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Parametric amplification of light in a cavity with a moving dielectric membrane:
Landau-Zener problem for the Maxwell field
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We perform a theoretical investigation into the classical and quantum dynamics of an optical field in a cavity
containing a moving membrane (“membrane-in-the-middle” setup). Our approach is based on the Maxwell wave
equation and complements previous studies based on an effective Hamiltonian. The analysis shows that for slowly
moving and weakly reflective membranes the classical field dynamics can be approximated by first-order-in-time
evolution given by an effective Schrödinger-type equation with a Hamiltonian that does not depend on the
membrane speed. This approximate theory is the one typically adopted in cavity optomechanics and we develop
a criterion for its validity. However, in more general situations, the full second-order wave equation predicts
light dynamics which do not conserve energy, giving rise to parametric amplification (or attenuation) that is
forbidden under first-order dynamics and can be considered to be the classical counterpart of the dynamical
Casimir effect. The case of a membrane moving at constant velocity can be mapped onto the Landau-Zener
problem, but with additional terms responsible for field amplification. Furthermore, the nature of the adiabatic
regime is rather different from the ordinary Schrödinger case since mode amplitudes need not be constant even
when there are no transitions between them. The Landau-Zener problem for a field is therefore richer than in the
standard single-particle case. We use the work-energy theorem applied to the radiation pressure on the membrane
as a self-consistency check for our solutions of the wave equation and as a tool to gain an intuitive understanding
of energy pumped into or out of the light field by the motion of the membrane.
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I. INTRODUCTION

Most textbooks on quantum optics (see, e.g. [1–4]) begin
with Maxwell’s equations and use them to obtain a wave
equation for the field which is second order in time and space.
The normal modes of this equation behave like independent
harmonic oscillators and can be quantized by the methods of
ordinary nonrelativistic quantum mechanics. In this way, the
quantum dynamics of the electromagnetic field is shown to
be governed by the Schrödinger equation which is first order
in time and hence unitary (the lack of Lorentz invariance in
Schrödinger’s equation should not worry us because normal
modes separate time and space [5]). This standard procedure
breaks down in the presence of moving mirrors or dielectrics
because there are no normal modes in time-dependent systems.

Our mission in this paper is to study the nature of the dy-
namics, especially adiabaticity and parametric amplification,
for an optical field in the presence of a moving dielectric
in a cavity. In the absence of true normal modes, we use
time-evolving modes which become coupled, an approach
inspired by the papers of Law [6–8]. We are primarily
interested in classical fields, however, we are naturally led
to a comparison with the quantum case because under certain
approximations the time-evolving classical modes obey first-
order equations which are mathematically analogous to the
Schrödinger equation. The differences between first- and
second-order wave equations have been previously studied
in the context of the Klein-Gordon equation where it is known
that the wave function cannot be interpreted as a probability
amplitude, in contrast to that of the Schrödinger equation
[9]. Indeed, the Klein-Gordon equation does not provide a
consistent description of a single particle precisely because
it allows particle creation and annihilation (the Klein-Gordon
equation does, however, correctly describe the normal modes

of a free spinless quantum field). Similarly, in the dynamical
Casimir effect (DCE), pairs of photons are generated from the
vacuum by a moving mirror [10,11], and here we study the
classical analog of this phenomenon in the form of parametric
amplification.

A well-known form of the DCE is Davies-Fulling-DeWitt
radiation [12–14] generated in response to the uniform
acceleration of a single mirror in free space. It is related to
the Unruh effect [15], and therefore ultimately to Hawking
radiation [16]. The DCE in a cavity with a moving end
mirror was first investigated by Moore in 1970 [17]. If the
mirror is oscillated at twice the frequency of a cavity mode,
the condition for parametric resonance is fulfilled and the
effect is exponentially enhanced [18–21]. Still, the effect is
tiny and various schemes have been devised to enhance or
mimic it. When a gas or semiconductor is ionized to produce
a plasma, the refractive index can drop to near zero in a
picosecond [22,23], and when the ionization is produced by a
periodically pulsed laser, the result can be a rapidly oscillating
plasma mirror [24–26]. Similarly, a coherently pumped χ (2)

nonlinear crystal forms an optical parametric oscillator whose
nonlinear susceptibility oscillates at optical frequencies [27].
The first system to successfully observe the DCE operated
in the microwave regime and used a superconducting circuit
made of a coplanar transmission line, the effective length of
which can be changed at frequencies exceeding 10 GHz by
modulating the inductance [28,29]. Recently, analog Hawking
radiation has also been detected when a potential step is swept
through an atomic Bose-Einstein condensate [30].

The interaction of light with a moving dielectric is a
rich problem whose history goes back at least as far as the
investigations carried out by Fresnel [31] and Fizeau [32]
in the 19th century. It has close connections to the theory
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FIG. 1. Schematic of the amplitude of light in a double cavity with
perfectly reflective end mirrors and a partially transmissive, movable
central membrane.

of special relativity and, in the case of nonuniform motion,
to general relativity [33]. An active modern area of research
that involves moving dielectrics is the field of optomechanics
[34,35], where light and mechanical oscillators are coupled
through radiation pressure. The prototypical system consists
of a cavity made of two mirrors, one of which is mounted
on a spring. When pumped by a laser, the optical field that
builds up inside the cavity can displace the mobile mirror
by radiation pressure. Such a setup was realized in 1983 by
Dorsel et al. [36] who observed a lengthening of the cavity.
The dynamic version of this effect, where the mirror position
and light field amplitude oscillate, can be used to heat or cool
the mirror motion, as first demonstrated by Braginsky and
co-workers in experiments with microwave cavities [37,38]
in the 1960s. The past decade has seen renewed theoretical
[39–61] and experimental [62–88] activity in optomechanics,
with one of the principal aims being to laser cool a mechanical
object towards its quantum ground state. In particular, the
experiment [78] achieved a sub-single-phonon occupancy of a
nanomechanical oscillator. Optomechanical systems have now
been realized in diverse physical media including ultrahigh-Q
microtoroids [65], mirrors attached to cantilevers [62,66],
optomechanical crystals [71], mechanical oscillators in mi-
crowave and optical cavities [79], cold-atom clouds [89,90],
hybrid atom-membrane optomechanics [91,92], as well as
the “membrane-in-the-middle” cavities [68–70,76,81–88] that
will be the focus of this paper. Radiation pressure and its
quantum fluctuations (shot noise) on mirrors also turn out to
be significant issues in high-precision optical interferometers,
like those designed to detect gravitational waves [93–96].

In this paper, we investigate the dynamics of light stored in
a “membrane-in-the-middle” type optical cavity, as depicted
schematically in Fig. 1. This arrangement was proposed by
Bhattacharya and Meystre [39,43] and realized in seminal
series of experiments by the Harris group [68–70,76,84]. A
considerable number of other groups have now also realized
this or closely related schemes [81–83,85–88], and many
theoretical studies [46,48–50,53–55,57,59–61] have pointed
out the wide range of new optomechanical phenomena that can
be realized with it. The basic setup consists of two highly re-
flective end mirrors between which a thin movable membrane
(often a film of SiN dielectric ∼50 nm thick) is suspended,
forming two subcavities. Light is transmitted between the two

 

 

FIG. 2. The wave numbers of the normal modes inside a double
cavity form a network of avoided crossings when plotted as a function
of the difference in length between the two subcavities. The total
length of the double cavity is L = 100 μm. The red dashed lines
correspond to a perfectly reflective central membrane (α → ∞). The
green solid lines correspond to a membrane of reflectivity 98% (i.e.,
α = 1.7 × 10−6 m), the magenta, small dotted lines correspond to
a membrane reflectivity of 91% (i.e., α = 8.0 × 10−7 m), the blue
dashed dotted lines correspond to 61% (i.e., α = 3.1 × 10−7 m), and
the larger, black dotted lines correspond to a membrane reflectivity of
28% (i.e., α = 1.6 × 10−7 m). All curves except the red curve have
avoided crossings. The gap at the avoided crossing (2�) goes down
as the reflectivity is increased.

cavities at a rate determined by the membrane reflectivity:
when its reflectivity is high, the membrane strongly alters the
optical mode structure of the cavity, producing a network of
avoided crossings as a function of membrane displacement
(see Fig. 2). The quadratic form of the mode structure at
an avoided crossing lends itself to a quantum nondemolition
measurement of the membrane’s energy and hence a funda-
mental demonstration of the quantization of the energy of a
mechanical oscillator, something which is not possible with
linear coupling [76,84]. Nonclassical correlations between
two mechanical modes in such membranes have also been
demonstrated experimentally [97,98]. We stress that in contrast
to all the above-mentioned optomechanical studies, we shall
not treat the membrane motion as a dynamical variable but
instead give it a prescribed motion. Nevertheless, the radiation
force exerted by the light on the membrane will play a key role
in understanding the parametric amplification process.

The small gaps between the optical modes at avoided
crossings in a membrane-in-the-middle cavity mean that
such systems have a fundamentally multimode character.
This has led other authors [46], as well as us [99], to
suggest that Landau-Zener–type physics might be relevant
to the optical dynamics caused by membrane motion. The
celebrated Landau-Zener problem is one of the few exactly
solvable problems in time-dependent quantum mechanics and
provides a paradigm for analyzing the dynamical control
of quantum systems, including the breakdown of adiabatic
transfer between states. Applying this to the electromagnetic
field where photon number is not conserved is one of the
main themes of this paper. In our previous paper [99], we
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showed how to approximately map the dynamics of two
interacting classical optical fields obeying the Maxwell wave
equation in the membrane-in-the-middle cavity system onto
the mathematics of the Landau-Zener model, and hence how
to analyze the efficiency of light transfer from one subcavity
to the other by moving the membrane. Such deterministic
transfer of light between cavities is a basic element of a
quantum network [100], and has technological significance for
cavity-QED realizations of quantum information processing
[101].

The optomechanical interaction between a mirror and a
cavity mode of frequency ωcav arises from radiation pressure
and is usually written [35,46,48,69]

Ĥoptomech = �ωcav(x)â†â

= �

(
ωcav + x

∂ωcav

∂x
+ x2 ∂2ωcav

∂x2
. . .

)
â†â, (1)

where x is the mirror displacement from equilibrium and
â†â gives the number of photons in the cavity mode. This
interaction depends parametrically on mirror displacement
through the dependence of the mode frequency ωcav on x. For
small displacements in comparison to the optical wavelength
it is sufficient to expand ωcav as shown; for the case of a
single cavity with a mobile end mirror only the linear term
is needed, but in a double cavity near an avoided crossing
this vanishes and the leading term is quadratic. In currently
experimentally accessible regimes, this Hamiltonian gives an
excellent description. Nevertheless, Hoptomech as written above
has no dependence on the mirror’s speed (for either the exact
or expanded form). This means that the DCE is excluded
which is unsatisfactory from a purely theoretical standpoint.
A more complete Hamiltonian for the double cavity which
does include the DCE has been derived by Law [8] and will be
discussed in Sec. X. However, rather than using a Hamiltonian,
our approach here will be based on the Maxwell wave equation.
A similar approach to the one we take has recently been used
by Castaños and Weder [58] to describe a single cavity with
a mobile end mirror; they combine Maxwell’s wave equation
for the light with Newton’s equation for the mobile mirror. We,
on the other hand, give the membrane a prescribed trajectory
in order to make full contact with the Landau-Zener problem.

The DCE is a phenomenon that originates in quantum zero-
point fluctuations of the vacuum [102], and so does not occur in
the classical field description. Nevertheless, there are classical
analogs to the creation or annihilation of photons in the form of
parametric amplification or attenuation of preexisting fields by
time-dependent cavity boundaries [103]. However, even this is
absent in the standard Landau-Zener model applied previously
to the membrane-in-the-middle system in references [46,99]
because the interaction with the membrane conserves the
total photon number. The approximate mapping from the
Maxwell wave equation to an effective Schrödinger-type wave
equation has the (unintended) consequence of treating classical
field amplitudes as though they were probability amplitudes;
whereas the sum of the squares of classical field amplitudes
is proportional to the total energy and is not constrained to be
constant in a time-dependent cavity, the sum of the squares
of probability amplitudes is fixed at unity even for time-
dependent Hamiltonians. The second-order-in-time nature of

the Maxwell wave equation thus allows for a richer dynamical
behavior than is present in the standard Landau-Zener problem.
We shall see that the second-order-in-time dynamics includes
a type of evolution which is adiabatic in the sense that there
is no transfer (scattering) of light between modes and yet the
magnitudes can still change due to parametric amplification
or attenuation, something which cannot occur in number-
conserving evolution. In this paper, we shall specifically
investigate how such “beyond Landau-Zener” phenomena
depend on membrane speed and reflectivity.

Parametric amplification is negligible in standard optome-
chanical experiments but interesting from a fundamental per-
spective. In order to evaluate the prospects of observing them,
it is important to know what membrane speeds can be achieved.
One way to move the membrane in a prescribed motion such
as a Landau-Zener sweep is to use a piezoelectric motor (as
is used, for example, to stabilize cavities against vibrations
[104]). The maximum speed would then be around 10 m/s.
However, much greater effective speeds can be achieved
without moving the membrane at all, but by instead filling the
subcavities with dielectrics whose indices of refraction can be
changed independently in time, thereby changing their relative
optical lengths (see Appendix C of [99]). Ultrafast electro-
optical control of the refractive index allows the effective
optical length of a cavity to be changed on time scales shorter
than 10 ps [105–109]. This control can be achieved by using a
laser to excite a plasma of free charge in the dielectric, similar
to the original proposal in Ref. [22] mentioned above. Related
effects can also be generated electrically [110]. In this way,
we estimate that effective membrane speeds of 20 000 m/s are
achievable.

