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Simple method to construct flat-band lattices
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We develop a simple and general method to construct arbitrary flat-band lattices. We identify the basic
ingredients behind zero-dispersion bands and develop a method to construct extended lattices based on a
consecutive repetition of a given miniarray. The number of degenerated localized states is defined by the number
of connected miniarrays times the number of modes preserving the symmetry at a given connector site. In this
way, we create one or more (depending on the lattice geometry) complete degenerated flat bands for quasi-one-
and two-dimensional systems. We probe our method by studying several examples and discuss the effect of
additional interactions such as anisotropy or nonlinearity. We test our method by studying numerically a ribbon
lattice using a continuous description.
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I. INTRODUCTION

Lattices or extended periodic systems constitute a central
framework for several areas of research. For example, in
solid-state physics periodic lattices are a fundamental starting
point [1], where many general predictions have been made
without a direct experimental observation. In recent decades,
photonic lattices have emerged as key experimental setups
to study most of the predicted electronic properties, due to
a direct observation of the optical wave function using a
simple CCD camera [2]. In this context, Anderson local-
ization [3] was directly observed first in two-dimensional
(2D) waveguide arrays [4] and then also in one-dimensional
(1D) lattices [5]. In this case, the energy is trapped due to
consecutive destructive interference from randomly distributed
scatters (sites or waveguides). Before this very fundamental
observation, localization resulting as a balance between
discreteness (diffraction) and nonlinearity (self-focusing) was
observed in 1D [6–8] and 2D [9,10] lattices. Nonlinear
localized modes of this nature are known as discrete solitons
or intrinsic localized modes [11] and the conditions for
existence and stability, in diverse contexts, are nowadays well
understood [12]. The nonlinearity and larger intensities create
effective defect regions, where the trapping potential changes
locally. In this way, waves naturally get trapped at deeper
potential wells. In the nonlinear case, this occurs in a perfectly
periodic lattice; however, this type of phenomenon can also
be observed in a linear regime by directly inserting a linear
defect into a homogeneous system [13,14]. Exponentially
decaying localized modes are obtained in both linear and
nonlinear cases, depending on the effective strength of the
induced defect. Therefore, these modes are not compact and
high localization demands a very strong effective disturbance.

Another interesting way to induce localization on a lattice
originates from the understanding of the linear properties of
a given unconventional array. In standard periodic systems
(e.g., square, hexagonal, or honeycomb lattices) the linear
spectrum is always dispersive (except for some k-space points
where the derivative becomes locally zero). As a result,
when exciting the lattice, for example, using a single-site
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excitation, a set of linear extended modes, with different
spatial frequencies, will be excited and waves will propagate
without spatial coherence across the lattice, generating a
multimode interference pattern [15]. Therefore, stationary
localized patterns will be not observed for perfectly periodic
linear standard lattices and the energy will diffuse only [2].
However, by carefully selecting the geometry of the lattice,
a different kind of linear spectrum can be obtained. A flat-
band (FB) (unconventional) lattice possesses a unique linear
spectrum. In these quasi-1D or 2D systems, a complete band
(not only a section of it) is completely flat, implying zero
dispersion and not diffraction at all for the states belonging
to this band. Diamond [16], stub [17], sawtooth [18,19],
kagome [20,21], or Lieb [22–24] lattices are some examples
of recent explored FB systems, in diverse physical contexts.
These examples show the diversity of fabrication techniques
and impressive possibilities for creating, in principle, any
wished lattice. In all these geometries, a FB is composed
of a large set of degenerated localized linear modes, all
of them propagating coherently along the lattice. Moreover,
these states occupy only a few lattice sites being exactly
compact (zero tail), in a perfectly periodic linear lattice. This
implies that the localization is always perfect and it does not
depend on any external parameter. The special geometry of
FB systems generates consecutive phase cancellations that
effectively reduce the excited region to a miniarray of a given
lattice. The linear combination of these localized states is
thought to be important for applications in all-optical imaging
transmission [25,26], as a secure and compact mechanism of
transporting information at a very low level of power.

There have been several attempts to find a simple method
to construct FB lattices [27–30]. However, we have not found
a direct, simple, and general method to create any wished
FB system with given specific features (e.g., having several
zero-dispersion bands). For example, Ref. [28] starts from
a given 2D or 3D lattice and constructs partial line graphs
without much connection with the physics of the sublattices,
which is of major relevance in our method. In Ref. [31]
Hyrkäs et al. describe a collection of FB lattices to study
bosons and fermions dynamics. They briefly mention that
an important condition is that the wave function may be
zero at some connecting sites, in order to make impossible
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the transport across the lattice. It is important to notice that
this is an important requirement, but it is not complete. It
is possible to excite any lattice with a profile having zero
amplitudes at some connecting sites; however, the energy
could nevertheless diffuse and the FB will be not exclusively
excited. To observe localization, as a result of the excitation of
any FB, a mandatory condition is to excite the lattice by one
of the modes of a given miniarray (or a linear combination
of them) that has zero amplitude at the connecting sites.
The additive destructive interference will make possible the
cancellation of the amplitude at the connecting sites and the
transport will be just forbidden.

