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We show that gyrotropic structures with balanced gain and loss that respect antilinear symmetries exhibit
a giant nonreciprocity at the so-called exact phase where the eigenfrequencies of the isolated non-Hermitian
setup are real. The effect occurs in a parameter domain near an exceptional- point (EP) degeneracy, where mode
orthogonality collapses. The theoretical predictions are confirmed numerically in the microwave domain, where
anonreciprocal transport above 90 dB is demonstrated, and are further verified using lumped-circuitry modeling.
The analysis allows us to speculate the universal nature of the phenomenon for any wave system where EP and

gyrotropy can coexist.
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I. INTRODUCTION

Exceptional points (EPs) are non-Hermitian degenera-
cies where both eigenvalues and eigenvectors coalesce [1].
Originally treated as mathematical curiosities [2-5], these
degeneracies have been now recognized as a source of many
counterintuitive phenomena, some of which can be exploited
for technological purposes. Examples include loss-induced
transparency [6], unidirectional invisibility [7-9], lasing mode
selection [10], lasing revivals and suppression [11], directional
lasing [12], hypersensitive sensors [13], etc.

The wealth of these results and the demonstrated capability
of the researchers to utilize EPs in order to design novel
devices, motivated us here to employ them for the realization
of a new class of photonic isolators and circulators with an
extraordinary (giant) nonreciprocal transport. The proposed
structures are linear, they involve gyrotropic elements, and they
operate in a parameter domain, near an EP degeneracy, where
they are stable, i.e., the eigenfrequencies of the associated
isolated setup are real [14,15]. The latter two “conflicting”
requirements can be satisfied simultaneously by a class of
non-Hermitian systems which involve balanced gain and
loss mechanisms and which respect antilinear symmetries
[3]. The parameter domain for which the eigenfrequencies
are real (stable domain) is known as exact phase, while
the domain for which the spectrum consists of conjugate
pairs of complex eigenvalues (unstable domain) is known
as broken symmetry phase. The transition between these
two phases occurs via an EP [3]. A prominent example of
such antilinear systems are structures with parity-time (PT)
symmetry [6—11,15-26].

In this paper we demonstrate the EP-induced giant
nonreciprocity in the microwave domain and establish its
universal nature by evincing it in a seemingly different
framework of lumped electronic circuitry. The frequency
for which the giant nonreciprocity occurs depends on the
values of the gain and loss parameter and the applied
magnetic field. Our approach provides several degrees of
reconfigurability, thus constituting an alternative pathway
[19,20,23-25,27-32] towards enhancing nonreciprocal wave
transport.

The structure of the paper is as follows. In Sec. II we present
the photonic structure. Specifically, in Sec. II A we analyze

2469-9926/2016/94(4)/043829(7)

043829-1

the “evolution” of the eigenfrequencies of the isolated setup
as a function of the gain and loss parameter, while in Sec. II B
we present the numerical results for the scattering properties
of this structure. In Sec. II C, using coupled mode theory,
we analyze theoretically the transport characteristics of the
photonic structure and compare our theoretical results for the
nonreciprocal transmission with the numerical data. At Sec. 111
we numerically analyze a user-friendly model of coupled LRC
lumped circuits and show that also this system demonstrates
the same strong nonreciprocal transport. Our conclusions are
given in Sec. IV.

II. PHOTONIC STRUCTURE

We consider the structure shown in Fig. 1. It consists of
a parallel pair of half-wave microstrip resonators (dimer)
end-coupled to a bus waveguide as schematically illustrated
in Fig. 1. The microstrip resonator dimer and the waveguide
are situated on top of an 8.75-mm-thick ferrite substrate with
a ground plane on the lower surface. The length, I/, of each
microstrip is 24.5 mm, which corresponds to an uncoupled
half-wave resonance of approximately 1.24 GHz. The widths
w and w; of the microstrips and bus waveguide are set at
3.5 and 3.0 mm, respectively, the latter matching the 56 Q
impedance of the input bus ports. The distance, d, between
the two microstrip resonators, is set to 20 mm and the
end-coupled gap g between the microstrip resonator dimer and
the bus waveguide is 0.5 mm. All metallic surface structures
are defined as zero thickness, perfect electric conductors.
A relative dielectric permittivity €, = 15 is used for the
ferrite substrate [33,34] matching yttrium iron garnet (YIG).
In all our simulations, gain and loss are confined to the
spatial domain beneath each of the microstrip resonators and
implemented by introducing an imaginary part of the complex
permittivity defined as €, = 15(1 & iy), wherein y denotes
the gain and loss parameter. A practical way of implementing
loss or amplification (gain) locally (within the microcavities)
can be achieved electronically via discrete electronic loss
or gain devices such as a resistor, transistor, or tunnel
diode [35,36].