A very important conceptual and practical difference be-
tween the membrane-in-the-middle setup considered here and
the original Davis-Fulling-DeWitt moving mirror proposals,
as well as Moore’s moving cavity end mirror, is that in the
latter cases a perfectly reflective mirror moves, whereas in the
former case a dielectric membrane of finite reflectivity moves.
While a perfect mirror is in any case an idealization, when
it moves it leads to pathologies in the theory as recognized
by Moore [17]. According to Barton and Eberlein [111] “In
essence, the displacement of a perfectly reflecting surface
forces the description of the quantized field out of the original
Hilbert space and into another.” In other words, the creation
and annihilation operators for the field for two different mirror
positions cannot be defined in the same Hilbert space. Ways
around this problem include only working with dielectrics
with finite refractive indices, like in Refs. [111] and [112],
or to use Law’s [6–8] effective Hamiltonian approach which
does not even attempt to describe the true interactions between
the field and the charges and currents in the mirror but rather
imposes the zero boundary condition at the mirror by hand
and then works with the photon operators associated with the
continuously evolving “instantaneous” modes. In this paper,
we adopt a hybrid approach in which the only moving element
is a dielectric with a finite refractive index plus we impose the
zero boundary condition at the stationary end mirrors.

The plan for this paper is as follows. In Sec. II, we derive the
wave equation obeyed by the electric field in the presence of a
moving dielectric in the nonrelativistic regime. In Sec. III, we
solve it for its normal modes in the case of a static membrane.
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Section IV considers the case where the membrane is moving
and derives the general equations of motion for the optical field
by expanding it over the instantaneous normal modes, i.e.,
an adiabatic basis that continuously evolves. An important
special case that plays a central role in this paper is that of
two modes interacting at an avoided crossing: in Sec. V we
give expressions for the energy of such a dichromatic field.
In Sec. VI, we give the results of numerically solving the
general equations of motion for a membrane moving at a
constant velocity which gives a Landau-Zener–type sweep
of the field through an avoided crossing. In Sec. VII, we
solve the same problem but in the local (diabatic) basis where
approximations can be more readily made (and which we
verify numerically). These approximations include neglecting
the time dependence of the mode functions and also reducing
the second-order-in-time wave equation to one which is first
order. We obtain, in Sec. VIII, an analytic criterion for
when this first-order reduction is valid in terms of the basic
parameters of membrane reflectivity and speed. Section IX
gives a physical explanation for the change in energy in the
cavity as the membrane moves in terms of the work done by the
radiation pressure on the membrane. Throughout this paper,
we try to compare and contrast the classical description of an
optical field with the quantum case. This approach culminates
in Sec. X where we give a detailed quantum description
and connect it to the classical field dynamics. We give our
conclusions in Sec. XI. We have also included four appendixes
which contain details excluded from the main text: Appendix
A discusses relativistic corrections to the wave equation in
the presence of a moving dielectric membrane, Appendix B
derives the rather subtle initial conditions for the field that
we use for numerically integrating the equations of motion,
Appendix C gives the derivation of the quantum equations
of motion, and Appendix D sketches the calculation of the
various coefficients that appear in the quantum Hamiltonian, as
well as giving estimates of their magnitudes in contemporary
experiments.

II. WAVE EQUATION IN THE PRESENCE
OF A MOVING DIELECTRIC

In their most general form the four Maxwell equations read
as

∇ · D = ρf , (2)

∇ · B = 0, (3)

∇ × E = −∂B
∂t

, (4)

∇ × H = Jf + ∂D
∂t

, (5)

where D is the displacement field, E is the electric field, H is
the magnetizing field, and B is the magnetic field. ρf and Jf are
the free charge and free current, respectively, which exist in the
end mirrors but not in the dielectric which is assumed to only
contain bound charge and polarization current. In this paper,
we follow Law’s [6–8] approach, where the electromagnetic
field is set to zero at the surfaces of the end mirrors by hand.

This effective theory avoids us having to deal explicitly with
the complicated interaction between the fields and Jf and ρf

in the end mirrors, and we can therefore set these source terms
to zero everywhere. We also assume that the electromagnetic
properties of the dielectric are linear and isotropic so that they
obey the constitutive relations D = εE and B = μH. In fact,
we will only consider the case of a nonmagnetic dielectric
and hence μ(x,t) → μ0, where μ0 is the permeability of free
space. Substituting B = μ0H into Faraday’s law [Eq. (4)],
taking the curl of both sides, then taking the time derivative
of Ampère’s law [Eq. (5)], and combining the two equations
gives −∇ × (∇ × E) = μ0∂

2D/∂t2. We can use the standard
vector identity ∇ × ∇ × E = ∇(∇ · E) − ∇2E to rewrite the
left-hand side, but unlike the vacuum case, we do not have
∇ · E = 0 everywhere. Rather, because ρf = 0, we have ∇ ·
(εE) = 0 and hence ε(∇ · E) + E · ∇ε = 0. Thus, the electric
field satisfies

∇2E + ∇(E · ∇ ln ε) = μ0
∂2εE
∂t2

. (6)

In fact, the second term on the left-hand side vanishes
identically in the situations we shall consider in this paper
where the dielectric function only varies along the cavity
axis, whereas the electric field is polarized transversally to
this. Because we shall only consider a single polarization, we
are in essence using the scalar field model [111–113] in one
dimension.

In order to analyze the right-hand side of Eq. (6), we need
a model for the dielectric function of a moving membrane. If
we assume a Gaussian profile of the form

εmembrane = αε0
exp[−(x − vt)2/w2]√

πw
, (7)

where ε0 is the permittivity of free space and w, v, and α

characterize the membrane’s thickness, velocity, and dielectric
strength, respectively, we find that the rate of change of the
dielectric properties obey

∂εmembrane

∂t
� αε0

√
2

π

v

w2
exp[−1/2], (8)

where the right-hand side has been evaluated at the point x −
vt = w/

√
2 where the Gaussian changes most rapidly. For the

“velocity” we put v = 5000 m/s, which is a typical value used
in this paper (although velocities up to v = 20 000 m/s are
considered), and guided by the Yale experiments [69,70] we
set w = 50 nm. In order to estimate the membrane’s reflectivity
R, and hence the value of α, we note that when the membrane is
much thinner than the wavelength of light, as is the case when
w = 50 nm, we can let w → 0. In this limit, the Gaussian
reduces to a δ function and

R = k2α2

4 + k2α2
. (9)

For example, taking λ = 2π/k = 785 nm and α = 1.7 ×
10−6 m gives a membrane reflectivity of 98%. In fact, the
δ-function approximation can also be used for thicker mem-
branes provided resonances are avoided where a significant
amount of electromagnetic energy is concentrated inside the
dielectric [99]. Inserting the above numbers into Eq. (8)
gives the estimate ∂εmembrane/∂t � 1012ε0. The factor 1012 s−1
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should be compared with the optical frequency ωoptical =
O[1015] s−1 which characterizes the time dependence of the
electric field. This means that one can reasonably ignore
the time derivatives of ε on the right-hand side of Eq. (6)
and adopt the standard wave equation but with a space- and
time-dependent dielectric function:

∇2E − μ0ε(x,t)
∂2E
∂t2

= 0. (10)

Inside a dielectric light does not travel at the same speed as
in vacuum, and this means that the above equation is not
relativistically invariant and hence is subject to relativistic
corrections when the membrane moves [33]. However, as
shown in Appendix A, these corrections turn out to be small
for the speeds we consider here and will be neglected. In
fact, because we model the dielectric by a δ function, strictly
speaking, there is no light inside the medium and the membrane
only acts as a boundary condition, somewhat like that due to
the end mirrors. It can then be argued that any relativistic
corrections due to the medium vanish identically.

III. STATIC MEMBRANE

Our treatment of the dynamics of light in a double cavity
is based upon finding the normal modes of the field, and these
depend on the position of the membrane. While normal modes
only exist for a stationary membrane, which is the focus of
this section, when interpreted as the instantaneous modes at
each position of the membrane they can be used as a complete
and orthogonal basis for the moving membrane case to be
discussed in subsequent sections.

As above, the membrane is taken to be a thin piece of
dielectric material whose spatial profile is modeled by a δ

function. It can transmit light, in contrast to the two end
mirrors, which are assumed to be perfectly reflective. Once
an initial optical field is established in the double cavity, the
external pump fields are presumed to be turned off and losses
are neglected. The dynamics of light in the stationary version
of this model was studied by Lang et al. [114] in 1973 in
the context of modeling lasers as open systems. One of the
subcavities represented the laser cavity and the other, which
was much longer, represented the outside world. More recently,
the dynamic version of the model has been used by Linington
and Garraway [115,116] to study dissipation control in cavities
with moving end mirrors, and Castaños and Weder [58] have
used it to find the classical dynamics of a thin end mirror.

When choosing a coordinate system, it is convenient to
pretend that the membrane is always located at the origin and
the end mirrors are at x = −L1 and L2. The total length of the
cavity is L = L1 + L2 and the distance of the membrane from
the center is �L/2, where �L = L1 − L2 is the difference
in length between the two subcavities so that L1/2 = (L ±
�L)/2. Thus, we write the dielectric function of the double
cavity as

ε(x,�L) =
{
ε0[1 + αδ(x)], −L1 < x < L2

∞, x > L2, x < −L1.
(11)

We emphasize that despite this choice of coordinate system,
the physical situation we are describing is one in which the
membrane is mobile and the end mirrors are fixed.

We take the mirrors to lie in the y-z plane and to be
translatable along the x axis, and consider the case where
the electric and magnetic fields are polarized along the z

and y axes, respectively. In terms of the vector potential A =
A(x,t)ẑ, we have E(x,t) = E(x,t)ẑ = −(∂tA)ẑ and B(x,t) =
B(x,t)ŷ = −(∂xA)ŷ. The Maxwell wave equation then takes
the form

∂2E(x,t)

∂x2
− μ0ε(x,�L)

∂2E(x,t)

∂t2
= 0. (12)

The method for solving this equation in terms of normal modes
is well known. However, we shall go through it carefully here
as a reference for the moving membrane case we tackle in
the rest of this paper. To this end, we perform a separation of
variables, by putting E(x,t) = C(t)U (x), which gives the two
equations

d2U

dx2
+ k2 ε(x,�L)

ε0
U = 0, (13)

d2C

dt2
+ ω2C = 0, (14)

where ω2 = c2k2 is the separation constant and c = 1/
√

ε0μ0

is the speed of light in vacuum. The solutions to Eq. (13)
that obey the boundary conditions E(x = −L1,t) = E(x =
L2,t) = 0 due to the end mirrors are the global modes of the
entire double cavity

Um(x,�L)

=
{
Am(�L) sin{km(�L)[x + L1(�L)]}, −L1 � x � 0
Bm(�L) sin{km(�L)[x − L2(�L)]}, 0 � x � L2.

(15)

The allowed wave numbers km satisfy [114]

cos(2km�L) − cos(kmL) = 2
sin(kmL)

αkm

, (16)

where m is an integer that labels them. Both km and Um

depend parametrically on �L; when Eq. (16) is solved as
a function of membrane displacement the result is a network
of avoided crossings as shown in Fig. 2. An important property
of the mode functions is that they are orthogonal in the
Sturm-Liouville sense. If in addition we impose normalization,
they obey

1

ε0

∫ L2

−L1

ε(x,�L) Ul(x,�L) Um(x,�L) dx = δlm. (17)

The time dependence of the field is determined by Eq. (14)
which is the equation of motion for a harmonic oscillator.
Factorizing it as (−i∂t − ωm)(i∂t − ωm)Cm = 0 we see that
there are two solutions of the form C±

m (t) = c± exp[±iωmt].
The electric field is a linear combination of C±

m (t) and must be
real. We can therefore put

E(x,t) =
∑
m

[C+
m (t) + C−

m (t)] Um(x,�L), (18)

where the constants c± are complex conjugates of each
other. Thus, C+

m (t) = [C−
m (t)]∗, and in this sense the harmonic

oscillator equation can be replaced by the single first-order
equation (i∂t − ωm)Cm = 0. Although the harmonic oscillator
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equation is second order, and hence its solution requires two
arbitrary constants (an amplitude and a phase), there is no loss
of information in going over to a first-order equation because
Cm is now a complex number specified by two real numbers.
In the quantum theory, Cm(t) and C∗

m(t) become lowering
and raising operators, respectively, that obey the Heisenberg
equations of motion:(

i
∂

∂t
− ωm

)
Ĉm(t) = 0, (19)(

−i
∂

∂t
− ωm

)
Ĉ†

m(t) = 0. (20)

These equations are not independent: there is really a single
equation and its Hermitian conjugate. The electric field in
Eq. (18) becomes an operator proportional to Ĉ

†
m(t) + Ĉm(t)

which can be recognized as the position operator (up to
constant factors). It is of considerable significance that the
quantum equations of motion (and also the classical ones in this
case) are first order in time as this ensures that the commutator
[Ĉm(t),Ĉ†

n(t)] = δmn is preserved under the dynamics. This
quantization procedure becomes problematic in the presence
of a moving membrane because then the dielectric function
depends on time and prevents a separation of variables, i.e.,
there are no normal modes. Quantization in this situation will
be discussed in Sec. X.