In this work we identify the key ingredients to construct
arbitrary lattices possessing one or more flat bands, focusing on
the consecutive addition of miniarrays to form an extended lat-
tice. Our method is based on the knowledge of the fundamental
linear modes belonging to a given miniarray, in order to ensure
the cancellation of phases at connector sites. The existence of
a linear mode satisfying this condition constitutes a proof to
guarantee the existence of a flat band, which is composed of
compact localized states. Different systems in quasi-one- and
two-dimensions are generated with one or more flat bands (it
is straightforward to extend our method to three dimensions
as well). Additionally, we also show that it is possible to
use our method to construct aperiodic systems having a set
of compact modes forming a full FB. Extra considerations,
for example, anisotropy, next-nearest-neighbor interactions,
or local nonlinearity, are also discussed. Finally, we study a
ribbon lattice using a continuous model where we test our
discrete predictions in a more realistic configuration.

II. GENERAL MODEL

Focusing on written and induced waveguide lattices [2],
we model the propagation of light in weakly coupled systems
using a discrete linear Schrödinger equation. In this model,
a given waveguide mode weakly interacts with its close
neighbors due to an evanescent interaction. The amplitude
of the mode at the �nth waveguide position is given by ψ�n and
its dynamical evolution is simply modeled as

−i
dψ�n
dz

= ε�nψ�n +
∑
�m �=�n

Vnmψ �m, (1)

where z is the propagation coordinate (in other contexts, it
corresponds to time [2,12]), ε�n corresponds to the propagation
constant at the �nth site (if the lattice is homogeneous, we
simply set ε�n = 0, without loss of generality), and Vnm

describes the coupling interaction between the �nth and �mth
sites. When constructing the lattice, these coefficients define
all the linear interactions between close sites, according to
a given lattice geometry. In fact, as we will discuss below,
some FBs also survive when including next-nearest-neighbor
interactions, of course, taking into account the exponentially
decaying tendency of coupling constants with respect to
separation distance [32]. For some FB lattices the anisotropy
or next-nearest-neighbor interactions destroy the flatness of
the band. However, we will show that our method allows the
construction of more robust systems, which is important to

observe the FB phenomenology in real experiments [16,19,21–
23,26,33].

In general, the linear properties of any periodic system are
contained in the definition of Vnm coefficients. We solve the
stationary problem by using a plane-wave (Bloch) ansatz

ψ�n(z) = A�nei�k·�neiβz,

where �k corresponds to the lattice wave vector and β describes
the longitudinal propagation constant or spatial frequency. By
inserting this into the model (1), we obtain the following set
of coupled stationary equations:

β(�k)A�n =
∑
m�=n

VnmA �mei�k·( �m−�n). (2)

By solving this eigenvalue problem, we obtain the linear
spectrum of a given lattice according to the interactions
defined by Vnm. All the coupling interactions between close
waveguides are explicitly described in this term. (Throughout
this work we consider a constant spatial period of a = 1, in
order to simplify the expressions.) The number of sites per
unitary cell defines the number of different amplitudes A�n to
be considered. For example, in a system with three sites per
unit cell (e.g., stub, Lieb, or kagome lattices), we require three
different amplitudes to characterize the linear properties of the
system having three linear bands.

III. TWO-SITE CASE

Let us start with the simplest possible miniarray: a dimer
[see Fig. 1(a), left]. This basic system describes two close
waveguides interacting via a coupling coefficient V . A dimer
possesses two linear stationary modes A1 = A2 and A1 =
−A2 [symbolic notation {+,+} and {+,−}, respectively], as
shown in Fig. 1(a), right (for simplicity, we do not include
any mode normalization in the text). The frequencies of these
modes are β = V and β = −V , respectively. Now we increase
the system size by adding a connector site in between two
vertically oriented dimers [see Fig. 1(b)]. We include an

+

+

V̄ V̄

V̄ V̄

(a) (b)

(c)
......

+

-

(d)

VV V

FIG. 1. (a) Dimer and its linear modes. (b) Two miniarrays
connected by a connector (dark) site. (c) Rhombic lattice. (d) Linear
spectrum for V = V̄ = 1.
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additional coupling V̄ (solid line), which is determined by
the specific geometry (angle and distance [32]). Immediately,
we realize that the original dimer solution {+,−}, located in
either of the two dimers, also corresponds to a solution (mode)
of this newly composed system. For this mode, Eq. (2) reads

β · 0 = V̄ · (A − A) = 0,

β · ±A = V · ∓A + V̄ · 0 ⇒ β = −V.

The phase difference between the nonzero amplitude sites
allows the cancellation of the amplitude at the added connector
site. The frequency of this mode, in the newly composed
system, remains equal to the one of the original dimer
problem (β = −V ). By adding more connector sites and
dimers (miniarrays), we are able to construct a full extended
lattice, like the one shown in Fig. 1(c). This lattice is known
as a rhombic or diamond lattice and has been recently studied
experimentally in Ref. [16]. As the {+,−} mode is still a
mode in the extended system, there will be as many of these
modes as the number of miniarrays (dimers) in the lattice,
all of them having the same frequency β = −V . Therefore,
all these modes will form a completely degenerated flat
band.

We solve the linear problem (2) for the full rhombic lattice,
considering the unitary cell formed by three sites [enclosed
area in Fig. 1(c)], and find the bands

β(kx) = −V,[V ±
√

V 2 + 32V̄ 2 cos2(kx)]/2.

We realize that the miniarray mode is also an exact solution
of the extended system forming a full flat band at β = −V ,
independent of the V̄ value. Figure 1(d) shows the linear
spectrum for this diamond lattice.