A static magnetic bias field, Hy, is applied along the y
direction through the substrate material having an anisotropic
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FIG. 1. Schematic of the photonic structure: two half-wave mi-
crostrip resonators are end-coupled to a bus waveguide. A uniformly
distributed gain or loss material property augments the region beneath
each of the resonators within the YIG substrate. The substrate is
exposed to an external bias field, Hy, in the y direction. For an
appropriate value of the gain and loss parameter y the transmission
in the forward direction takes values of the order of unity (a), while
it is essentially zero in the backward direction (b).

magnetic permeability tensor, [i, given by

Iy 0 ik, oo
a=pue|l O 1 0, w=1+4«; Kr=2—m2,
; w5 — W
—ik, 0 wu, 0
(H

where wy = woy.Ho, wm = oyeM;. Here, uy and w corre-
spond to the permeability of free space and angular frequency,
wy corresponds to the precession frequency of an electron in
the applied magnetic field bias, Hy = 1.273 x 10° A/m, w,, is
the electron Larmor frequency at the saturation magnetization,
M, =1.393 x 10° A/m of the ferrite medium, and y, is the
gyromagnetic constant of 1.76 x 10'! rad/sT.

The whole structure satisfies a combined mirror-time
symmetry with respect to the yz plane at x = 0. The mirror-
symmetry operator M is linear and it is associated with a
reflection (x,y,z) — (—x,y,z) around the origin. The time-
reversal operator 7 is antilinear and it is associated with a com-
plex conjugation together with a simultaneous inversion of the
magnetic field vectors, ﬁo — —ﬁo. The mirror-time reversal
symmetry belongs to the class of antilinear symmetries, part of
which is also the parity-time (PT') symmetry. In order to stress
this similarity (x-axis parity and to be in direct contact with
the vast community that studies transport of PT-symmetric
systems), we will abbreviate below the mirror-time reversal
symmetry with the letters PT.

Below we first analyze the parametric evolution of the
eigenfrequencies versus the gain and loss parameter of the
two microstrip system in the absence of the bus waveguide.
We refer to this as the “isolated” setup. Its scattering analog is
constructed by passing the bus waveguide near one end of the
microstrip pair (see Fig. 1). We refer to this as the “scattering”
setup.

The electromagnetic propagation is described by the
Maxwell’s equations

VxE=i VxH=—i
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FIG. 2. Parametric evolution of the real and the imaginary parts of
the eigenfrequencies vs y for the isolated setup of Fig. 1. A uniform
magnetic field Hy is imposed on the substrate. At y = 0 we have
a nonzero imaginary part due to leakage from the cavities. At y =
ypr ~ 0.26 an EP degeneracy occurs.

where E is the electric field and H is the magnetic field.
These equations supplemented by Egs. (1) together with
the appropriate boundaries dictated by our design of Fig. 1
describe the wave propagation from the structure. The latter
is simulated with COMSOL’s 3D-finite element electromagnetic
numerical software [37]. For accuracy of the numerical results,
each domain of the structure is comprised of fine mesh element
sizes of ~,,/13 within the substrate region and ~1,,/8 for
the surrounding air regime, where A,, is the wavelength inside
the medium.