In this paper, we focus on the dynamics near an avoided
crossing, and hence parametrize the two relevant eigenfre-
quencies as

ω2/1(�L) = ωav ±
√

�2 + �2(�L), (21)

where � is half the separation between the two frequencies
at the avoided crossing, ωav is their average, and � ≡ √

γ �L

varies linearly with the membrane’s displacement from the
avoided crossing. In [99] we showed that for the δ-function
membrane model [and for optical frequencies where ω =
O(1015) s−1] that

ω0 ≡ 2cnπ

L
= ωav − � ≈ ωav, (22)

� = ω0

2

1

1 + ω2
0Lα

4c2

≈ 2c2

ω0Lα
, (23)

γ = α �ω3
0

2Lc2
≈ ω2

0

L2
, (24)

where n denotes the nth pair of modes as counted up from the
fundamental mode in a cavity with a perfectly centered and
perfectly reflective membrane. For a chosen avoided crossing,
the mode corresponding to the lower branch is labeled by the
subscript 1, while that forming the upper branch is labeled
by the subscript 2. When the mirror is perfectly centered,
the electric field mode functions are either symmetric or
antisymmetric. The antisymmetric modes correspond to the
lower eigenfrequency (ω1) of the avoided crossing, while
the symmetric state corresponds to the higher eigenfrequency
(ω2). This is in contrast [99] to the case of material particles
governed by the Schrödinger equation where the scenario is
reversed, i.e., the state with the lower eigenvalue is symmetric.

An alternative basis to the global modes is provided by the
local modes

φL(x,�L) = − sin θ U2(x,�L) + cos θ U1(x,�L),
(25)

φR(x,�L) = cos θ U2(x,�L) + sin θ U1(x,�L),

where

sin θ = −
√

1

2
− �(�L)

2
√

�2 + �(�L)2
(26)

and

cos θ =
√

1

2
+ �(�L)

2
√

�2 + �(�L)2
(27)

(see Appendix D of [99] for a derivation). The local modes are
localized in the left (φL) and right (φR) subcavities. Although
this localization is not perfect, it becomes strong even for
moderate membrane reflectivities. The orthonormality of the
global modes is inherited by the local modes so that

1

ε0

∫ L2

−L1

ε(x,�L)φi(x,�L)φj (x,�L)dx = δij , (28)

where {i,j} = {L,R}. The usefulness of the local basis, when
used for dynamics near an avoided crossing, will become
apparent in Sec. VII. From henceforth the global basis will
be referred to as the adiabatic basis and the local basis as
the diabatic basis. This terminology is borrowed from the
Landau-Zener problem where the energies of the diabatic
states cross linearly as a function time whereas the adiabatic
states have an avoided crossing with a minimum gap of 2�.
The differences between the diabatic and the adiabatic modes
are most stark at the (avoided) crossing; far from the (avoided)
crossing they become equal to each other. One note of caution:
As explained in Appendix D in Ref. [99] the diabatic modes
are not the same as the perfectly uncoupled modes when the
two sides of the cavity are independent except in the limit
α → ∞.

IV. MOVING MEMBRANE

In this section, we derive the equations of motion describing
the time evolution of light in a double cavity with a moving
membrane. Following Linington [116], we write the evolving
electric field in the instantaneous eigenbasis (adiabatic basis)
and find differential equations that are second order in time
for the corresponding amplitudes. These equations of motion,
given in Eq. (31) below, will be referred to as the adiabatic
second-order equations (ASOE) and provide us with the most
accurate description of the dynamics (they do not assume any
adiabatic approximation). The results predicted by the ASOE
are the benchmark against which we compare the validity
of the approximate dynamics given by the diabatic second-
order equations (DSOE) and the diabatic first-order equations
(DFOE) which will be introduced later.

The adiabatic modes for any instantaneous position of the
membrane form a complete basis and we can expand the
electric field in terms of them:

E(x,t) =
∑

n

cn(t) exp

{
−i

∫ t

t0

ωn(t ′)dt ′
}
Un(x,t), (29)
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where the instantaneous mode functions Un(x,t) at time t are
specified in Eq. (15) and the time-dependent coefficients cn(t)
are in general complex numbers. Although we have not made
it explicit, it is understood that the physical electric field is
given by the real part of Eq. (29). Substituting Eq. (29) into
(10), one finds [116]

∑
n

⎧⎪⎪⎨
⎪⎪⎩−2iωn

∂

∂t
[cn(t)Un(x,t)]︸ ︷︷ ︸

1

+ ∂2

∂t2
[cn(t)Un(x,t)]︸ ︷︷ ︸

2

−i
∂ωn(t)

∂t
cn(t)Un(x,t)︸ ︷︷ ︸
3

⎫⎪⎪⎬
⎪⎪⎭ exp

[
−i

∫ t

t0

ωn(t ′)dt ′
]

= 0.

(30)

Term 1 is by far the dominant one due to the very large
optical frequency prefactor. In the slow membrane regime,
term 2 is small while term 3 is much smaller still because the
adiabatic mode can change more significantly in comparison
to the rate of change of the optical frequency near an avoided
crossing. Right at the avoided crossing, the frequencies are
at a maximum or a minimum and hence their rate of change
is zero. The relative magnitude of all these terms is analyzed
in greater detail in [116]. In particular, for faster membrane
speeds, terms 2 and 3 can become of similar magnitude.

By projecting out the mth amplitude using the orthonor-
mality of adiabatic modes, we find from Eq. (30) that the
amplitudes corresponding to the adiabatic basis satisfy the
ASOE [116]

c̈m(t) − iω̇m(t)cm(t) − 2iωm(t)ċm(t) +
∑

n

{[2ċn(t)

− 2iωn(t)cn(t)]Pmn(t) + cn(t)Qmn(t)} = 0. (31)

In these equations

θmn(t) ≡
∫ t

t0

[ωm(t ′) − ωn(t ′)] dt ′,

Pmn(t) ≡ eiθmn(t)
∫ L2

−L1

ε(x,t)

ε0
Um(x,t)

∂Un(x,t)

∂t
dx,

Qmn(t) ≡ eiθmn(t)
∫ L2

−L1

ε(x,t)

ε0
Um(x,t)

∂2Un(x,t)

∂t2
dx.

The integrals Pmn(t) and Qmn(t) depend on the motion of the
membrane through the time dependence of the adiabatic mode
functions Un(x,t). If the membrane is stationary, Pmn and Qmn

vanish and there is no coupling between the different adiabatic
modes.

The coupled differential equations (31) are second order in
time and we therefore need to specify two conditions at the
initial time t0 in order to solve them. We choose cm(t0) and
ċm(t0). However, while cm(t0) can be found for any choice
of the initial field configuration by projecting it over the
expansion given in Eq. (29), it is not so obvious what to choose
for ċm(t0). In particular, if we assume that for times t < t0 the
membrane is stationary, then we show in Appendix B that

the correct initial condition for the time derivatives of the
coefficients is ċm(t0) = −∑

n Pmn(t0)cn(t0).

V. ENERGY OF A DICHROMATIC FIELD

A key quantity in our analysis of the dynamics is the
instantaneous energy of the electromagnetic field

E = 1

2

∫
V

[ε(x,t)|E(x,t)|2 + μ0|H (x,t)|2]dV

= A
2

∫
[ε(x,t)|E(x,t)|2 + μ0|H (x,t)|2]dx, (32)

where H (x,t) = B(x,t)/μ0, A is the area of the mode
functions, and V is the volume of the cavity. Note that the
vanishing volume of the δ-function membrane means that there
is no contribution from it. In this paper we are interested in
the field dynamics when passing through an avoided crossing
where attention can be restricted to just two modes. We
therefore consider a dichromatic field in the adiabatic basis
with frequencies ω1 and ω2. The total electric field can then
be written as

E(x,t) = c1(t) exp[−iθ1(t)]U1(x,t)

+ c2(t) exp[−iθ2(t)]U2(x,t), (33)

where Um(x,t) is defined in Eq. (15) and

θm(t) =
∫ t

t0

ωm(t ′)dt ′.

Hence, the energy per unit area becomes

E
A = ε0

2
{|c1(t)|2 + |c2(t)|2} + μ0

2

∫ L2

−L1

|H (x,t)|2dx.

Assuming that, as usual, the magnetic field makes a contribu-
tion to the energy equal to that of the electric field, we arrive
at the following expression for the total energy per unit area:

E
A = ε0{|c1(t)|2 + |c2(t)|2}. (34)

In time-independent situations, the Hamiltonian gives the
energy of a system. However, this is not necessarily true in
time-dependent systems where the Hamiltonian still plays
the role of the generator of dynamics but need not coincide
with the energy. Reference [117] proves that Eq. (32) is
the correct expression for the instantaneous energy even in
time-dependent situations. Although our approach to finding
the dynamics in this paper is based upon the wave equation
rather than the Hamiltonian, we shall have occasion to derive
the Hamiltonian in Sec. X and will find that it contains extra
velocity-dependent terms not present in Eq. (32).

VI. FIELD DYNAMICS WHILE TRAVERSING AN
AVOIDED CROSSING

In this section, we apply the full ASOE derived in Sec. IV
to the case of a Landau-Zener–style sweep of the membrane
through an avoided crossing. The Landau-Zener problem is
a rare example of where the time-dependent Schrödinger
equation can be solved exactly and the adiabaticity of the
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motion evaluated analytically. The Schrödinger equation for
the Landau-Zener problem is

i
d

dt

(
aL

aR

)
= HLZ(t)

(
aL

aR

)
, (35)

where, in the notation used in this paper, the Landau-Zener
Hamiltonian takes the form

HLZ(t) ≡
(

ωav + �(t) �

� ωav − �(t)

)
. (36)

It describes the case where two diabatic levels cross linearly
in time and in the double-cavity system this corresponds to
a membrane moving at constant velocity v. Given that the
membrane displacement is �L/2, and that �(t) ≡ √

γ �L(t)
[see Eq. (21) and the definitions given below it], for a Landau-
Zener sweep we must put

�(t) = √
γ �L(t) = √

γ 2vt. (37)

The diabatic levels cross at t = 0 and have a constant coupling
given by �. In the adiabatic basis, the same Schrödinger
equation becomes

i
d

dt

(
c2

c1

)
=

(
ω2(t) 0

0 ω1(t)

)(
c2

c1

)
, (38)

where ω2/1(t) = ωav ±
√

�2 + �2(t). There is an avoided
crossing between the two adiabatic states with a gap of 2�

at t = 0. If the system starts in one of the adiabatic states at
t = −∞ the probability that it has made a transition to the
other adiabatic state by t = +∞ is given by [118–120]

PLZ = exp[−π�2/(2v
√

γ )]. (39)

The process becomes more adiabatic as the velocity v is
reduced; the population transfer approaches zero exponentially
fast in 1/v.

We should not expect the Landau-Zener theory to apply
to the classical electromagnetic field because the latter does
not obey the Schrödinger equation. Nevertheless, as we shall
see, there are regimes where we can map the passage of the
electromagnetic field through an avoided crossing onto the
Landau-Zener problem. In particular, we find that decreasing
the membrane speed is a sufficient criteria for achieving adia-
baticity in the Maxwell wave equation in the sense of vanishing
transfer between adiabatic modes. However, contrary to the
Schrödinger case, we find that even at very slow membrane
speeds we do not conserve the sum |c1(t)|2 + |c2(t)|2. In
quantum mechanics, the coefficients cn(t) are probability
amplitudes and the sum of their squares represents the total
probability which is conserved under the unitary evolution
provided by the Schrödinger equation. The same is not true
in the Maxwell case where, as we saw in Sec. V, the sum of
the squares represents the total energy which is in general not
conserved when an external parameter is varied. Physically,
the electromagnetic field interacts with the membrane via
radiation pressure and, as a result, energy can be transferred
back and forth between the field and the external agent
moving the membrane. There is always radiation pressure
on the membrane (except right at an avoided crossing) and
therefore some energy is pumped into or out of the system
regardless of how slowly the membrane is being moved.

This is a fundamental difference between adiabaticity in the
Schrödinger and Maxwell wave equations.

We consider the situation where the membrane moves at
constant speed v from position x = −L0 to L0 over the time
t = −T0 to T0. The displacement of the membrane from the
center is given by �L/2,

�L(t)

2
= L0

T0
t, (40)

and v = L0/T0. One can investigate the effects of varying the
speed by fixing L0 and changing T0. It is useful to introduce
the scaled time variable

τ = t

T0
= λt, − 1 � τ � 1 (41)

i.e., λ = 1
T0

. In terms of these variables, the ASOE given in
Eq. (31) become

dcm

dτ
= − dωm

dτ

cm

2ωm

− iλ

2ωm

d2cm

dτ 2

−
∑

n

{[
iλ

ωm

dcn

dτ
+ ωn

ωm

cn

]
P̄mn + iλ

2ωm

cnQ̄mn

}
,

(42)

where

θ̄mn ≡ 1

λ

∫ τ

−1
[ωm(τ ′) − ωn(τ ′)]dτ ′,

P̄mn ≡ eiθ̄mn

∫ L2

−L1

ε(τ,x)

ε0
Um(τ,x)∂τUn(τ,x)dx,

Q̄mn ≡ eiθ̄mn

∫ L2

−L1

ε(τ,x)

ε0
Um(τ,x)∂2

τ Un(τ,x)dx.

Let us assume that a single mode, with amplitude cm, is initially
populated and all other modes are empty. As T0 → ∞, we have
λ → 0 which means that θ̄mn varies infinitely rapidly in time
providing m �= n, else it is zero. Since θ̄mn appears as an overall
phase factor in both P̄mn and Q̄mn, these quantities oscillate
infinitely rapidly between equally positive and negative values
and average to zero when integrated over any time interval.
This effectively removes all the off-diagonal terms in Eq. (42)
so that the amplitudes become independent of each other. As
a result, the amplitudes for modes n �= m can never get started
and remain zero. Furthermore, the diagonal terms in Eq. (42)
are unaffected because P̄mm and Q̄mm have no phase term.
Hence, dcm/dτ itself does not approach zero, even in the slow
membrane limit, and cm evolves with time. Thus, a single
initially occupied mode can in general change its amplitude
no matter how slowly the membrane is moved while all the
other modes remain empty.