The discreteness of the system and the symmetry at the
connector site equation, when considering a linear mode of
the miniarray, are the keys to success to create any lattice
possessing, at least, one flat band. For the previous example,
assuming a {+,−} mode (or combinations of it) as an initial
condition at z = 0, the connector equation becomes

−i
dψ �C
dz

=
∑
m�=C

VC,mψ �m(z = 0) = 0 ⇒ ψ �C(z) = 0

because ψ �C(z = 0) = 0. Considering this example and extend-
ing it to other configurations, we could claim that we can
construct any FB lattice by connecting any given miniarray
(dimer, trimer, rhombus, etc.) via different connector sites
in different directions, ensuring that the dynamical equation
for this site may be strictly equal to zero. This is achieved
by using a specific miniarray mode as an initial condition,
which effectively allows the cancellation of phases at the
connector site. In this way, we can construct a full lattice with
a zero-dispersion band, where this particular miniarray mode
will be a degenerated solution of the extended system. One
way to ensure this is, for example, by choosing the connector
sites coinciding with a node of a given mode of the miniarray.
Therefore, this mode will naturally become a mode of the flat
band because it will preserve the symmetry at the dynamical
connector site equation. Of course, this method is not unique,
but when it is successfully applied it ensures the existence
of a FB.

V1 V1

+ + +
+ . -
- + -

FIG. 2. Shown on the left is a three-site miniarray and on the right
are linear modes.

IV. THREE-SITE CASE

Another interesting example is based on a miniarray
consisting of only three sites connected in a row, as sketched
in Fig. 2, left. This simple system possesses three linear
stationary modes {+,

√
2,+}, {+,0,−}, and {−,

√
2,−}, as

shown in Fig. 2, right, with frequencies β = √
2, 0, and −√

2,
respectively. We will show that we can use two of these modes
to construct two different FB lattices.

A. Cross lattice

We start our lattice composition by selecting one of the
three linear modes of the miniarray. The first mode does not
present any phase oscillation. Therefore, it will not induce
cancellation of transport on a given connector site, nor will it
be associated with any flat band (however, this could change
by assuming very rear negative coupling constants [34]). The
second {+,0,−} mode is similar to the mode used for the dimer
to create the rhombic lattice, but it has an extra zero-amplitude
site at the center [see Fig. 3(a)]. So it becomes natural to use
this null site to connect two miniarrays. However, if we connect
a second miniarray, for example, to the right, we would end
up with a system that will not preserve the symmetry of the
miniarray mode and our method will simply not work (there is
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FIG. 3. (a) Three-site miniarray and one of its modes. (b) Two
miniarrays connected by a connector (dark) site. (c) Four linear modes
of the composed system. (d) Cross lattice. (e) Linear spectrum for
V1 = V2 = 1.
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a way to do it in a higher dimension, by rotating the miniarrays
in 90◦ consecutively, obtaining a 3D FB spinelike ribbon).
Therefore, we add an extra connector site in between two
miniarrays as shown in Fig. 3(b), using a horizontal coupling
V2. As we expect, the trimer {+,0,−} mode is also a solution of
this new system [see Fig. 3(c1)] and it can be located in either
of the two miniarrays or simultaneously in both. However, we
realize that there is not only one FB candidate solution for
this newly composed system. Interestingly, the inclusion of
a connector site and the conservation of the zero amplitude
site at the center of the original trimer allow the generation of
new linear localized states. In Fig. 3(c2) we show a different
mode, which still has a zero amplitude at the center of the
three-site miniarray. This mode is exactly equal to the stub
FB mode [17], although our composed system has additional
sites below the central row. Due to symmetry, this mode can
also be located in the bottom row as shown in Fig. 3(c3).
As a consequence, another FB mode could be the one having
equal amplitudes in the top and bottom rows while having a
double negative amplitude at the central connector site [see
Fig. 3(c4)]. This new mode preserves the zero amplitude at the
miniarray center, which indeed would be the connection of the
composed system to its surroundings.

In this particular case, the inclusion of an off-axis connector
site adds more complexity to the original trimer miniarray.
Therefore, in order to describe all the possible FB mode
candidates, a new miniarray definition is required, i.e., a
four-site miniarray as the region enclosed in Fig. 3(d). In
addition to preserving the original trimer mode, now written
with four components as {+,0,−,0}, an extra mode appears
with the same frequency β = 0. This mode has a profile
{+,0,0,−V1/V2} or {0,0,+,−V1/V2}, where always the center
site of the original three-site miniarray remains zero. In fact,
this new mode does not change our criterion for constructing
FB systems. It tells us that the original three-site miniarray was
not enough to describe the new quasi-1D composed system,
so we may consider a larger miniarray structure (although it
allowed the generation of a 3D FB spinelike ribbon lattice as
noted above).

Now, by connecting several three-site miniarrays using
several connector sites, we are able to construct a full cross
lattice, as shown in Fig. 3(d). We define the unitary cell of this
lattice [enclosed area in Fig. 3(d)] and solve the eigenvalue
problem (2), finding that

β(kx) = 0,0, ±
√

4V 2
2 cos2(kx) + 2V 2

1 .

We plot these four bands in Fig. 3(e). We find two dispersive
and two degenerated flat (β = 0) bands. These zero-dispersion
bands are composed of the localized states shown in Fig. 3(c),
exactly the same obtained for the miniarray and for the
composed small system [Fig. 3(b)].