A. Isolated setup

We investigate the M T -symmetry phase transition for the
isolated setup of Fig. 1 using COMSOL'’s eigenfrequency simu-
lation. When y = 0, the coupled microstrip resonators support
two low-order resonant modes, which have a symmetric (lower
frequency w;) and an antisymmetric (higher frequency w,)
configuration. For y = 0 the associated eigenfrequencies have
the same imaginary value Im{w} = n resulting from weak
coupling to the perfectly absorbing ends. As y increases
the real part of the eigenfrequencies of the modes changes
(see Fig. 2), while the associated imaginary part remains the
same [38]. In this domain (exact phase) [3], the associated
eigenmodes respect the PT symmetry. At a critical value
of the gain and loss parameter ys; ~ 0.26, the eigenvalues
and eigenvectors coalesce and the system experiences an EP
degeneracy. At the broken phase corresponding to y > ypr
the real part of the eigenfrequencies remains degenerate,
while the imaginary part bifurcates into two values. We
refer to this transition as a spontaneous P T -symmetric phase
transition. The value of y5; depends on the value (and spatial
domain) of the applied magnetic field Hy.

B. Scattering setup

Next we proceed with the analysis of the transmission
properties of the scattering setup of Fig. 1. Forward (FWD),
or backward (BWD) propagation of radiation is defined in the
context of the 56 2 ports, impedance matched to the transverse
electromagnetic (TEM) modes from the left and right ends
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FIG. 3. Three representative cases of nonreciprocal transport:
(@ y =0 where NR =17.5dB; (b) y =0.1675 where NR =
42.6 dB; and (c¢) y = 0.18 where NR = 30.4 dB. The maximum
nonreciprocity is observed in the domain around e, and it is
nonmonotonic with respect to y.

of the bus waveguide shown schematically in Fig. 1. Our
analysis will concentrate on y values for which the system is
in the exact phase, i.e., y < ypr. To quantify the dependence
of the nonreciprocal effect, we introduce the nonreciprocity
parameter NR (measured in dB),

}, 3)

where Tg and Ty are the transmittances obtained for the FWD
and BWD cases, respectively. Our numerical investigation
indicates that the maximum values of NR are achieved in the
proximity of the symmetric resonant frequency w;. We will
therefore focus on this frequency domain. In Figs. 3(a)-3(c) we
show some typical transmission spectra for y = 0,0.1675, and
0.18, respectively. Note that at ® & w,; the BWD transmittance
T becomes essentially zero, while T = O(1). Specifically for
y = 0 [see Fig. 3(a)] a nonreciprocal transmission at ws; can
be as high as 18 dB. A higher degree of nonreciprocity NR =
42.6 dB occurs for y = 0.1675 [see Fig. 3(b)]. However,
further increase of the gain and loss parameter, i.e., y = 0.18,
leads to a decrease of nonreciprocity to NR ~ 30.4 dB [see
Fig. 3(c)].

The simulation results for NR(y ) and its giant enhancement
at some critical gain and loss value yngr is reported as the
solid circles part of Fig. 4(b) where we show the degree of
nonreciprocity NR versus y. The nonmonotonic behavior of
NR, and the associated maxima, constitute the main result of
our study, theoretically discussed in the next section.

T
log,y —

NR(y) = 10 x maxw{
Tr

C. Theoretical analysis

The behavior of NR(y) seen in Fig. 4(b) can be understood
within the framework of temporal coupled-mode theory [39].
Our calculation scheme breaks down the effect of the magnetic
field into two parts. First we consider the effect to the resonant

PHYSICAL REVIEW A 94, 043829 (2016)

Im(w) (ns™)

p-0-0-O-®-0--0-0-®O-

0 | | | | |

I !
0 0.05 0.1 0.15 0.2
Gain or Loss parameter 7y

FIG. 4. (a) We show the dependence of simulated resonant modes
[Re(w), o/Im(w), W] on the gain or loss parameter y for the setup
with Hy = 0 only in the domain between the two microcavities. A
fitting using Eq. (4) (solid line) gives wy ~ 8.545, Q( ~ 0.2576, and
p ~ 1.445 (all measured in ns™') corresponding to y3 = 0.178.
(b) Nonreciprocity (NR) obtained by calculating the difference
between the FWD and BWD transmittance 7 from the simulations
(e) and from the theoretical expressions, Egs. (6) (o). The green line
is obtained using Eq. (7). The inset shows the analogous simulated
NR for a 15% reduction in the bias field. The vertical dashed line
indicates the position of the EP in this case.