This analysis of the equations of motion is supported by
the numerical results shown in Figs. 3–5 where we plot
dynamics for a pair of adiabatic modes as they traverse an
avoided crossing at various speeds. At higher speeds, energy
is removed from the initially excited mode and transferred
to the initially empty mode. In fact, the green (solid) curves
shown in Figs. 3 and 4, which give, respectively, |c1|2 and |c2|2
at v = 5000 ms−1, are almost perfect mirror images of each
other about the halfway line at |c|2 = 0.5. This is the type
of behavior we would expect in the standard Landau-Zener
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|c 2

|2

FIG. 3. Dynamics of an initially empty mode when traversing
an avoided crossing at five different speeds. We simulated the
field dynamics using the ASOEs given in Eq. (42) in the two-
level approximation near an avoided crossing. c2 is the amplitude
associated with the upper adiabatic mode, where the initial condition
is c1 = 1 and c2 = 0. According to Eq. (34), |cn|2 is proportional
to the electromagnetic energy of the nth mode. We see that as
the membrane speed goes down, the energy pumped into the
initially unpopulated mode tends to zero. Parameters: membrane
reflectivity 98% (i.e., α = 1.5 × 10−6 m); length of double cavity
100 μm; maximum membrane displacement �L/2 = ±1 × 10−7 m.
The adiabatic modes shown are those with n = 128, where we label
the modes in terms of the wave numbers for a perfectly reflecting
membrane for which kn = 2πn/(L ± �L). These perfectly localized
modes come in pairs that are degenerate at �L = 0.

|c 1
|2

FIG. 4. Dynamics of an initially excited mode when traversing an
avoided crossing at different speeds as calculated using the ASOEs.
This figure is for exactly the same setup as Fig. 3 except here we
plot the results for the lower mode. We see that as the membrane
speed is decreased, the energy of this mode is not conserved but has
a slight upward curve. Combined with Fig. 3, this tells us that while
the slowly moving membrane limit is sufficient to avoid nonadiabatic
transitions, energy is not conserved.

Δ
E A

SO
E
/E

0

FIG. 5. The fractional change in total energy of the system as
it traverses an avoided crossing as calculated using the ASOEs.
Here, E0 is the initial energy and we use the same parameters as
in Figs. 3 and 4. The plot shows that even at very slow membrane
speeds, the energy change as a function of time does not vanish but
instead tends to a limiting curve. Hence, even though v → 0, we find∑

n |cn(τ )|2 �= constant, confirming that adiabaticity does not imply
energy conservation.

problem with the Schrödinger equation. At very low speeds,
we see from Fig. 3 that the amplitude of the initially empty
mode remains zero indicating adiabatic evolution, as expected.
However, in Fig. 4 we see that at low speeds the various curves
for the initially excited mode converge towards a limiting curve
where there is a finite change in energy of the mode. To make
this point clearer, we plot the change in total energy of the
system in Fig. 5. To be precise, we plot the change in energy
divided by the initial energy |c1|2 + |c2|2 − 1 = �EASOE/E0,
and as one can see no matter how slowly the membrane is
moved, the energy pumped into the system converges to a
curve that always lies above the zero axis. We also note that
the slow speed limiting curve is symmetric about the avoided
crossing at τ = 0, indicating that whatever energy is pumped
in when approaching the avoided crossing is pumped out as
it recedes. However, at higher speeds there is a noticeable net
energy gain by the electromagnetic field.

VII. DYNAMICS IN THE DIABATIC BASIS

In this section, we first obtain the second-order-in-time
equations of motion in the diabatic basis (DSOE) and then
approximate them to first-order-in-time equations (DFOE). So
far, we have worked in the adiabatic basis which corresponds
to the instantaneous normal modes of the double cavity.
One feature of this basis is that as an avoided crossing is
traversed the two mode functions involved radically change
their structure by exchanging the sides upon which they are
principally localized (see Fig. 4 in [99]). Conversely, the
expansion amplitudes cm(t) in the adiabatic basis experience
only exponentially small changes in the slow membrane
regime. The opposite is true for the diabatic basis where the
mode functions hardly change but there is a large change in
the amplitudes. The diabatic basis is advantageous for making
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analytic calculations because to a good approximation we can
ignore the time dependence of the mode functions and focus
all our attention on the amplitudes, a fact Zener points out in
his original paper [119]. We shall confirm this property below.

Assuming as before that the membrane motion is restricted
to be in the vicinity of an avoided crossing, we employ the
two-level approximation and let

E(x,t) = aL(t)φL(x,t) + aR(t)φR(x,t). (43)

Substitution into the Maxwell wave equation given in Eq. (10),
and neglecting the terms φ̇L/R and φ̈L/R , yields

aL(t)φ′′
L + aR(t)φ′′

R = μ0ε(x,t)[äL(t)φL + äR(t)φR], (44)

where the dots indicate time derivatives and the dashes spatial
derivatives. The diabatic modes are not normal modes of the
double cavity and so even for a stationary membrane, the light
oscillates back and forth between the left and right modes
in a fashion analogous to the Rabi oscillations of a two-level
atom interacting with a single-mode field. The combined effect
of this intrinsic oscillation and the moving membrane leads
to a much larger rate of change of the diabatic amplitudes
compared to the adiabatic amplitudes.

In order to find the spatial derivatives of the diabatic modes
in Eq. (44), we express each diabatic mode in the adiabatic
basis whose second derivatives we know in terms of the Sturm-
Liouville relationship given in Eq. (13), ∂2

xUm(x,�L) =
−[ε(x,�L)/ε0]k2

mUm(x,�L), and then convert back to the
diabatic basis. In matrix form, we find [99]

−
(

äL

äR

)

=
(

ω2
2 cos2 θ + ω2

1 sin2 θ (ω2
1 − ω2

2) cos θ sin θ

(ω2
1 − ω2

2) cos θ sin θ ω2
1 cos2 θ + ω2

2 sin2 θ

)(
aL

aR

)

(45)

or (
d2

dt2
+ MDSOE

)(
aL

aR

)
= 0, (46)

where

MDSOE =
(

[ωav + �(t)]2 + �2 2�ωav

2�ωav [ωav − �(t)]2 + �2

)
(47)

and we have made use of the identities

sin θ cos θ
(
ω2

1 − ω2
2

) = 2�ωav, (48)

ω2
1 cos2 θ + ω2

2 sin2 θ = (ωav − �)2 + �2, (49)

ω2
2 cos2 θ + ω2

1 sin2 θ = (ωav + �)2 + �2. (50)

We refer to Eq. (46) as the diabatic second-order equations
(DSOE).

The DSOE are strongly reminiscent of the second order
in time harmonic oscillator equation given in Eq. (14) for the
static membrane, albeit in the present case there are two modes
involved. This begs the question as to whether the DSOE can
be factorized and reduced to a first-order equation like the

harmonic oscillator equation can. To this end, we note that
MDSOE = H 2

LZ, and thus it is tempting to write Eq. (46) as(
i

d

dt
− HLZ

)(
−i

d

dt
− HLZ

)(
aL

aR

)
= 0 ? (51)

This factorization is correct in the time-independent case, but
due to the time dependence of HLZ, when the left-hand side of
Eq. (51) is expanded there is an extra term −iḢLZ not present
in the DSOE given in Eq. (46).

Although the DSOE cannot be exactly reduced to first-
order-in-time equations, a first-order approximation can be
derived as we now show. We start by transforming the left and
right mode amplitudes

aL/R = ãL/R exp

{
−i

∫ t

t0

βL/R(t ′)dt ′
}
, (52)

where

βL/R(t) ≡
√

[�(t) ± ωav]2 + �2. (53)

Substituting for the new variables removes the fast oscillations

äL/R = { ¨̃aL/R − 2iβL/R
˙̃aL/R − iβ̇L/RãL/R − β2

L/RãL/R}

× exp

{
−i

∫ t

t0

βL/R(t ′)dt ′
}
. (54)

Intuitively, we expect that during a slow sweep the first
and third terms on the right-hand side will be small and
hence we shall ignore them. We will check the validity of
these assumptions numerically below (and in Sec. VIII we
derive an analytic criterion for the validity of the first-order
approximation). We have that

i ˙̃aL/R = ωav�

βL/R

ãR/L exp

{
±i

∫ t

t0

[βL − βR]dt ′
}
. (55)

Assuming ωav is very large, we can put

βL/R(t) ≈ ωav

{
1 ± �(t)

ωav
+ 1

2

�2

ω2
av

}
. (56)

Hence, βL − βR ≈ 2� and ωav/βL/R ≈ 1, giving

i ˙̃aL/R = � ãR/L exp

{
±2i

∫ t

t0

�(t ′)dt ′
}
. (57)

Changing the variables back to aL/R , we finally obtain

i

(
ȧL

ȧR

)
=

(
ωav + �(t) �

� ωav − �(t)

)(
aL

aR

)
. (58)

In the case that the membrane moves at a constant speed, so
that �(t) is linear in time, these are exactly the Landau-Zener
equations [see Eq. (35)]. We refer to Eq. (58) as the diabatic
first-order equations (DFOE).

The results of numerically simulating the dynamics using
the ASOE and DSOE schemes are compared in Figs. 6–8. In
each case, the light is initially located on the right side of the
cavity and the membrane is moved from left to right. When the
calculation is done using the ASOE, we can still plot the results
in the diabatic basis by switching basis using Eq. (25). From
Fig. 6, we see that the results using the ASOE and DSOE
lie on top of each other so that their differences are small
relative to the order of magnitude of the amplitudes themselves.
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|aR|2

|aL|2

|a
L

/
R
|2

FIG. 6. Dynamics on traversing an avoided crossing as seen in the
diabatic basis, with the field initially localized on the right. Membrane
speed: 5000 ms−1. All other parameters are the same as in Fig. 3. The
results were calculated using both the ASOE and DSOE schemes
with the two sets of curves lying right on top of each other.

Hence, for these parameters we are safe in ignoring the time
dependence of the diabatic mode functions. To get a closer look
at the differences, we compute the change in energy relative to
its initial value �E/E0 for the two sets of equations of motion.
From Figs. 7 and 8, we see that as long as the membrane
motion is close to the avoided crossing, the difference is of the
order of 10−5 even for speeds as high as 20 000 ms−1.

Let us now check the validity of the first-order-in-time
approximation embodied in the DFOE approach, i.e., how

Δ
E A

SO
E
/E

0
−

Δ
E D

SO
E
/E

0

FIG. 7. A comparison of the fractional change in energy calcu-
lated using the ASOE and DSOE for the same avoided crossing
dynamics as shown in Fig. 6 except that here we also vary the
membrane speed. We see that the order of magnitude of difference
between ASOE and DSOE is of the order of 1 × 10−5. Here,
�EASOE/E0 is generated by Eq. (31) and �EDFOE/E0 is generated
by Eq. (46). Although a speed of 20 000 ms−1 seems very high, such
effective speeds can be achieved by changing the background index
of refractions rather than physically moving the mirror.
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Δ
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FIG. 8. A comparison of the fractional change in energy calcu-
lated using the ASOE and DSOE for the same avoided crossing
dynamics as shown in Fig. 6 except that here we also vary the
membrane reflectivity. The results lead us to the same conclusion as
in Fig. 7. Here, �EASOE/E0 is generated by Eq. (31) and �EDFOE/E0

is generated by Eq. (46).

good of an approximation it is to ignore the first and the third
terms in Eq. (54). In Figs. 9 and 10, we compare the relative
change in energy with time using the DSOE and the DFOE.
The difference between the first- and second-order models is
directly related to the energy pumped into and out of the system
because the first-order dynamics preserves

∑
n |cn|2, meaning

that �EDFOE is identically zero. We can see that for increasing
reflectivity and speed, the first-order approximation becomes

Δ
E D
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E
/E

0
−

Δ
E D

F
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/E

0

FIG. 9. This figure shows the trend of agreement between DSOE
and DFOE as we vary the membrane reflectivity for the same avoided
crossing dynamics as shown in Fig. 6. For first-order dynamics,
�EDFOE/E0 has to be identically zero, while for second-order
dynamics it is generally nonzero. Hence, the difference of this
quantity from zero can be used to quantify the validity of the first-order
model. As reflectivity goes up, the first-order approximation becomes
less valid.
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FIG. 10. This figure shows the trend of agreement between DSOE
and DFOE as we vary the membrane speed for the same avoided
crossing dynamics as shown in Fig. 6. As our intuition would suggest,
the first-order approximation becomes less valid for higher speeds.

less valid. Nevertheless, in the optical frequency regime it is
a very good approximation as the discrepancy is only of the
order of 10−3. This number also shows that ignoring the time
dependence of the diabatic mode functions is a much smaller
effect than the first-order reduction of the DSOE to the DFOE.

