. We have
shown that due to the fact that g(r) functions are nearly
indistinguishable between both phases, static light-scattering
experiments would not be able to discriminate between phases
in the switching regime.

Strikingly, we find that single-emitter decay-rate statistics
shows strong signatures of the phase-switching regime. We
have correlated this behavior to the difference in the radial
distribution functions between scatterers and the emitter
position which, in turn, might also be attributed to differences
in the self-diffusion of scatterers between both phases. There-
fore, this could be experimentally verified in an experiment
performed using emitters with low diffusivity.

The system we have considered in this work presents an
illustration of one deep difference between light scattering
and light emission. Apart from the fundamental implications
of this effect, it might be used as a tool for monitoring subtle
thermodynamical behaviors in complex systems with sizes
comparable to the wavelength of the light source employed in
the experiment.
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APPENDIX A: LDOS AND TOTAL SCATTERING CROSS
SECTION

In this Appendix, we present the expressions used to
evaluate the electromagnetic local density of states (LDOS)
and the total scattering cross sections.

Here we consider a particular frequency (ω = ω0) and an
associated particular wave number (k = k0 = ω0/c) at which
dipoles are in resonance with the electromagnetic radiation,
meaning that the polarizability is now given by α = i6π/k3

0 .
The electric field at some position r, generated by the

presence of a dipole emitter μ at some position r′, can be
obtained by operating the Green tensor over the dipole. This
is expressed as

E(r) = k2

ε0
G0(r,r′) · μ, (A1)

with ε0 being the permittivity of vacuum.
The Green tensor is given by [44]

G0(r,r′) = eikR

4πR

[(
1 + ikR − 1

k2R2

)
I

+
(

3 − 3ikR − k2R2

k2R2

)
R̂ ⊗ R̂

]
, (A2)
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where R is the modulus of the vector R = r − r′, R̂ ⊗ R̂
denotes the outer product of R̂ = R/R by itself, and I is the
unit dyadic.

For a system formed by N dipole scatterers, the total electric
field at some position r (outside any scatterer) is given by

E(r) = Eext(r) + k2

ε0

N∑
n=1

G0(r,rn)pn, (A3)

where Eext(r) is the external electric field at the considered
position, rn is the position of the nth scatterer, and pn is the
induced dipole located at rn.

Induced dipoles, pn = ε0αEn, are obtained by self-
consistently solving the set of 3N equations relating the total
incoming field exciting the nth dipole En with the external
field and the field radiated from the remaining induced dipoles,
which is proportional to the total incoming fields impinging
onto each of the remaining induced dipoles:

En = Eext(rn) + k2α
∑
m�=n

G0(rn,rm)Em. (A4)

Equation (A4) describes the coupled dipole method [45].
The second term on the right-hand side of Eq. (A3) is the

scattered field,

Es(r) = k2α

N∑
n=1

G0(r,rn)E(rn). (A5)

If the external field is given by Eq. (A1), the total field scattered
by the collection of scatterers can then be calculated after
solving Eq. (A4) with this external field. The normalized
spontaneous decay rate �/�0 of a dipole emitter μ, in the
weak-coupling regime, is given by [44]

�

�0
= 1 + 6πε0

|μ|2k3
Im[μ∗ · Es(r′)], (A6)

where Im stands for imaginary part, and �0 is the emitter’s
free-space decay rate.

In order to compute the scattering cross section σscat,
we consider an incoming plane wave as the external field,
Eext(r) = E0 exp (k · r). After solving Eq. (A4) with this
external field, the induced dipoles are obtained and the total
scattering cross section of the system can be written in terms
of the induced dipoles pn as [46]

σscat = k3

ε2
0 |E0|2

N∑
n,m=1

p∗
n · Im[G0(rn,rm)]pm. (A7)

APPENDIX B: TRANSPORT REGIME

We used a set of resonant electric point dipoles throughout
the manuscript. An important question that might arise is
whether the system is in the quasiballistic, diffusive, or
localization regimes.

Considering the standard diffusion theory, the transport
mean free path �tr, in the absence of absorption and anisotropic
scattering, can be taken as

�−1
tr = ρσ

(p)
scat, (B1)

where ρ is the density of scatterers and σ
(p)
scat is the single-

particle scattering cross section. The density ρ has been taken
to be [34] ρ = 1.07r−3

m . On the other hand, the scattering cross
section at resonance is given by

σ
p
scat = 6πk−2. (B2)

We will now estimate both the optical thickness b 	 R/�tr

and k�tr for the cluster of radius R formed by N = 515
scatterers. Considering that

R =
(

3N

4πρ

)1/3

, (B3)

and combining Eqs. (B1)–(B3), we obtain an optical thickness,

b 	 R/�tr =
(

3N

4π

)1/3 3

2π
ρ2/3λ2 	 2.48

(
λ

rm

)2

	
{

3.27 for rm/λ = 0.872
11.44 for rm/λ = 0.466.

(B4)

Also, we get

k�tr = 4π2

3

( rm

λ

)3
	

{
27.81 for rm/λ = 0.872
4.20 for rm/λ = 0.466.

(B5)

We can conclude from the above considerations that the
system cannot localize due to the large values of k�tr, and that
it is well, though not very deep, in the diffusive regime due to
its relatively large optical thickness.

Of course, the ratio of the transport time to the natural
decay rate of the emitter τ0 = �−1

0 will depend on the chosen
emitter. In [21], it was argued that in a highly scattering
system with k�tr 	 9.4, the transport time (∼ps) was much
smaller than the fluorescence typical time of organic dyes
(∼ns). We conclude hence that despite the strong scattering
in the proposed samples, experiments using state-of-the-art
techniques should be feasible.
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