frequency of the individual resonators separately (for y = 0)
in a magnetic substrate. For our applied field Hj it can
be directly estimated from Fig. 2 to be wy ~ 8.2938 ns~!.
Next we add the effect of gain and loss y in each of these
resonances which are now considered as a two level system
and coupled via a nonmagnetic substrate with a coupling
constant 2 (i.e., evaluated with Hy = 0). This is estimated,
to a good approximation, from the eigenmode analysis of the
isolated setup with Hy = 0 only in the domain between the two
resonators [see Fig. 4(a)], and is found to be 2y ~ 0.2576 ns L.
The resulting symmetric »* and antisymmetric ©* resonant
modes of the isolated composite structure is then

of), = 0o F /2% — (¥ )2, )

where p & 1.445 ns~! is a scaling parameter that is extracted
from the analysis of the isolated setup of Fig. 4(a). For this
setup, the EP is y3, = Q0/p ~ 0.178.

The second part of our analysis considers the consequences

of the magnetic field in the coupling between wi(;)a . Specifically,

we consider that the resonances (a)g%) are coupled via the
magnetized substrate between the two microstrip cavities
and indirectly via the presence of the bus wave fields. In
general, this additional coupling constant A is a function of
the geometric properties of the two stripline resonators, the
applied magnetic field, Hp, and the wave number k, of the bus
field. Based on symmetry considerations [33] we have that
up to a linear approximation, A = Ay + i(bok, + coHp) where
Ao,bg,co are real parameters. When an incident electromag-
netic radiation with frequency w in the vicinity of one of these
two resonances enters the bus waveguide, in either direction, it
will primarily excite the closer mode in frequency without
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being (to a good approximation) affected by the presence
of the other resonance. Below we consider the case w ~ wy
where maximum nonreciprocity is observed. Therefore we will
assume that the incident wave is coupled directly only with the
symmetric mode.

Under these assumptions, the temporal evolution of the
symmetric (a,) and antisymmetric (a,) modal amplitudes is
described by the following equations:

da 1 . -

dts =ioVa, — ;as — Aag + k18" + k255,

da .

d: = la)go)aa + Aag, (5)
S = S —Kkja;; S = S — «fay,

where % = t% + % is the radiative coupling of the symmetric
mode to a left-going (%) or a right-going (i) output wave,
and {xi,kp} indicate the coupling constants between the
symmetric mode and the incoming or outgoing waves. We
have that |k |> = % and |k,|* = Z. The modal amplitudes
are normalized in such a way that las|> (laq]?) correspond
to the energy stored at the specific mode, while |S‘}“|2 and
|Si2“|2 (|S§”‘|2 and |S§’r‘"|2) are the powers carried by incoming
(outgoing) waves from (to) two different directions of the bus
waveguide.

2
il

The forward T = and backward Ty = o trans-
2

mittance for a left Si" o e and right SI" oc ' incident
monochromatic field can be calculated from Eq. (5) by
imposing the appropriate boundary conditions Si2" =0 and
Sin = 0, respectively. We obtain that

2
_ s
in|2
157"
13

2

. s
T (@) o —of? — 5 M) F A ©)
F/Bl®) = 1~ 0 Pusl ’
l(w - wg ' (wj/a]if,o))) + (%)
where A¢ = % - % # 0 due to gyrotropy and Ap/p is the

coupling between »® and ©® for forward and backward
propagation.

From Fig. 3 we observe that the maximum NR occurs at
the resonance frequency w® of the BWD propagation which

can be estimated from Eq. (6) to be 0® = wy — /Q2 — (py)2.
The dependence of w® on Hy allows us to reconfigure the

position of maximum nonreciprocity. The modified coupling

Q=+ Q% + |Ag|? is a result of the external magnetic field
which now also acts as the substrate between the two cavities
and the presence of the incident wave in the bus waveguide. It
allows us to estimate the gain and loss parameter ys;r = 2/p
for which we have an EP singularity for the isolated system
with the uniform magnetic field (see Fig. 2).

These theoretical results compare nicely with the COMSOL
simulations in Fig. 3 in the domain of ® ~ w®. A nonlinear
least square fit has been used in order to fit Eq. (6) to
the data for 7. The parameters that we have obtained are
Ae =~ —0.0075, % ~ 0.05215, n = 4.9 x 1073 (all measured
in ns™) and |Ag|?> ~ 0.111 ns~2. All these parameters, apart
from |Ag|?, have been kept fixed for the forward transmission
Tr [see Eq. (6)]. The fitting value of 7y indicated that
|Ag)? ~ |Ag|?ns 2. Finally, using Egs. (6) together with Eq. (3)
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we have calculated NR versus y. These theoretical results are
shown in Fig. 4(b) together with the simulations of COMSOL.