The finding that the first-order-in-time approximation
becomes less valid as reflectivity is increased appears to be
in contradiction to the results in our previous paper [99]. In
particular, Fig. 7 of [99] shows that the approximation becomes
better as the coupling � is decreased. This might be interpreted
(erroneously) as saying that reflectivity should be increased
for a better match. That paper showed that the first-order
equations of motion depend on a single dimensionless param-
eter v

√
γ /�2, a result which is consistent with the Landau-

Zener transition probability given in Eq. (39), whereas the
second-order equations of motion depend additionally upon
the dimensionless quantity �/ωav. Therefore, a comparison
of the two dynamics where v

√
γ /�2 is held constant but

�/ωav is varied should agree in the limit �/ωav → 0. This is
correct. However, holding v

√
γ /�2 constant and reducing �

implies that the speed v must also be decreasing, ensuring that
the first-order dynamics becomes a better approximation as
higher-order time derivatives present in the corrections become
smaller. Such a comparison of the dynamics is not a good test
of the role of reflectivity because it is not just the reflectivity
that is varied. In this paper, and in particular in Fig. 9, we study
a different situation: we fix the initial and final mirror positions
and then sweep through the avoided crossing at a fixed speed
while varying the reflectivity.

VIII. ANALYTIC CRITERION FOR VALIDITY OF
FIRST-ORDER DYNAMICS

In the previous section, we presented numerical evidence
showing that the second-order Maxwell wave equation can,
in certain regimes, be approximated by a first-order-in-
time Schrödinger-type equation. In particular, we saw in

Figs. 9 and 10 that the approximation became better when
the membrane reflectivity and speed are low. However, apart
from dropping higher derivatives, it is not clear where in the
derivation of the first-order equation (58) the restriction to
small reflectivities or speeds came in. Let us develop a criterion
that allows us to evaluate when the first-order approximation
is valid depending upon the mirror reflectivity and speed.

Comparing Eqs. (46) and (51), we see that the first-order
approximation is equivalent to solving the equation

d2

dt2

(
aL

aR

)
= (−H 2

LZ + iḢLZ
)(aL

aR

)
(59)

which differs from the true equation by the term

iḢLZ = i

(
�̇ 0
0 −�̇

)
. (60)

Thus, for the DFOE to be a valid approximation to the DSOE,
we require that the ratio r ≡ ||H 2

LZ||2/||ḢLZ||2 be large, i.e.,
||H 2

LZ|| be much larger than ||ḢLZ||. The symbol || . . . ||
represents the norm of the matrix given by the square root
of the sum of each matrix element squared [121]. Substituting
in HLZ and ḢLZ, the ratio is given by

r = 8�2ω2
av + ([ωav+�]2 + �2)2+([ωav − �]2 + �2)2

2�̇2

(61)

=
(
γ 2�L4 + �4 + ω4

av

)+ 6ω2
av(�2+γ�L2) + 2γ�2�L2

γ �̇L
2 ,

(62)

where the second line follows from putting � = √
γ �L and

simplifying.
The role of the optical frequency and mirror speed in the

validity of the DFOE is quite clear from this expression for
r: increasing ωav and decreasing �̇L contribute to increasing
r . What is not as obvious is the role of the reflectivity which
according to Eqs. (23) and (24) appears in the terms � and
γ through their dependence upon α. Intuitively, we expect
that a higher reflectivity causes the membrane to perturb the
field more and should therefore lead to a breakdown of the
first-order approximation. That this is indeed the case can be
demonstrated by differentiating r with respect to α, from which
we find that the derivative is always negative showing that r

monotonically decreases as α (and hence R) increases. The
dependence of r on reflectivity and speed is shown in Fig. 11.

A further pictorial explanation can be found in the structure
of the frequencies ω2/1 near an avoided crossing as shown in
Fig. 2. One can see that as the central membrane reflectivity
approaches unity, the avoided crossing curves become steeper
(asymptotically approaching the diabatic frequencies given by
the red dashed curves) and change very rapidly at the avoided
crossing itself as � shrinks. This implies a faster change of the
frequencies [and quantities such as β given in Eq. (53)] with
membrane position and hence that second-order derivatives
become more important in this limit.
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FIG. 11. A plot of the analytical condition given in Eq. (62) for
the validity of the DFOE as a function of membrane reflectivity and
speed. When r is large, the DFOE is a good approximation. It can be
clearly seen that r becomes large at small speeds. The dependence on
reflectivity is much gentler, but there is still a discernible monotonic
increase in r as the reflectivity is reduced. These trends are in
agreement with the numerical results shown in previous sections,
showing that the DFOE becomes a better approximation at low
membrane speed and reflectivity.

IX. RADIATION PRESSURE AND THE
WORK-ENERGY THEOREM

In this section, we attempt to give a more physical
explanation for the change in energy of the electromagnetic
field seen in the second-order-in-time descriptions of the
dynamics (ASOE and DSOE). By applying the work-energy
theorem �E = W = ∫

F · dx, we show that the radiation
pressure exerted by the field on the membrane fully accounts
for the changes in electromagnetic energy we have computed
in Secs. VI and VII. This also provides a self-consistency check
on our numerical simulations. Starting from the Maxwell stress
tensor, we carefully derive the radiation pressure of light
in the two-mode approximation near an avoided crossing.
We show that the radiation pressure obtained by simply
adding the pressures due to each adiabatic mode [U1/2(x,�L)]
individually leads to erroneous results and is not equivalent to
the radiation pressure applied by the net electric field that
includes interference.

The effect of radiation pressure can in fact be seen in Figs. 9
and 10 where the light is initially localized on the right side
of the cavity and the membrane is moved from left to right
at a constant speed. The radiation pressure pushes against the
membrane and, hence, to maintain a constant speed, we need
to apply a force equal in magnitude to the radiation force,
but in the opposite direction. Therefore, positive work is done
by the membrane on the optical field and the latter’s energy
will increase. Furthermore, one can see in Figs. 9 and 10 that
the energy pumped in reaches a maximum value. This occurs
at the point where the light intensities on the left and right
sides of the membrane are equal and the radiation pressure
cancels, as can be seen in Fig. 14 which plots the radiation
pressure corresponding to the various curves in Fig. 9. Past this

point, the light intensity is greater on the left and the radiation
pressure points in the same direction as the membrane motion
which means that light does work upon the membrane. An
external force has to be applied in the opposite direction to the
membrane motion in order to maintain a constant speed.

The force due to radiation pressure on some region of
volume V and surface area S is given by [122]

F =
∫
S

←→
T · da − ∂

∂t

∫
V

ε(r)E × B dV , (63)

where
←→
T is the Maxwell stress tensor defined by

Tij ≡ ε0

(
EiEj − 1

2
δijE

2

)
+ 1

μ0

(
BiBj − 1

2
δijB

2

)
. (64)

We note in passing that the second term on the right-hand
side of Eq. (63) is responsible for the difference between the
Abraham and Minkowski expressions for the momentum of
light in a medium [123]. We shall neglect it here because in
the δ-function membrane model the volume V is vanishingly
small. The first term, on the other hand, depends on the surface
S of the membrane interfaces and this does not vanish. Since
the only nonzero components of the electromagnetic field are
Ez and By , the stress tensor is purely diagonal. Furthermore,
we only require the force along the x axis and thus the only
component of

←→
T we need is Txx which is given by

Txx = −ε0

2
E2

z − 1

2μ0
B2

y . (65)

Hence, the force on the membrane is

F =
∫
S

Txxdax = A
{

− ε0

2
E2

z − 1

2μ0
B2

y

}right

left

, (66)

where A is the transverse area of the cavity mode at the
membrane and the limits are evaluated at the left and right
interfaces of the membrane. It is useful to first picture this for
the case of a membrane of finite width and then take the limit
as the width shrinks to zero. The radiation pressure is therefore

P = F

A =
{

− ε0

2
E2

z − 1

2μ0
B2

y

}right

left

= − 1

2μ0

{
B2

y

}right

left
(67)

and is simply proportional to the difference of the magnetic
field intensity between the two sides. The electric field does not
contribute because it is continuous at the membrane interface.
By contrast, the magnetic field is discontinuous because it is
related to the spatial derivative of the electric field, and for a
δ-function dielectric ∂xE has finite jump across it.

With this expression for the radiation pressure in hand, the
work-energy theorem predicts that the change in the energy of
the electromagnetic field will be

�E(τ )

A = −v

∫ τ

−1
P(τ ′) dτ ′, (68)

where τ is defined in Sec. VI and the negative sign recognizes
the fact that we need the work done on the field by the
membrane rather than vice versa. Once the magnetic field
has been computed, the radiation pressure interpretation of the
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physical mechanism behind the energy change can be verified
by comparing it against Eq. (34) which gives

�E(τ )

A = ε0{|a1(τ )|2 + |a2(τ )|2 − 1} (69)

assuming that we pick the initial amplitude sum to be 1.
The magnetic field entering the expression for radia-

tion pressure can be obtained from the electric field using
Maxwell’s equations. The electric field due to the mth mode is

Em(x,t) = cm(t)Um(x,t) exp[−iθm(t)] ẑ (70)

which gives rise to the displacement field D(x,t) =
ε(x,t)E(x,t). According to the Maxwell equation

∇ × H = ∂D
∂t

,

the magnetizing field satisfies

∂xHm(x,t)ẑ =
{

− iωm(t)ε(x,t)cm(t)Um(x,t)

+ ∂

∂t
[ε(x,t)cm(t)Um(x,t)]

}
exp[−iθm(t)]ẑ.

(71)

Given the large magnitude of the optical frequency ωm, we can
to a very good approximation ignore the second term on the
right-hand side. Incorporating the boundary conditions at the
end mirrors, the solutions to Eq. (71) can be written

Hm(x,t) = icε0cm(t) exp[−iθm(t)]Gm(x,�L),

where

Gm(x,�L) =
{
Am cos[km(x + L1)], −L1 � x � 0
Bm cos[km(x − L2)], 0 � x � L2

(72)

[compare with Eq. (15), in particular, the amplitudes Am and
Bm are the same as for the electric field modes Um(x,�L)].
The radiation pressure on the membrane located at x = 0 due
to a monochromatic field of frequency ωm is, therefore,

Pm = −μ0

2
{|Hm|2}right

left

= −ε0

2
|cm(t)|2{B2

m cos2(kmL2) − A2
m cos2(kmL1)

}
.

(73)

In Fig. 12, we compare the results of the radiation pressure
calculation with the exact result given in Eq. (69). The total
radiation pressure is taken to be the sum of that due to
each monochromatic light field separately. We see that the
agreement is excellent for the lower reflectivity cases, but there
are noticeable differences between the 98% reflectivity curves.
This is because we are not including interference between
the two modes involved in the avoided crossing. Rather of
summing up the forces due to individual frequencies of light,
let us instead find the force due to the net electromagnetic field.
The total electric field is

E(x,t) = {c1(t) exp[−iθ1(t)]U1(x,t)

+ c2(t) exp[−iθ2(t)]U2(x,t)}ẑ. (74)

Δ
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FIG. 12. Comparison of the change in energy �E of the optical
field (solid blue curves) with the work done W by radiation pressure
on the membrane (red dashed-dotted curves) during passage through
an avoided crossing. Both quantities are in units of the initial energy
E0. Equation (69) is used to calculate �E and the radiation pressure
is obtained by summing the contributions given by Eq. (73) for the
two modes separately. The agreement is good but breaks down at
higher membrane reflectivities. The membrane speed is 5000 ms−1.
The same mode amplitudes {c1(t),c2(t)} were used for both sets of
curves and were calculated using the ASOE. As usual, the light is
initially localized on the right-hand side of the membrane.

Following the analogous steps as the single-mode case, we
find that the magnetizing field due to two modes is

H (x,t) = icε0{c1(t) exp[−iθ1(t)]G1(x,�L)

+ c2(t) exp[−iθ2(t)]G2(x,�L)} (75)

and therefore the radiation pressure is given by

P = −{|c1(t)|2[B2
1 (t) cos2[k1L2] − A2

1(t) cos2[k1L1]
]

+ |c2(t)|2[B2
2 (t) cos2[k2L2] − A2

2(t) cos2[k2L1]
]

+2 Re[c∗
1(t)c2(t)eiθ12 ][B1(t)B2(t) cos[k1L2] cos[k2L2]

−A1(t)A2(t) cos[k1L1] cos[k2L1]]
}ε0

2
. (76)

The cross terms on the third and fourth lines are not included
in Fig. 12, but are included in Fig. 13 where we find perfect
agreement with the general result given in Eq. (69).

It is instructive to plot the radiation pressure itself during
passage through an avoided crossing, and this is done in
Figs. 14 and 15 where we now exclusively use the more
accurate form for the radiation pressure given in Eq. (76).
Initially the light is localized on the right of the membrane
producing a radiation pressure in the −x direction; on the
other side of the avoided crossing the light has swapped sides
and so the radiation pressure reverses direction. In Fig. 14, the
effect of changing the reflectivity of the membrane is shown.
As expected, the maximum radiation pressure increases with
reflectivity and thus it is possible to do more work on the
optical field in the regime of high reflectivity. In Fig. 15, we
see the effect of varying the membrane speed. The pressure
curves do not all pass through zero at the same point, there
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FIG. 13. Same as Fig. 12, except that the radiation pressure is
calculated using Eq. (76) which includes interference between the
contributions from each mode. As can be seen, the agreement is
excellent at all reflectivities.

being a slight lag at higher speeds. Perhaps the most striking
feature of both Figs. 14 and 15 is that at higher reflectivities
and speeds, the radiation pressure develops oscillations. If the
transfer is adiabatic, then light is smoothly transferred from
one side of the cavity to the other with the radiation pressure
monotonically reversing direction. However, nonadiabatic
passage means that not all the light is transferred to the other
side. Instead, the system is left in an “excited” state with a
certain fraction of the light sloshing back and forth between

P
(N

m
−

2 )

FIG. 14. Evolution of the radiation pressure on the central
membrane during passage through an avoided crossing for four
different membrane reflectivities. The membrane speed is held
constant at 5000 ms−1 and the radiation pressure is calculated using
(76). The maximum radiation pressure is greater at larger membrane
reflectivities, however, at 98% reflectivity the radiation pressure
exhibits oscillatory behavior due to the nonadiabatic nature of the
optical dynamics.