B. Sawtooth lattice

We continue using the modes of the trimer miniarray,
but this time we focus on the third one: {−,

√
2,−} [see

Fig. 4(a)]. We add a connector site and couple a second
three-site miniarray, as shown in Fig. 4(b). As the coupling
coefficient depends on the geometry, we allow the new system

V1

V1

V1

V1

+

-

-

V1

V1 V1
V1

V1V1
V2

V2

... ...
(c)

(d)

(a)

(b)

FIG. 4. (a) Three-site miniarray and one of its linear modes. (b)
Two miniarrays connected by a connector (dark) site. (c) Sawtooth
lattice. (d) Linear spectrum for δ = 0.75 (thin),

√
2 (thick), and 2

(dashed).

to have diagonal (V1) and horizontal (V2), in principle different,
coupling coefficients. By injecting the {−,

√
2,−} mode in

the first miniarray, we realize that an extra condition may
be satisfied. If we write the stationary equation (2) for the
connector site amplitude, we get

β · ψC = V1 · (0 − A) + V2(
√

2A + 0) = (V2

√
2 − V1)A.

Therefore, in order to have a zero amplitude at the connector
site, a ratio δ ≡ V1/V2 = √

2 is required. For this particular
condition, the third mode of the three-site miniarray becomes a
mode of the composed system as well. In fact, it can be located
in three different positions in this new composed system,
because the connector site forms also a similar miniarray with
a different inclination.

By continuing to add miniarrays via connector sites, we are
able to construct a full sawtooth lattice like the one sketched
in Fig. 4(c), where the unitary cell of four sites is demarcated
by an enclosed area. However, due to the sawtooth symmetry,
the four sites can be reduced to just two sites [19]. We solve
the eigenvalue problem (2) with this geometry and find two
linear bands

β(kx) = V2[cos(2kx) ± f (kx,δ)],

where f (kx,δ) =
√

1 + 4(δ2 − 1) cos2(kx) + 4 cos4(kx). If
δ = √

2, the two bands reduce to β(kx) = −2V2 and
4V2 cos2(kx), i.e., a flat band emerges for this particular ratio
between coupling coefficients. In fact, this is exactly the same
condition for the third mode to be a mode of the composed
system. Therefore, the {−,

√
2,−} mode is also a mode of a

full sawtooth lattice, when satisfying the condition δ = √
2.

In Fig. 4(d) we show the linear spectrum for three different
values of δ, where we observe that the lower band becomes
completely flat at this particular condition.
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FIG. 5. (a) Eight-site miniarray. (b) Two linear modes.

V. TWO-DIMENSIONAL LIEB-LIKE EXAMPLES

Now we review our method for two-dimensional Lieb
FB lattices, which have received a great deal of attention
recently [22,23,26,33,35]. We start by identifying the miniar-
ray necessary to construct a standard Lieb lattice. In Fig. 5(a)
we show a miniarray example consisting of eight sites forming
a ring, including an anisotropy (Vx �= Vy) degree of freedom.
This system possesses eight linear modes, but we consider
only two for our study: {0,+,0,−Vy/Vx,−Vy/Vx,0,+,0}
[Fig. 5(b1)] and {−,0,+,0,0,+,0,−} [Fig. 5(b2)]. These two
modes are degenerated with a frequency β = 0, due to a perfect
cancellation of phases.

A. Lieb lattice

We construct a Lieb 2D lattice by using the miniarray and
first mode shown in Figs. 5(a) and 5(b1), respectively. In this
case, a zero site of the miniarray is used as a connector site
(there is no need to add an extra site, although when doing it a

(a)
(b)

(c)

FIG. 6. (a) Two miniarrays connected by a connector (dark) site.
(b) Lieb lattice. (c) Linear spectrum for Vx = Vy = 1.

different FB lattice could be created, as we will show below).
Figure 6(a) shows a composed system formed using the con-
nection of two miniarrays sharing the same connector site at
one corner. As expected, the {0,+,0,−Vy/Vx,−Vy/Vx,0,+,0}
mode is also a solution of this composed system in either of
the two miniarrays, due to the perfect phase cancellation at the
corner sites. By repeating this procedure in different directions
and using different corner sites, we are able to construct a full
2D Lieb lattice as shown in Fig. 6(b). The original miniarray
mode can be located in different miniarrays of the full lattice,
all of them degenerated with β = 0.

Solving Eq. (2) for this lattice geometry, which consider
three sites per unit cell [see enclosed region in Fig. 6(b)], we
find the corresponding linear spectrum

β(kx,ky) = 0, ± 2
√

V 2
x cos2(kx) + V 2

y cos2(ky).

As it is expected from our method, the degenerated miniarray
modes form a complete zero-dispersion band at β = 0 [see
Fig. 6(c)]. Two dispersive bands are found for this system as
well [22,23].