In order to enhance our understanding of the origin of
the giant nonreciprocal effect we have further approximated
NR at w = co?. Guided by the numerics, which indicates that
Tp(w?) ~ O(1) in this frequency domain, we have assumed
thatlog,, Tr(w?) is negligible when compared to log,, T (0®).
Therefore NR(y) =~ 10|log,, TB(a)§)|. This approximation
leads us to the following expression up to leading order in
n,A€ and € = 1/(27) [40]:

1+20+-L)
20log,q ——Y1—; 0<y <yl
NR = 3+ PT
(el +Bnn+2e) . 0 _
10l0gy Gy aeapspnran:  Ypr <V <Vpr:
@)
— Q—Gr?
where g = T

A further analysis of Eq. (7), indicates that when é—; <

min{—%%, _258_"")}’ then NR(y) has a single maximum
in the exact phase, i.e., 0 <y < yps(Hp), which occur

at some critical value y = ynr. In the case é—; < —1, we
_ 0 : _ Ae S
have ynr = yﬁT,whlle for —1 < 2 < min{ ara 2a+n}
s/

we have yngr = \/ (V) — E(ra=g Thus we conclude
that the existence and position of yngr is strongly dictated
by V7(5)T and |Ag|?, i.e., this giant nonreciprocal behavior
is a consequence of an interplay between the EP degen-
eracy and the interaction of fields within the gyrotropic

substrate.

III. LUMPED CIRCUIT ANALYSIS

The EP-induced giant nonreciprocity can be further an-
alyzed utilizing an electronic circuit analog that maintains
the essence of the original physics while also allowing a
significantly simplified path toward both analytic and numeric
analysis. The circuit, shown in Fig. 5(a), reduces the parallel
microstrip resonators to a pair of RLC resonators capacitively
coupled to points separated by a distance d along an ideal
TEM transmission line. The interresonator coupling through
the gyrotropically active substrate is incorporated as a mutual
inductance M in parallel with an ideal gyration G such that
the inductor currents are related to the voltages by

()=l ¥] () +[% S0 o

The gain and loss, along with the small inherent loss 7 defined
earlier, are implemented by negative and positive parallel
resistances of slightly different magnitude.

In the frequency domain, Kirchoff’s laws for this cir-
cuit are easily expressed, although transcendental due to
the trigonometric wave components in the center trans-
mission line section. All seven elements of the circuit
(L, C, Ry, Ry, M, G, C,, and d) represent essential features
of the original structure that can contribute to the enhancement
of the transmission nonreciprocity. Note that G plays a similar
role as the static magnetic field Hy in the gyrotropic substrate of
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FIG. 5. Exploration of the gain and loss y = %(Rf' +
R;")/L]C and gyration strength g = G/L/C parameter space of
the lumped circuit model shown in (a). In (b) we plot the nonreciproc-
ity NR as intensity (high values of NR correspond to bright areas,
while low values of NR to dark areas) in the map. Due to the limitation
of the resolution, the narrow peaks representing high NR (>30 dB) in
(c) are not resolved by the color bar. (c) We show some indicative
“cuts” from the density map at several gyration strengths [shown in
(b)] for Zy/C/L =0.82, kd ~  at the LC resonant frequency,
C./C=03,M/L=0.03, and n=3(R;' — R{")y/L/C =0.03
for the intrinsic loss. (d) shows the corresponding real and imaginary
parts of the balanced, isolated (n = C. = 0) dimer mode frequencies
illustrating the relation of the exceptional points to the singularities of
the giant nonreciprocity. The solid line through the NR density plot
shows the position of the isolated system exceptional point, slightly
beyond the singularity.

the microstrip device and is the key circuit element responsible
for nonreciprocity.