P
(N

m
−

2 )

FIG. 15. Same as Fig. 14 except that here we fix the membrane
reflectivity at 98% but choose five different membrane speeds. The
highest mirror speed leads to nonadiabatic optical dynamics and
consequently an oscillatory behavior of the radiation pressure. This
figure corresponds to the optical dynamics shown in Figs. 3 and 4.

the two sides of the cavity leading to an oscillatory radiation
pressure.

X. QUANTIZATION

Although the focus of this paper is on classical fields, in
this section we review the quantum version of the problem
in order to better understand the connection between the two.
In Sec. III, we discussed quantization for the case of a static
membrane and showed how the second-order-in-time wave
equation became a first-order Heisenberg equation of motion
for the field operator Ĉ(t). The dynamic membrane case is
more involved and our approach here, which makes use of
Dirac’s canonical quantization method, is adapted from Law’s
treatment of a single cavity with a moving end mirror [6] (in
Ref. [8] Cheung and Law treat the problem of the double cavity
but they consider the membrane position and momentum
as dynamical variables to be included in the Hamiltonian
rather than following a prescribed motion as we do here).
As for the static case, the quantum operators in the Heisenberg
representation can be constructed from the solutions to the
classical wave equation. It is more usual to work with the vector
potential A(x,t) than the electric field; the former satisfies the
wave equation

∂2A

∂x2
− ∂

∂t

[
μ0ε(x,t)

∂A

∂t

]
= 0 (77)

with the same boundary conditions at the end mirrors as
the electric field. Unlike in the static case, it is necessary
to introduce an auxiliary variable π (x,t) ≡ ε(x,t)∂A(x,t)/∂t

which is the “momentum” conjugate to A(x,t). Canonical
quantization is achieved by imposing the commutation relation
[Â(x,t),π̂ (x ′,t)] = i�δ(x − x ′)/A, where A is the area of the
mode functions.

A separation of variables can be achieved by expand-
ing Â(x,t) and π̂(x,t) over the adiabatic modes with
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time-dependent amplitudes Q̂n(t) and P̂n(t):

Â(x,t) = 1√
ε0

∑
n

Q̂n(t)Un(x,t), (78)

π̂ (x,t) = ε(x,t)√
ε0

∑
n

P̂n(t)Un(x,t). (79)

Q̂n(t) and P̂n(t) play roles analogous to the canonical position
and momentum variables of the harmonic oscillator and
indeed they obey the canonical commutator [Q̂m(t),P̂n(t)] =
i(�/A)δm,n, a relation which is inherited from that between
Â(x,t) and π̂ (x,t). In the static case, P̂n(t) can be eliminated
in favor of Q̂n(t), however, the fact that the separation into
space- and time-dependent variables is not complete in the
dynamic case (because the mode functions also depend on
time), introduces an extra coupling between Q̂n(t) and P̂n(t)
that prevents a description purely in terms of Q̂n(t) and hence
in terms of a single first-order-in-time equation for Q̂n(t).
Explicit expressions for Q̂n(t) and P̂n(t) can be found by
inverting the above equations by using the orthonormality of
the mode functions [Eq. (17)] giving

Q̂n(t) = 1√
ε0

∫ L2

−L1

ε(x,t)Â(x,t)Un(x,t) dx, (80)

P̂n(t) = 1√
ε0

∫ L2

−L1

π̂ (x,t)Un(x,t) dx. (81)

Equations of motion for Q̂n(t) and P̂n(t) are obtained by
taking time derivatives of these expressions (details are given
in Appendix C)

dQ̂n(t)

dt
= P̂n(t) −

∑
m

Gnm(t)Q̂m(t), (82)

dP̂n(t)

dt
= −ω2

n(t)Q̂n(t) +
∑
m

Gmn(t)P̂m(t), (83)

where Gnm(t) = q̇gnm(q) and

gnm(q) =
∫ L2

−L1

ε(x,q)

ε0
Un(x,q)

∂Um(x,q)

∂q
dx. (84)

To keep this expression compact, we have introduced the
symbol q for the membrane displacement �L/2. It is clear that
the membrane motion introduces coupling between Q̂n(t) and
P̂n(t) that is absent in the static case. The coupling is governed
by Gnm(t) and is directly proportional to the velocity of the
membrane v = q̇.

By integrating the coupled equations of motion (82) and
(83) forward in time, the quantum dynamics of the electro-
magnetic field can be calculated from given initial conditions.
However, in order to gain physical insight it is useful to
find the corresponding Hamiltonian, i.e., the Hamiltonian that
gives dQ̂n/dt and dP̂n/dt as its equations of motion via the
Heisenberg equation i�dÔ/dt = [Ô,Ĥ ], where Ô stands for
either Q̂ or P̂ . One can verify that the Hamiltonian that does

the trick is [6]

Ĥ = 1

2

∑
n

[
P̂ 2

n + ω2
n(t)Q̂2

n − Gnn(t)(P̂nQ̂n + Q̂nP̂n)
]

−
∑
m�=n

Gmn(t)P̂mQ̂n. (85)

The first two terms describe a harmonic oscillator with a
parametrically driven frequency. The third term introduces
correlations in phase space that produce a “squeezing effect”
[117] and the final term introduces further correlations that
have been called the “acceleration effect” [117], even though
a constant velocity is enough (there is no acceleration in the
particular cases we have considered in the earlier sections of
this paper). The squeezing and acceleration effects give rise to
field dynamics such as parametric amplification and transfer
of excitations between modes. Indeed, the squeezing term in
the Hamiltonian corresponds to that of a degenerate parametric
amplifier [124].

Parametric amplification or attenuation is most clearly seen
in the Hamiltonian if it is expressed in terms of the annihilation
and creation operators defined as

Ĉn(t) ≡ 1√
2�ωn(t)

[ωn(t)Q̂n(t) + iP̂n(t)], (86)

Ĉ†
n(t) ≡ 1√

2�ωn(t)
[ωn(t)Q̂n(t) − iP̂n(t)] (87)

which annihilate and create photons in the nth adiabatic mode.
To find the Hamiltonian, we proceed similarly to before by
taking time derivatives of the expressions for Ĉn and Ĉ

†
n

to obtain their equations of motion in terms of dQ̂n/dt

and dP̂n/dt whose expressions are already known and then
inferring the Hamiltonian that generates them. The resulting
Hamiltonian is [6]

Ĥ =
∑

n

�ωn(t)Ĉ†
nĈn − i�q̇

2
�̂(q), (88)

where

�̂(q) =
∑

n

{
gnn(q) − 1

2ωn

∂ωn

∂q

}[
(Ĉ†

n)2 − Ĉ2
n

]

+
∑
m�=n

√
ωm(q)

ωn(q)
gmn(q)(Ĉ†

mĈ†
n + Ĉ†

mĈn − H.c.)

(89)

in which H.c. stands for Hermitian conjugate. �̂(q) contains
the terms responsible for nonadiabatic transfer (scattering of
photons between modes) and also amplification or attenuation
processes. Due to its prefactor of q̇, these terms arise purely
as a result of membrane motion. The diagonal terms in �̂(t)
give rise to single-mode squeezing by creating and annihilating
photons in pairs in the same mode, whereas the off-diagonal
(m �= n) terms give rise both to two-mode squeezing (Ĉ†

mĈ
†
n−

H.c. terms) where pairs of photons are created and annihilated
in different modes, and scattering between modes (Ĉ†

mĈn−
H.c. terms). We saw the classical analogs of these processes in
Secs. VI, VII, and IX where we found both the transfer of field
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energy between modes and the amplification or attenuation of
the total energy in both modes even in the absence of transfer.
However, unlike in the classical case, in quantum mechanics
photons can be created from the vacuum, and this is the DCE.

In the two-mode case, the Hamiltonian can be written
out explicitly. In order to obtain analytic expressions for the
coefficients, one can approximate the adiabatic mode functions
by superpositions of modes perfectly localized in either the left
or right sides of the cavity, as detailed in Appendix D. One finds

g11 = g22 = 0, (90)

g12 = −g21 = −d�(q)

dq

�(q)�

2[�2(q) + �2]3/2
, (91)

where �(q) = 2
√

γ q ≈ 2(ωav/L)q so that d�/dq ≈ 2ωav/L.
In addition, at this level of approximation

1

ω1

dω1

dq
≈ − 1

ω2

dω2

dq
= 4ωav

L
√

�2 + �2(q)

q

L
(92)

and √
ω1(q)

ω2(q)
≈ 1 −

√
�2 + �2(q)

ωav
, (93)√

ω2(q)

ω1(q)
≈ 1 +

√
�2 + �2(q)

ωav
. (94)

As shown in Appendix D, the corrections to unity in these latter
two expressions are necessary to consistently keep terms of the
same magnitude as (1/ω1)dω1/dq. The two-mode quantum
Hamiltonian in the adiabatic basis then takes the form

Ĥ = �ω1(t)Ĉ†
1Ĉ1 + �ω2(t)Ĉ†

2Ĉ2 − i�q̇

2
�̂(q), (95)

where

�̂(q) = 1

2ω1

dω1

dq
(Ĉ†

2Ĉ
†
2 − Ĉ2Ĉ2 + Ĉ1Ĉ1 − Ĉ

†
1Ĉ

†
1)

+ 2g21

{
(Ĉ†

2Ĉ1 − Ĉ
†
1Ĉ2)

+
√

�2 + �2(q)

ωav
(Ĉ†

2Ĉ
†
1 − Ĉ2Ĉ1)

}
. (96)

We note that the squeezing terms [that appear on the first and
third lines of �̂(q)] are weaker by a factor of ∼�/ωav than
the intermode transfer terms [that appear on the second line of
�̂(q)].

Finally, in order to compare the quantum field Hamiltonian
with that of Landau-Zener problem, let us rewrite it in the
diabatic basis. This can be done by rotating the operators (in
the Schrödinger representation) as

Ĉ1 = sin θ âR + cos θ âL, (97)

Ĉ2 = cos θ âR − sin θ âL, (98)

where sin θ and cos θ are defined in Eqs. (26) and (27). Making
use of the following exact results

cos2 θ − sin2 θ = �(q)√
�2 + �2(q)

, (99)

cos θ sin θ = �

2
√

�2 + �2(q)
, (100)

cos θ sin θ (ω1 − ω2) = �, (101)

ω2 cos2 θ + ω1 sin2 θ = ωav + �(q), (102)

ω2 sin2 θ + ω1 cos2 θ = ωav − �(q), (103)

we obtain the Hamiltonian

Ĥ = �{ωav + �(q)}â†
RâR + �{ωav − �(q)}â†

LâL

+ ��(â†
RâL + â

†
LâR) − i�q̇

2
�̂(q), (104)

where this time

�̂(q) = 2g21(â†
RâL − â

†
LâR)

+
{

1

2ω1

dω1

dq

2�√
�2 + �2(q)

− 2g21
�

ωav

}

× (âRâL − â
†
Râ

†
L)

+
{

1

2ω1

dω1

dq

�(q)√
�2 + �2(q)

+ g21
�

ωav

}

× (â†
Râ

†
R − âRâR + âLâL − â

†
Lâ

†
L). (105)

The first part of the Hamiltonian [everything except �̂(q)]
is independent of the membrane velocity and conserves total
photon number. It has the structure of a many-particle version
of the Landau-Zener problem: The diagonal terms feature
the diabatic energies �{ωav ± �(q)} that vary linearly with
q, and the off-diagonal term gives the constant photon transfer
rate � between the two diabatic modes. �̂(q) contains the
“beyond Landau-Zener” effects including photon pair creation
and annihilation in the form of both single- and two-mode
squeezing, and also (photon-number-conserving) intermode
transfer (the first line). Current treatments of the Landau-Zener
(“photon shuttle”) problem in the optomechanical literature
[46] do not include pair creation and annihilation as these
effects are expected to be tiny in present experimental setups;
even the dominant term in �̂(q) is an intermode transfer
term, albeit a velocity-dependent one. Using the experimental
numbers given in Ref. [76] we can estimate (see Appendix D)
that at membrane velocities of 10 m/s, and at displacements
of the order of halfway to the next avoided crossing, this term
would give a comparable contribution to that of the static
membrane transfer rate � = 2π × 0.1 MHz.

The equations of motion that arise from the two-mode
Hamiltonian in the adiabatic basis given in Eqs. (95) and (96)
are the quantum equivalents of our ASOE derived in Sec. IV.
One might guess, therefore, that the equations of motion
that arise from the two-mode Hamiltonian in the diabatic
basis given in Eqs. (104) and (105) would be the quantum
equivalents of the DSOE derived in Sec. VII. However, this is
not quite true because when deriving the DSOE we made the
approximation of ignoring the time dependence of the diabatic
mode functions on the grounds that in the single-particle
Landau-Zener problem, this is a much smaller effect than
the change in amplitudes. Nevertheless, we saw in Sec. VII
that energy is not conserved by the DSOE and this can be
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attributed to the fact that they are second-order equations
in time that are not trivially first-order equations that have
been differentiated a second time (as shown in Sec. VIII)
which would conserve energy like the DFOE. Comparing with
the quantum Hamiltonian in the diabatic basis, if the time
dependence of the mode functions is ignored, then gnm = 0,
but there is still a contribution to photon generation coming
from (1/ω1)dω1/dq in �̂(q).

We shall not numerically solve the quantum field equations
found in this section, but will leave that to a future publication.
Rather, our purpose has been to understand the structure of the
quantum theory in comparison to the classical one.