B. Lieb 2 lattice

We construct a Lieb 2 lattice by using the miniarray and
second mode shown in Figs. 5(a) and 5(b2), respectively. For
this problem, we have zero-amplitude sites at the sides of
the miniarray. So we add a new connector site to connect
this miniarray to another one, as shown in the example
presented in Fig. 7(a). If we inject the original stationary
{−,0,+,0,0,+,0,−} mode [Fig. 5(b2)] in one or both miniar-
rays, it will also be a solution of the composed system, because
the connector site remains zero. Naturally, we can add several
connector sites on the four sides of the original miniarray and
connect more miniarrays in different directions. In this way,
we are able to compose a full new system that we refer to as
a Lieb 2 lattice, with the geometry shown in Fig. 7(b). This
composed system possesses ten sites per unit cell [see enclosed
region in Fig. 7(b)] and therefore a linear spectrum having
ten linear bands. The analytical form of these bands is not
trivial, so we only present their plot in Fig. 7(c). By inspecting
the spectrum, we find two flat bands, both located at β = 0.
The first one is composed of {−,0,+,0,0,+,0,−} miniarray
modes, which continue being solutions of the extended system
[see the shaded area at the bottom left corner of Fig. 7(b)].
Additionally, a new localized FB state appears in the region in
between four miniarrays. It has eight sites different from zero
in a staggered sign sequence, which is necessary to cancel the
transport to the rest of the lattice [see the bottom right shaded
region in Fig. 7(b)]. For an isotropic configuration (Vx = Vy),
all amplitudes have equal magnitude. However, for anisotropic
lattices (Vx �= Vy) the relation of amplitudes becomes a bit
more complicated. If we define the horizontal connector site
amplitude as C, the vertical connector site amplitude as B,
and the corner site amplitude as A, then C = −VyA/Vx and
B = −VxA/Vy . Similar to the cross lattice case (Fig. 3), the
appearance of this new localized state does not change our
method, it only implies that the initial miniarray was not
enough to describe the full new composed system.
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FIG. 7. (a) Two miniarrays connected by a connector (dark) site.
(b) Lieb 2 lattice. (c) Linear spectrum for Vx = Vy = 1.

VI. MULTIPLE FLAT BANDS

The number of FBs of a given lattice depends on the number
of stationary modes that satisfy the symmetry condition at the
connector sites of a given miniarray. Therefore, by analyzing
the specific geometry, we can construct different lattices
having more than only one FB. For example, the cross and
the Lieb 2 lattices present two FBs at frequency β = 0. As we
discussed before, the modes belonging to these two bands
are spatially different, but both preserve the condition of
having a zero amplitude at the connector sites, as the original
miniarray mode does. Therefore, depending on the geometry
and complexity of a given miniarray, it is possible to find
additional compact linear modes that are also solutions of the
small system and that preserve the condition of canceling the
transport at the same connector site.

Now we show explicitly how to construct a system
possessing more than one flat band. We focus on a simple
system, the so-called B2-ribbon. In Fig. 8(a), left, we show
a four-site miniarray that possesses four linear modes, with
three of them being useful for FB lattice composition. If we
think of an horizontally oriented ribbon lattice, the two good
modes (useful for phase cancellation) are the ones shown in
Fig. 8(a), right. These modes are denoted by {−,+,−,+}
and {−,+,+,−}, with frequencies β = (Vx − Vy) and β =
−(Vx + Vy), respectively. We immediately observe that when
connecting two miniarrays via a connector site [as shown in

Vy

Vx

(a)
+

-

+

-

+

- +

-

(c) ... ...

(b)

(d)

Vd

FIG. 8. (a) Four-site miniarray and two of their linear modes. (b)
Two miniarrays connected by a connector (dark) site. (c) B2-ribbon
lattice. (d) Linear spectrum for Vx = Vy = Vd = 1.

Fig. 8(b)], the dynamical equation for this site will be just zero,
when initializing the system with one of these stationary modes
(the connector site is symmetrically coupled to the miniarrays
with a coefficient Vd ). By increasing the system size with more
connectors and more miniarrays, we are able to construct a
full B2-ribbon lattice [see Fig. 8(c)]. We compute the linear
spectrum of this extended system by identifying the unitary
cell of this lattice [enclosed region in Fig. 8(c)]. This cell
contains five sites, therefore five linear bands are generated
as Fig. 8(d) shows. The analytical expressions for the three
dispersive bands are not compact and we will not write them
explicitly. The two zero-dispersion bands are simply located
at frequencies β = (Vx − Vy) and β = −(Vx + Vy), exactly
at the same frequencies as the original miniarray modes.
Therefore, as expected, these two modes are also localized
solutions for the extended system and generate two full flat
bands.

This example is one of the many possible configurations
useful to create lattices presenting more than one FB. Of
course, this method could also be extended to full 2D lattices
and not only to quasi-1D ribbons. In fact, the lattice Lieb 2 (see
Fig. 7) is an example of this. In general, the dimension is not
important; the key point is to preserve the discreteness of the
system that allows the cancellation of phases for the modes of
the miniarray and therefore the cancellation of transport across
the lattice.

VII. ADDITIONAL CONSIDERATIONS

A. Aperiodic composition

It is possible to construct aperiodic lattices by connecting
different miniarrays via connector sites. The particular mode
of every miniarray will also be a mode of the full lattice and
could form a dense band, of course depending on its particular
frequency. This point is very interesting because aperiodic
systems will present no dispersive bands at all, but could
present full FBs composed of different states. Therefore, the
disorder could promote localization in the form of destructive
interference of plane waves (Anderson localization [4,5]) or
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(a)

(b)

FIG. 9. (a) Composed aperiodic system and its (b) linear spec-
trum. Insets in (b) show the amplitude profile for some localized
modes of this system (the color scale increases from red to yellow,
with orange being equal to zero).

due to a local geometric phase cancellation (FB localiza-
tion [16,22,23]). As our criterion does not depend on the
periodicity but on the discreteness of the system (miniarray
geometry), we can compose an aperiodic system as a sequence
of different miniarrays connected by several connector sites.
This system will not be periodic, but still will preserve all the
properties of the different coupled miniarrays. In Fig. 9(a) we
show an example of a small composed system, which includes
eight different miniarrays. We obtain its linear spectrum by
numerically diagonalizing the corresponding coupling matrix
Vnm and plot β versus the eigenvalue number in Fig. 9(b).
As this system is not periodic, its spectrum does not form a
soft curve [36]. Additionally, we realize that all the miniarray
modes [14 in this case; see the boxes in Fig. 9(b)] that satisfy
the condition for having a zero amplitude at a given connector
site are also a solution of this extended system. This array
is clearly aperiodic, but can be extended to form a periodic
lattice by repeating the same pattern several times. By doing
this, we would generate a new periodic system, but having a
more complex unitary cell [Fig. 9(a)]. Therefore, the original
miniarray states will also be a solution of the extended system
and will form 14 different degenerated flat bands.