The main graphs of Figs. 5(b)-5(d) illustrate numerical
results exploring the NR with gain and loss and gyration
strengths, y = %(Rl_1 + Rz_l)«/L/C, respectively, to a detail
that is computationally expensive in the COMSOL simulation,
and somewhat abstract in the theoretical analysis. The NR
density plot shown in Fig. 5(b) is separated into two regions
by the black solid line representing the position of the isolated
exceptional point, with the exact PT phase above and the
broken phase below. The singular NR is seen as the bright
swath within the unbroken region just above [14]. Figure 5(c)
shows cuts of the NR at several fixed values of the gyration
strength g (below) along with the corresponding isolated dimer
eigenfrequencies (above). Note again that the maximum NR
occurs below the isolated exceptional points. The similarities
with Fig. 4 associated with the photonic structure are striking,
thus indicating the shared NR mechanism. Specifically for
y = 0 we again observe a moderate nonreciprocal behavior
which is dramatically enhanced at y values close to y;. This
can be better appreciated by analyzing the parametric evolution
of the eigenfrequencies of the isolated circuit. The isolated
system in this electronic analog includes all of the effects
of the resonator coupling, such as the gyration, fulfilling the
inequality expressed in Eq. (7).

IV. DISCUSSION

_ We have shown that the flexibility introduced by the
PT properties of the photonic resonator dimer dramatically
enhance the strength—and hence the bandwidth—of the
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singular nonreciprocity. We have observed this over certain
ranges of the system parameters. At the same time we have
demonstrated that these results apply equally well in the case
of lumped circuitry.

This universal nature of the giant nonreciprocal response
near the EP calls for an intuitive explanation. First we have to
realize that the structure constitutes an effective ring since the
two cavities are directly coupled to one another while at the
same time they are coupled indirectly via the bus waveguide.
At the EP the two supermodes of the effective ring structure
are degenerate having a definite chirality [12]. The presence
of the magnetic field breaks the spectral degeneracy, while
weakly preserving the (common) chiral nature of the modes.
As a result the two modes are coupled differently with a
left and a right incident wave. Assuming, for example in the
electronic setup of Fig. 5(a), that the chirality of the modes
is clockwise (CW) we conclude that due to phase matching
such a mode will be coupled only to a left incident wave
and not to a right incident one. Accordingly, the left incident
wave will excite the CW supermode while at the same time
exploiting a direct optical path associated with a transmission
via a direct process between the incident and transmitted
channels. These optical paths can interfere destructively at
the output channel (depending on the propagation phase
associated with the length of the bus waveguide and the
gyrotropy) leading to a Fano effect and consequently to a
(near) zero transmittance. An important condition here is that
the internal losses of the cavities are small so that the two
interfering waves have the same amplitudes. On the other
hand, a right incident wave, because of phase mismatch,
does not couple to the CW chiral supermode of the effective
ring. As a result it does not experience the internal losses
inside the cavity and consequently the (direct) transmission is
high.

The electronic circuit that we proposed can be realized ex-
perimentally using existing metal-oxide-semiconductor field-
effect transistor (MOSFET) technologies. Such reconfigurable
circuitry (due to on-the-fly manipulation of gain and loss)
would be useful in the realization of rf circulators and isolators.
Moreover, in the optical domain where the magneto-optical
effects are very weak, the wave propagation can be masked by
unwanted losses associated with the materials used as a means
to realize nonreciprocal propagation. Our scheme—with the
manipulated gain and loss—would resolve some of the above-
mentioned issues and help restore a strong nonreciprocal
signal.

V. CONCLUSIONS

We have theoretically defined the conditions for which a
non-Hermitian structure with antilinear symmetry can lead
to giant nonreciprocal transport: the system has to operate
in the stable domain and in the vicinity of an EP singularity
which amplify the effects of gyrotropy. The nonreciprocal
frequency domain is reconfigurable, albeit is narrow band. We
have demonstrated the validity of the theoretical predictions
in the microwave domain where we have found nonreciprocal
transmission which is higher than 90 dB. We have further
confirmed the generality of our results utilizing a user-friendly
framework of lumped circuits. It will be interesting to extend
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this study and investigate giant nonreciprocal transport in
acoustic or matter-wave systems where amplification and
attenuation mechanisms can be easily controlled and used to
realize EP degeneracies [41,42], while an effective magnetic
field can be introduced via time-varying potentials [43,44].
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