XI. SUMMARY AND CONCLUSIONS

In this paper, we have examined the Landau-Zener problem
in the context of an optical field whose modes undergo an
avoided crossing. It can therefore be viewed as a study of
adiabaticity for fields satisfying the Maxwell wave equation
and is related to generalizations of the Landau-Zener theory to
the many-particle case in condensed-matter-physics contexts
[125–132]. By comparing the effects of successive approxi-
mations, such as ignoring the time dependence of the modes
in the diabatic basis and reducing the Maxwell wave equation
to an effective Schrödinger equation, we have emphasized
some significant differences to the original Landau-Zener
problem which is posed in terms of the (true) single-particle
Schrödinger wave equation. In the diabatic basis (whose modes
are not instantaneous normal modes), almost all the time
evolution occurs in the coefficients as opposed to the mode
functions such that the time evolution of the latter can be
ignored. However, reducing the second-order Maxwell wave
equation to a first-order effective Schrödinger equation turns
out to be a more severe approximation, at least conceptually,
because it prevents changes in the energy of the field associated
with parametric amplification (and attenuation) that may be
considered as classical analogs of the DCE. The Maxwell wave
equation therefore allows for a type of evolution unfamiliar
from the single-particle case but which becomes particularly
evident in the regime of a slowly moving membrane where the
nonadiabatic transfer between the modes switches off (like in
the single-particle case) and yet the total energy (i.e., photon
population) can change. Furthermore, the energy dependence
on membrane position does not vanish as the membrane
velocity vanishes but tends to a fixed function that depends
only on the membrane reflectivity. This type of behavior was
explained in Sec. IX, both qualitatively and quantitatively,
by looking at the work done by the radiation pressure on
the membrane, and this never vanishes except right at the
center of the avoided crossing. An analytic criterion [given
in Eq. (62)] can be derived which predicts when beyond
single-particle effects become important. Apart from the
expected role of the membrane velocity, i.e., faster membranes
cause more amplification or attenuation, the criterion depends
on the reflectivity. A more reflective membrane perturbs
the modes more, giving a sharper change in the adiabatic
mode frequencies as the membrane passes through an avoided
crossing.

The criterion predicting when the single-particle picture
breaks down is obtained by examining when the Maxwell

wave equation can be factorized into a product of two effective
Schrödinger equations (which are Hermitian conjugates of
each other). The factorization is exact for a static membrane
but is approximate in the presence of a moving membrane, as
shown in Sec. VII. This raises the question of what exactly is
the connection between the effective Schrödinger equation
used to describe the classical field and the true quantum
field description? The answer is rather little, at least in the
moving membrane case. The effective Schrödinger equation
obtained in this paper is nothing more than an approximation
to a classical field equation, and the classical field amplitude
that obeys it has no interpretation in terms of a probability
amplitude even though it happens to be a complex number in
our treatment (the real part gives the physical electric field).
Furthermore, there is only a single Schrödinger equation for
each mode [the 2 × 2 matrix equation given in Eq. (58) is for
two modes].

In the true quantum field description, as given in Sec. X,
each mode is described by two canonical coordinates Q̂ and P̂ ,
whose first-order equations of motion [Eqs. (82) and (83)] only
take on the harmonic oscillator form in the limit of a stationary
membrane. Only in this limit can P̂ be eliminated to obtain
the second-order-in-time equation of motion purely in terms of
Q̂ which is that of a free harmonic oscillator. Converting the
canonical coordinates to annihilation and creation operators
leads to a Hamiltonian with two pieces: one piece [Eq. (104)]
which is straightforward generalization of the single-particle
Landau-Zener Hamiltonian to the many-particle case, and
a second “beyond Landau-Zener” piece [Eq. (105)] which
depends linearly on the membrane velocity and includes
the terms responsible for pair creation and annihilation. The
evolution of the quantum field obeys the true Schrödinger
equation

i�
∂|�(t)〉

∂t
= Ĥ (t)|�(t)〉, (106)

where Ĥ (t) can be any one of the Hamiltonians given in Sec. X
and |�(t)〉 is the state vector in Fock space describing the
occupation of the various modes by photons.

Coming back to the connection to Klein-Gordon equation
mentioned in the Introduction, it is known that in the time-
independent case it can be exactly reformulated in terms of
two coupled Schrödinger equations (see p. 19 of Ref. [9]), as
is to be expected in general for a second-order equation. The
solutions to each Schrödinger equation individually satisfy the
Klein-Gordon equation. In the same time-independent regime,
the Maxwell wave equation can be exactly reformulated in
terms of a single Schrödinger equation (for each mode)
(see Secs. III and VII). The difference arises because the
Klein-Gordon equation describes a massive field which is
in general complex, whereas the Maxwell field is real: this
means that the Klein-Gordon field excitations include particles
and antiparticles, whereas in the Maxwell case the photon is
massless and is its own antiparticle. Of course, the Maxwell
field can have two different polarizations (whereas the Klein-
Gordon field is spinless) although we have not made use of
this possibility in this work since we assumed a single linear
polarization.

A close analogy exists between the nonrelativistic limit
of the Klein-Gordon equation and the effective Schrödinger
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equation given in Eq. (58) that forms the DFOE approxi-
mation used in this paper. Substituting the ansatz ψ(r,t) =
φ(r,t) exp[−imc2t/�] into the Klein-Gordon equation, where
m is the rest mass, the nonrelativistic limit is obtained by
assuming that the rest mass energy mc2 greatly exceeds the
kinetic energy, i.e., |i�∂φ/∂t | � mc2φ (see p. 7 of Ref. [9]).
Thus, second-order time derivatives of φ can be neglected
and this leads directly to Schrödinger’s equation for a single
massive particle as an approximation to the Klein-Gordon
equation. The nonrelativistic ansatz should be compared with
that introduced in Eq. (52) which reduces the second-order
Maxwell wave equation encapsulated in the DSOE to the first-
order Schrödinger-type DFOE. In both cases, the exponential
accounts for the dominant time dependence: this arises from
the rest mass energy in the Klein-Gordon case, and in the
Maxwell case from the quantities

√
[�(t) ± ωav]2 + �2 given

in Eq. (53), i.e. the diagonal terms of the DSOE given in
Eq. (47). Also, second-order time derivatives are likewise
ignored in order to obtain the DFOE. Just as Schrödinger’s
equation knows nothing about antiparticles and, indeed,
conserves particle number, the Schrödinger-type DFOE knows
nothing about parametric amplification of the Maxwell field.
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APPENDIX A: ELECTRIC FIELD IN A MOVING
DIELECTRIC

As predicted by Fresnel in 1818 [31] and observed by
Fizeau in 1851 [32], the apparent refractive index of a medium
depends upon its velocity. This effect is in principle present
in the moving membrane studied in this paper, and we shall
therefore make a rough estimate of the size of the effect. Inside
a stationary dielectric with a uniform refractive index nr , the
electric field obeys the wave equation

∂2E

∂x2
− n2

r

c2

∂2E

∂t2
= 0. (A1)

Now, consider a dielectric moving with velocity v in the
laboratory. In order to find the transformed wave equation,
we follow [33] and first rewrite the above wave equation as

∂2E

∂x2
− 1

c2

∂2E

∂t2
− n2

r − 1

c2

∂2E

∂t2
= 0. (A2)

The first two terms form an invariant combination under
Lorentz transformation. However, the third term is not
invariant and to first order in |v|/c the time derivative
transforms as ∂/∂t → ∂/∂t + v · ∇. Therefore, to this order
of approximation, the electric field in the dielectric satisfies

∂2E

∂x2
− n2

r

c2

∂2E

∂t2
− 2

n2
r − 1

c2
v · ∇ ∂E

∂t
= 0 (A3)

when viewed from the laboratory frame.
The highest membrane velocity considered in this paper is

20 000 ms−1, and the highest membrane reflectivity is 98%
for a wave number k = 8 × 106 m−1. Using Eq. (9) for the
reflectivity, we find that this implies that the δ-membrane

dielectric coefficient takes the value α = 1.7 × 10−6 m.
Assuming a membrane of width w = 50 nm, we can use the
relation α = 2wn2

r derived in Appendix B in Ref. [99] between
α and the refractive index to obtain nr ≈ 4. Armed with the
refractive index, and assuming E(x,t) = E0 exp [i(kx − ωt)],
we can compare the order of magnitude of each term in the
transformed wave equation (A3). We have ∂2E

∂x2 ∼ k2; n2

c2
∂2E
∂t2 ∼

n2k2 = 16k2; v n2−1
c2

∂
∂x

∂E
∂t

∼ v
c
(n2 − 1)k2 = 0.001k2. We con-

clude that for the velocities considered in this paper, the motion
of the membrane only introduces a modification three orders
of magnitude smaller than the standard static membrane effect
and will therefore be neglected.

APPENDIX B: INITIAL CONDITIONS FOR THE
ELECTRIC FIELD IN THE ADIABATIC BASIS

In this appendix, we find an expression for ċm(t0), where
cm(t) is the mth expansion coefficient of the electric field
in the adiabatic basis [Eq. (29)] that is quoted at the end
of Sec. IV. Our approach is adapted from that given in
Appendix F.2 in Ref. [116]. We start from the two Maxwell
equations ∇ × E = −∂B/∂t and ∇ × H = ∂D/∂t and put
B(r,t) = μ0H(r,t) and D(r,t) = ε(r,t)E(r,t), where ε(r,t) is
the time- and space-dependent dielectric function appropriate
to the double cavity [nr (r,t) = c

√
ε(r,t)μ0 is the refractive

index]. Under the physically reasonable assumption that the
time evolution of the dielectric function is much smaller
than the optical frequency that determines the time evolution
of the electric field, the second Maxwell equation becomes
∇ × B ≈ εμ0∂E/∂t . In our one-dimensional system, the two
Maxwell equations take the forms ∂E/∂x = ∂B/∂t and
∂B/∂x = ε(x,t)μ0∂E/∂t , respectively. The key assumption
we now make is that for t < t0 the membrane is stationary
ε(x,t) → ε(x). This means that the adiabatic mode functions
and frequencies for t < t0 are time independent. Next, we
expand the electric and magnetic field amplitudes over the
adiabatic basis as

E(x,t < t0) =
∑

n

cnUn(x)e−iωnt , (B1)

B(x,t < t0) = i

c

∑
n

cnVn(x)e−iωnt , (B2)

where we note that the expansion coefficients are the same for
both fields and that ωn = ckn. We have also introduced Vn(x)
as the adiabatic mode functions for the magnetic field. Due
to the fact that the membrane is assumed to be stationary, the
adiabatic modes are not merely instantaneous eigenmodes like
in the moving membrane case, but are true normal modes of
the double cavity that are independent of one another. This
implies that the Maxwell equations must be satisfied for each
mode individually and allows us to determine the relationship
between the Un and Vn mode functions as

∂Un(x)

∂x
= knVn(x), (B3)

∂Vn(x)

∂x
= −n2

r (x) knUn(x). (B4)
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The second of these equations can be used to express the
gradient of the total magnetic field in terms of the electric field
mode functions Un:

∂B

∂x
= − i

c
n2

r (x)
∑

n

cnknUn(x)e−iωnt . (B5)

We now consider times infinitesimally greater than t0 when
the membrane starts moving. Inserting the above result for
∂B/∂x into ∂B/∂x = ε(x,t)μ0∂E/∂t and introducing the
time dependence of all quantities gives

− i
∑

n

cn(t)ωn(t)Un(x,t)e−i
∫ t

t0
ωn(t ′)dt ′

= ∂

∂t

{∑
n

cn(t)Un(x,t)e−i
∫ t

t0
ωn(t ′)dt ′

}
(B6)

which simplifies to∑
n

∂

∂t
{cn(t)Un(x,t)}e−i

∫ t

t0
ωn(t ′)dt ′ = 0. (B7)

We emphasize that this result is only valid for t ≈ t0 since in
order to derive it we assumed the results given in Eqs. (B3)
and (B4) which rely on the time independence of the normal
modes.

Projecting out the mth coefficient using the orthonormality
of the mode functions, we can express the relation given in
Eq. (B7) at the initial time t = t0 as

ċm(t0) = −
∑

n

Pmn(t0)cn(t0), (B8)

where the function Pmn(t) is defined in Eq. (32). This fixes
ċm(t0) for any particular choice of the initial coefficients
cn(t0).