B. Next-nearest-neighbor coupling

Not all the lattices preserve their zero-dispersion band when
including next-nearest-neighbor interactions. For example, a
Lieb lattice adds curvature to the original flat band when
including diagonal coupling [37] and the FB localized modes
are simply lost. However, this is not an intrinsic problem
of FB systems, the point is that the lattice geometry is just
not the right one. In order to construct a lattice with a FB,
which is robust against next-nearest-neighbor interactions,
there is no need to add any new ingredient to our method.
We just may chose the right geometrical configuration for
connector sites to ensure that when considering, for example,
a diagonal coupling, the dynamical equation for the connector
site continues being zero, when injecting a FB mode as an
initial condition. For example, this occurs for the previous
Lieb 2 lattice [Fig. 7(b)]. As we explained before, this
lattice possesses two FBs at β = 0. When including diagonal
coupling coefficients, both FBs survive, but one of them
shifts to a frequency β = −2Vd , where Vd corresponds to

the next-nearest coefficient (we can see that when Vd = 0,
the band converges to its previous location). Another example
is the B2-ribbon lattice (Fig. 8). When including a diagonal
interaction between vertices of the miniarray, the {−,+,−,+}
and {−,+,+,−} modes shift their frequencies to β = (Vx −
Vy) − Vd and β = −(Vx + Vy) + Vd , respectively. Therefore,
the FBs also shift their frequencies to these values and the
mode profiles preserve their perfect localization.

C. Anisotropy

In typical photonics setups, the anisotropy of crystals or
of the waveguide modes is an important parameter to be
taken into account when studying the linear properties of a
given lattice. For example, in femtosecond written waveguide
arrays [22,35], the coupling interaction strongly depends on
the elliptical profile of written waveguides (although the silica
buffer is essentially isotropic). On the other hand, photonic
lattices induced in SBN photorefractive crystals [21,26] also
presents a strong anisotropy, but caused by the crystal itself
(induced waveguides have a symmetrical profile). This consid-
eration effectively implies that, for a fixed distance, the cou-
pling also changes depending on its orientation (Vx �= Vy) [32].
When computing the linear spectrum of a given lattice, the
anisotropy could destroy the flatness of a previous flat band.
For example, a kagome lattice has no FB when horizontal
coupling differ from the diagonal one [21]. However, there
are several systems where this effect does not affect at all the
flatness of the band, for example, the cross or the Lieb lattices.

We already considered the anisotropy in our method from
the very beginning and we were able to construct robust
systems presenting FBs. The only necessary condition is to
have a balance between the mode amplitudes in terms of the
different coupling interactions of the system. This essentially
implies that the amplitude of FB modes will not have the same
value at different positions. The most important consideration
is that the connector dynamical equation must be zero from
the beginning, when injecting a given miniarray mode. An
interesting example is the Lieb 2 lattice. This system has
two FBs at β = 0. The first one is composed of localized
modes having only four sites with amplitude different from
zero [bottom left corner in Fig. 7(c)]. As we can see, the
cancellation of phases for this mode is always horizontal or
vertical, therefore the anisotropy balance is not required and
modes simply have equal amplitudes but different phases. On
the other hand, the second flat band is composed of modes
that cancel the transport by balancing vertical and horizontal
interactions [bottom right corner in Fig. 7(c)]. Therefore, a
correction of amplitudes is required depending on a given
anisotropy Vx �= Vy , as we explicitly described before.

If we consider that different sites of the unitary cell could
present different propagation constants (determined by ε�n), an
effective anisotropy is generated in the system. Again, this is
not a problem for the generation of FB lattices, however extra
conditions for the balance of equations need to be fulfilled.
Essentially, by starting from a given miniarray with a defined
configuration of ε�n, new modes need to be computed. Then, by
inspecting their symmetry one can realize if these modes are
good candidates for spatial localization on an extended lattice.
If the required balance is not achieved when the propagation
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constants are different, the coupling anisotropy could help
solve this. However, this overall balance could be too complex
to be implemented in real experiments.

D. Nonlinear solutions

One of the most common nonlinear interactions studied
in diverse lattice systems corresponds to a cubic nonlinear-
ity [2,12]. In optics this interaction arises from the Kerr effect,
which is nothing but an increment of the refractive index due
to the intensity of a given beam. In Bose-Einstein condensates,
this interaction originates from the scattering between particles
and in solid-state physics from the interaction, for example,
between phonons and electrons on a given lattice. In model (1),
this nonlinear effect can be included by adding a term
γ |ψ�n|2ψ�n, where γ corresponds to the strength of the nonlinear
response. When looking for real solutions, the stationary
problem to solve becomes simply

β(�k)A�n =
∑
�m�=�n

V�n, �mA �m ei�k·( �m−�n) + γA2
�nA�n.

In general, any FB mode possessing a set of N amplitudes
A, but with alternating signs, has a very simple and compact
form [38,39]. As the connector sites amplitudes remain zero,
the total power, defined as P = ∑

�n |A�n|2, is just given by
P = NA2. The frequency of the nonlinear solution becomes
β = β0 + γA2 (where the frequency shift β0 depends on the
specific FB of a given lattice) and therefore a very simple and
exact relation between the frequency and power arises

P = N

γ
(β − β0).

These nonlinear solutions are perfectly localized in a very
compact spatial region. They are analytical compactons
solutions [40,41], which conserve their spatial profile in
the whole range of parameters. They bifurcate at the FB
position (β = β0) for a zero level of power (P = 0). These
solutions exist for positive and negative nonlinearity, with the
corresponding shift on the sign frequency to ensure that P > 0.

When the FB modes possess a more complex spatial profile,
including differences in the magnitude of the amplitudes, a
more complicated relation is required. For example, in linear
sawtooth lattices the FB exists for a very specific value
of coupling coefficients. Additionally, the FB mode has a
nonsymmetric profile of the form {. . . ,0,−1,

√
2,−1,0, . . .}.

Therefore, when increasing the solutions power, the ampli-
tudes will change and the perfect balance will be more tricky.
Reference [42] explores how to preserve this balance in a
nonlinear context (cubic and saturable), but allowing the
system to also modify the coupling constants.

E. Continuous model

Finally, we study the robustness of our method in a
more realistic environment. Although discrete models, based
on nearest-neighbor interactions, describe very well the
phenomenology observed in direct experiments [2,12], a better
proof of the stable propagation of localized FB modes is
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... ...

Vd
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- . +

-.
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FIG. 10. (a) Six-site miniarray and (b) three of their linear modes.
(c) Two miniarrays connected by a connector (dark) site. (d) B3-
ribbon lattice. (e) Linear spectrum for Vx = Vy = Vd = 1.

obtained by numerically solving a paraxial wave equation

−i
∂ψ

∂z
= 1

2k0n0
∇2

⊥ψ + k0�n(x,y)ψ. (3)

Here ψ = ψ(x,y,z) describes the envelope of the electric field,
z is the propagation coordinate, k0 = 2π/λ corresponds to the
wave number in free space, λ is the vacuum wavelength, and
n0 is the refractive index of the bulk material. The function
�n(x,y) defines the refractive index structure, which depends
on the specific lattice geometry. This function indicates the
transversal variations of the refractive index, showing a larger
value at the center of waveguide positions. In addition, ∇2

⊥ =
∂2
x + ∂2

y corresponds to the transverse Laplacian operator.
As an interesting example we study a system possessing

three FBs, as shown in Fig. 10. A six-site miniarray [Fig. 10(a)]
has three FB modes [Fig. 10(b)] that cancel the amplitude
at the connector site [Fig. 10(c)]. The frequencies of these
modes are −Vy + √

2Vx , −Vy , and −Vy − √
2Vx , respec-

tively. When computing the linear spectrum [considering the
unitary cell shown in Fig. 10(d)], we find seven linear bands
[see Fig. 10(e)]. Four of them are dispersive and three are
completely flat. The frequencies of the zero-dispersion bands
are exactly the same as the ones of the miniarray modes shown
in Fig. 10(b), as expected from our method.

To study this lattice in a more realistic configuration, we set
the lattice geometry in the model (3) by defining the function
�n(x,y) [22]. We assume elliptical waveguides [8], which
induces a strong effective anisotropy Vy �= Vx . This does not
affect the flatness of the three degenerated bands; it only
implies a different balance between the FB modes amplitudes.
Considering standard parameters used in Ref. [22] (n0 = 1.40,
a lattice period of d = 20 μm, a propagation distance of
L = 10 cm, λ = 532 nm, and a maximum index contrast
of 0.67 × 10−3), we implement a standard beam propagation
method to solve Eq. (3) numerically.
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FIG. 11. Transversal intensity profile |ψ(x,y,L)|2, after propa-
gating a distance L = 10 cm, in a B3-ribbon lattice geometry. (a)–(c)
Different output profiles for the input conditions sketched in each
figure. Density plots are normalized to one, as indicated by the color
map.

In Fig. 11 we show our results for three different input
conditions. We observe that the three input profiles, corre-
sponding to the three FB modes of a B3-ribbon lattice [see
Fig. 10(b)], propagate a distance of 10 cm without suffering
noticeable distortion. In fact, Fig. 11(a) shows the excitation
of some outsider lobes, which are very weak in comparison to
the central highly excited sites. In Figs. 11(b) and 11(c) only
the mode profiles are observable, with essentially a zero back-
ground. This result is certainly very interesting because we are
using discrete solutions as input conditions of a continuous
model. It is well known that a discrete (tight-binding) model
describes only the lower part of the spectrum of an, in principle,
infinite band-gap system [1]. When thinking of corrections to
the nearest-neighbors model (1), the first consideration to have
in mind is diagonal or next-nearest-neighbor interactions. The
flat band on a B3-ribbon lattice example are robust against
anisotropy and also second-order linear interactions. This is a

good indication that the discrete predictions will be observable
for long distances in a continuous (realistic) medium. However,
as this is an approximation of a more complex system, which
includes an infinite set of linear bands, after even longer
distances the FB states may start to experience diffraction
across the lattice.

VIII. CONCLUSION

In this work we developed a simple method to construct
different FB lattices. By inspecting the miniarray mode
profiles, we identified the good candidate modes for canceling
the transport across a full lattice, as a consequence of a
local geometric phase cancellation at the connector sites. Our
method is based on the discrete properties of a given lattice
and the right identification of the corresponding miniarray. In
this way, our method is able to explain all the already known
FB lattice systems, but also give a simple recipe for inventing
new ones. As our technique is based on the modes of a given
miniarray, the lattice composition method will always give a
complete FB, composed of spatially localized linear modes.
By allowing the system to have extra interactions, we can
also find robust lattices that preserve the localization of FB
modes when including, for example, next-nearest-neighbor
interactions. This becomes very important when studying
the lattice phenomenology experimentally, as we showed by
numerically solving a continuous model. Finally, we showed
that some nonlinear FB lattices possess simple analytical
compact solutions, which could be relevant when thinking
of the mobility of strongly localized wave packets [38].
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Bloch, Phys. Rev. Lett. 116, 066402 (2016).

[18] T. Zhang and G.-B. Jo, Sci. Rep. 5, 16044 (2015).

043831-9

https://doi.org/10.1016/j.physrep.2008.04.004
https://doi.org/10.1016/j.physrep.2008.04.004
https://doi.org/10.1016/j.physrep.2008.04.004
https://doi.org/10.1016/j.physrep.2008.04.004
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1038/nature05623
https://doi.org/10.1038/nature05623
https://doi.org/10.1038/nature05623
https://doi.org/10.1038/nature05623
https://doi.org/10.1103/PhysRevLett.100.013906
https://doi.org/10.1103/PhysRevLett.100.013906
https://doi.org/10.1103/PhysRevLett.100.013906
https://doi.org/10.1103/PhysRevLett.100.013906
https://doi.org/10.1103/PhysRevLett.81.3383
https://doi.org/10.1103/PhysRevLett.81.3383
https://doi.org/10.1103/PhysRevLett.81.3383
https://doi.org/10.1103/PhysRevLett.81.3383
https://doi.org/10.1103/PhysRevLett.90.023902
https://doi.org/10.1103/PhysRevLett.90.023902
https://doi.org/10.1103/PhysRevLett.90.023902
https://doi.org/10.1103/PhysRevLett.90.023902
https://doi.org/10.1364/OPEX.13.010552
https://doi.org/10.1364/OPEX.13.010552
https://doi.org/10.1364/OPEX.13.010552
https://doi.org/10.1364/OPEX.13.010552
https://doi.org/10.1038/nature01452
https://doi.org/10.1038/nature01452
https://doi.org/10.1038/nature01452
https://doi.org/10.1038/nature01452
https://doi.org/10.1364/OE.14.006055
https://doi.org/10.1364/OE.14.006055
https://doi.org/10.1364/OE.14.006055
https://doi.org/10.1364/OE.14.006055
https://doi.org/10.1063/1.1650069
https://doi.org/10.1063/1.1650069
https://doi.org/10.1063/1.1650069
https://doi.org/10.1063/1.1650069
https://doi.org/10.1063/1.1650069
https://doi.org/10.1016/j.physrep.2008.05.002
https://doi.org/10.1016/j.physrep.2008.05.002
https://doi.org/10.1016/j.physrep.2008.05.002
https://doi.org/10.1016/j.physrep.2008.05.002
https://doi.org/10.1364/OL.30.001506
https://doi.org/10.1364/OL.30.001506
https://doi.org/10.1364/OL.30.001506
https://doi.org/10.1364/OL.30.001506
https://doi.org/10.1103/PhysRevLett.96.223903
https://doi.org/10.1103/PhysRevLett.96.223903
https://doi.org/10.1103/PhysRevLett.96.223903
https://doi.org/10.1103/PhysRevLett.96.223903
https://doi.org/10.1109/50.372474
https://doi.org/10.1109/50.372474
https://doi.org/10.1109/50.372474
https://doi.org/10.1109/50.372474
https://doi.org/10.1364/OL.40.005443
https://doi.org/10.1364/OL.40.005443
https://doi.org/10.1364/OL.40.005443
https://doi.org/10.1364/OL.40.005443
https://doi.org/10.1103/PhysRevLett.116.066402
https://doi.org/10.1103/PhysRevLett.116.066402
https://doi.org/10.1103/PhysRevLett.116.066402
https://doi.org/10.1103/PhysRevLett.116.066402
https://doi.org/10.1038/srep16044
https://doi.org/10.1038/srep16044
https://doi.org/10.1038/srep16044
https://doi.org/10.1038/srep16044


LUIS MORALES-INOSTROZA AND RODRIGO A. VICENCIO PHYSICAL REVIEW A 94, 043831 (2016)

[19] S. Weimann, L. Morales-Inostroza, B. Real, C. Cantillano, A.
Szameit, and R. A. Vicencio, Opt. Lett. 41, 2414 (2016).

[20] S. A. Parameswaran, I. Kimchi, A. M. Turner, D. M. Stamper-
Kurn, and A. Vishwanath, Phys. Rev. Lett. 110, 125301
(2013).

[21] Y. Zong, S. Xia, L. Tang, D. Song, Y. Hu, Y. Pei, J. Su, Y. Li,
and Z. Chen, Opt. Express 24, 8877 (2016).

[22] R. A. Vicencio, C. Cantillano, L. Morales-Inostroza, B. Real, C.
Mejı́a-Cortés, S. Weimann, A. Szameit, and M. I. Molina, Phys.
Rev. Lett. 114, 245503 (2015).

[23] S. Mukherjee, A. Spracklen, D. Choudhury, N. Goldman, P.
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