APPENDIX C: DERIVATION OF THE QUANTUM
EQUATIONS OF MOTION

In this appendix, we give the derivation of Eqs. (82) and
(83) which are the equations of the motion for the “position”
Q̂n and “momentum” P̂n operators for the field modes that
appear in Sec. X. The derivation begins by taking the time
derivatives of Eqs. (80) and (81) for Q̂n and P̂n, respectively.
Taking the Q̂n case first we have

dQ̂n

dt
= 1√

ε0

∫ L2

−L1

dx

[
∂ε(x,t)

∂t
Â(x,t)Un(x,t)

+ ε(x,t)
∂Â(x,t)

∂t
Un(x,t) + ε(x,t)Â(x,t)

∂Un(x,t)

∂t

]
(C1)

= 1√
ε0

∫ L2

−L1

dx

[
∂ε(x,t)

∂t
Â(x,t)Un(x,t)

+ π̂ (x,t)Un(x,t) + ε(x,t)Â(x,t)
∂Un(x,t)

∂t

]
(C2)

= P̂n(t) −
∑
m

Gnm(t)Q̂m(t) (C3)

which is the result given in the main text. In going from the
first equality to the second, we used the definition π (x,t) ≡
ε(x,t)∂A(x,t)/∂t which in turn gives P̂n(t) on the last line
when we use the expression given in Eq. (81) for P̂n(t). We
also replaced Â(x,t) in the other two terms by its expansion
over Q̂m(t)Um(x,t) given in Eq. (78):

∫ L2

−L1

dx√
ε0

[
∂ε(x,t)

∂t
Â(x,t)Un(x,t) + ε(x,t)Â(x,t)

∂Un(x,t)

∂t

]

=
∑
m

Q̂m(t)
∫ L2

−L1

dx

[
∂

∂t

ε(x,t)

ε0
Um(x,t)Un(x,t)

+ε(x,t)

ε0
Um(x,t)

∂Un(x,t)

∂t

]
(C4)

= −
∑
m

Q̂m(t)
∫ L2

−L1

dx
ε(x,t)

ε0

∂Um(x,t)

∂t
Un(x,t) (C5)

= −
∑
m

Gnm(t)Q̂m(t), (C6)

where Gnm(t) = q̇gnm(t) and gnm(t) is defined in Eq. (84).
In going from the first equality to the second equality in
this expression we made use of a relation obtained by
differentiating the orthonormalization condition (17) with
respect to time:

∂

∂t

∫ L2

−L1

dx
ε(x,t)

ε0
Um(x,t)Un(x,t) = 0. (C7)

The equation of motion for P̂n(t) is obtained similarly;
differentiating Eq. (81) with respect to time yields

dP̂n

dt
=

∫ L2

−L1

dx√
ε0

[
∂π̂(x,t)

∂t
Un(x,t) + π̂ (x,t)

∂Un(x,t)

∂t

]
.

(C8)

The first term can be reexpressed in terms of Â(x,t) by using
the wave equation (77) to write

∂π̂(x,t)

∂t
= 1

μ0

∂2Â(x,t)

∂x2
, (C9)

and replacing Â(x,t) by its expansion over Q̂m(t)Um(x,t) as
given in Eq. (78) gives

∫ L2

−L1

dx√
ε0

∂π̂(x,t)

∂t
Un(x,t)

=
∑
m

Q̂m(t)
∫ L2

−L1

dx

μ0ε0

∂2Um(x,t)

∂x2
Un(x,t)

= −
∑
m

Q̂m(t)ω2
m(t). (C10)

In the last step, we used the time-independent wave equation
(13) satisfied instantaneously by the adiabatic mode functions
Um(x,t) to remove the second spatial derivative, leaving an
integral corresponding to the orthonormality condition (17).
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The second term in Eq. (C8) is treated by substituting the
expansion of π̂ (x,t) over P̂mUm(x,t) as given in Eq. (79)
to give ∫ L2

−L1

dx√
ε0

π̂ (x,t)
∂Un(x,t)

∂t

=
∑
m

P̂m(t)
∫ L2

−L1

dx
ε(x,t)

ε0
Um(x,t)

∂Un(x,t)

∂t

=
∑
m

P̂m(t)Gmn(t). (C11)

The sum of Eqs. (C10) and (C11) gives the expression for
dP̂n/dt quoted in Eq. (83) in the main part of the paper.

APPENDIX D: ANALYTIC EXPRESSIONS AND ORDERS
OF MAGNITUDE FOR COEFFICIENTS IN

THE QUANTUM HAMILTONIAN

In this appendix, we outline the calculation of the coef-
ficients (1/ω1)dω1/dq, (1/ω2)dω2/dq, ω1/ω2, g11, g22, g12,
and g21, that appear in the two-mode quantum Hamiltonians
given in Eqs. (96) and (105).

We first consider (1/ω1)dω1/dq, where ω1 = ωav −√
�2 + �2(q). Noting that � = 2

√
γ q ≈ 2(ωav/L)q the

derivative can be taken. When dividing by ω1 we make
the assumption that ωav �

√
�2 + �2(q) (recall that ωav is

assumed to be an optical frequency ≈2π × 1015 Hz, whereas
the gap � at an avoided crossing, which gives the order
of magnitude for

√
�2 + �2(q), is assumed to be tiny in

comparison; in experiments � ranges from 2π × 1 GHz [68]
to 2π × 0.1 MHz [76].) Thus, we have that

1

ω1

dω1

dq
≈ − 4γ q√

�2 + 4γ 2q2
× 1

ωav

≈ − 4ωavq/L2√
�2 + 4ω2q2/L2

, (D1)

where to obtain the second line we put γ ≈ ω2
av/L

2

[see Eq. (24)]. Within the same set of approximations,
(1/ω2)dω2/dq takes exactly the same magnitude but is of
opposite sign. This makes intuitive sense because after an
avoided crossing one mode bends down (ω1) and the other
bends up (ω2). We can thus replace all instances of the one
coefficient by the (negative) of the other.

Let us also estimate the magnitude of (1/ω1)dω1/dq. In the
vicinity of an avoided crossing we can replace

√
�2 + �2(q)

by � and thus

1

2ω1

dω1

dq
∼ O

(
− 2

L

ωav

�

q

L

)
(D2)

which varies linearly with the membrane displacement �L =
2q. In the experiment by Thompson et al. [68], the total length
of the double cavity was L = 6.7 cm, � = 2π × 1 GHz,
and ωav ≈ ωlaser = 1015 rad/s. Inputting these numbers we
find (1/ω1)dω1/dq ∼ 2 × 106 × (q/L) m−1. The distance the
membrane needs to travel to go between two avoided crossings
is (q/L) ≈ cπ/(2Lωav) ≈ 7 × 10−6 and so this sets an upper
limit on the magnitude of (q/L) we are interested in. Thus, as
the membrane travels from one avoided crossing to halfway

to the next one, (1/ω1)dω1/dq varies in magnitude from 0
to 10 m−1. This number depends on 1/L2 and so in smaller
cavities it would grow accordingly.

The basic approximation underlying our calculation of
gij ≡ (1/ε0)

∫ L2

−L1
dx ε(x,q)Ui(x,q)∂Uj (x,q)/∂q is to assume

that we can expand the adiabatic modes in terms of mode
functions which are perfectly localized on the left or right side
of the membrane:

φ
(0)
L =

√
2

L1
sin [nπ (x/L1 + 1)], − L1 � x � 0 (D3)

φ
(0)
R =

√
2

L2
sin [nπ (x/L2 + 1)], 0 � x � L2. (D4)

These modes in general differ from the diabatic modes
which only equal these expressions in the limit � → 0.
Nevertheless, as � is decreased, one finds that these rapidly
become excellent approximations for the diabatic modes, the
corrections being exponentially small. Expanding the adiabatic
modes as

U1 = sin θ φ
(0)
R + cos θ φ

(0)
L , (D5)

U2 = cos θ φ
(0)
R − sin θ φ

(0)
L , (D6)

where sin θ and cos θ are given, as usual, by Eqs. (26) and
(27), we can obtain analytic results for g11, g22, g12, and g21.
One finds that

g11 = g22 = cos θ
d

dq
cos θ + sin θ

d

dq
sin θ = 0 (D7)

and

g12 = −g21 = sin θ
d

dq
cos θ − cos θ

d

dq
sin θ

= −d�(q)

dq

�(q)�

2[�2 + �2(q)]3/2

≈ −ωav

L

�(q)�

[�2 + �2(q)]3/2
. (D8)

To obtain an order-of-magnitude estimate for g12 we make
the same assumptions as for (1/ω1)dω1/dq above and
find

g12 ∼ O
[

− 2

L

(
ωav

�

)2
q

L

]
(D9)

which is a factor of ωav/� ≈ 105 bigger than (1/ω1)dω1/dq.
Finally, we need the factors

√
ω1/ω2 and

√
ω2/ω1 which

multiply g12 and g21, respectively, in the main Hamiltonian
given in Eqs. (88) and (89). We have

√
ω2

ω1
=

√
ωav + √

�2 + �2

ωav − √
�2 + �2

= 1 +
√

�2 + �2

ωav
+ 1

2

(√
�2 + �2

ωav

)2

+ . . . (D10)
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and √
ω1

ω2
=

√
ωav − √

�2 + �2

ωav + √
�2 + �2

= 1 −
√

�2 + �2

ωav
+ 1

2

(√
�2 + �2

ωav

)2

+ . . . . (D11)

The corrections to unity, in powers of
√

�2 + �2/ωav, are small. However, the first correction must be retained to be consistent
with other terms involving (1/ω1)dω1/dq which is a factor �/ωav smaller than g12 and g21.
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Phys. Rev. A 79, 053810 (2009).

[46] G. Heinrich, J. G. E. Harris, and F. Marquardt, Phys. Rev. A
81, 011801(R) (2010).

[47] M. Ludwig, K. Hammerer, and F. Marquardt, Phys. Rev. A 82,
012333 (2010).

[48] G. Heinrich, M. Ludwig, H. Wu, K. Hammerer, and F.
Marquardt, C. R. Phys. 12, 837 (2011).

[49] P. Rabl, Phys. Rev. Lett. 107, 063601 (2011).
[50] M. Ludwig, A. H. Safavi-Naeini, O. Painter, and F. Marquardt,

Phys. Rev. Lett. 109, 063601 (2012).
[51] H. Seok, L. F. Buchmann, S. Singh, and P. Meystre, Phys. Rev.

A 86, 063829 (2012).
[52] A. Xuereb, C. Genes, and A. Dantan, Phys. Rev. Lett. 109,

223601 (2012).
[53] A. Xuereb and P. Domokos, New J. Phys. 14, 095027 (2012).

043823-22

http://www.damtp.cam.ac.uk/user/tong/qft.html
https://doi.org/10.1103/PhysRevA.49.433
https://doi.org/10.1103/PhysRevA.49.433
https://doi.org/10.1103/PhysRevA.49.433
https://doi.org/10.1103/PhysRevA.49.433
https://doi.org/10.1103/PhysRevA.51.2537
https://doi.org/10.1103/PhysRevA.51.2537
https://doi.org/10.1103/PhysRevA.51.2537
https://doi.org/10.1103/PhysRevA.51.2537
https://doi.org/10.1103/PhysRevA.84.023812
https://doi.org/10.1103/PhysRevA.84.023812
https://doi.org/10.1103/PhysRevA.84.023812
https://doi.org/10.1103/PhysRevA.84.023812
https://doi.org/10.1088/1742-6596/161/1/012027
https://doi.org/10.1088/1742-6596/161/1/012027
https://doi.org/10.1088/1742-6596/161/1/012027
https://doi.org/10.1088/1742-6596/161/1/012027
https://doi.org/10.1088/0305-4470/8/4/022
https://doi.org/10.1088/0305-4470/8/4/022
https://doi.org/10.1088/0305-4470/8/4/022
https://doi.org/10.1088/0305-4470/8/4/022
https://doi.org/10.1098/rspa.1976.0045
https://doi.org/10.1098/rspa.1976.0045
https://doi.org/10.1098/rspa.1976.0045
https://doi.org/10.1098/rspa.1976.0045
https://doi.org/10.1098/rspa.1977.0130
https://doi.org/10.1098/rspa.1977.0130
https://doi.org/10.1098/rspa.1977.0130
https://doi.org/10.1098/rspa.1977.0130
https://doi.org/10.1016/0370-1573(75)90051-4
https://doi.org/10.1016/0370-1573(75)90051-4
https://doi.org/10.1016/0370-1573(75)90051-4
https://doi.org/10.1016/0370-1573(75)90051-4
https://doi.org/10.1103/PhysRevD.14.870
https://doi.org/10.1103/PhysRevD.14.870
https://doi.org/10.1103/PhysRevD.14.870
https://doi.org/10.1103/PhysRevD.14.870
https://doi.org/10.1038/248030a0
https://doi.org/10.1038/248030a0
https://doi.org/10.1038/248030a0
https://doi.org/10.1038/248030a0
https://doi.org/10.1007/BF02345020
https://doi.org/10.1007/BF02345020
https://doi.org/10.1007/BF02345020
https://doi.org/10.1007/BF02345020
https://doi.org/10.1063/1.1665432
https://doi.org/10.1063/1.1665432
https://doi.org/10.1063/1.1665432
https://doi.org/10.1063/1.1665432
https://doi.org/10.1016/0375-9601(95)00691-U
https://doi.org/10.1016/0375-9601(95)00691-U
https://doi.org/10.1016/0375-9601(95)00691-U
https://doi.org/10.1016/0375-9601(95)00691-U
https://doi.org/10.1103/PhysRevA.53.2664
https://doi.org/10.1103/PhysRevA.53.2664
https://doi.org/10.1103/PhysRevA.53.2664
https://doi.org/10.1103/PhysRevA.53.2664
https://doi.org/10.1103/PhysRevA.59.3049
https://doi.org/10.1103/PhysRevA.59.3049
https://doi.org/10.1103/PhysRevA.59.3049
https://doi.org/10.1103/PhysRevA.59.3049
https://doi.org/10.1103/PhysRevLett.84.1882
https://doi.org/10.1103/PhysRevLett.84.1882
https://doi.org/10.1103/PhysRevLett.84.1882
https://doi.org/10.1103/PhysRevLett.84.1882
https://doi.org/10.1103/PhysRevA.66.023812
https://doi.org/10.1103/PhysRevA.66.023812
https://doi.org/10.1103/PhysRevA.66.023812
https://doi.org/10.1103/PhysRevA.66.023812
https://doi.org/10.1103/PhysRevLett.62.1742
https://doi.org/10.1103/PhysRevLett.62.1742
https://doi.org/10.1103/PhysRevLett.62.1742
https://doi.org/10.1103/PhysRevLett.62.1742
https://doi.org/10.1088/0031-8949/52/2/008
https://doi.org/10.1088/0031-8949/52/2/008
https://doi.org/10.1088/0031-8949/52/2/008
https://doi.org/10.1088/0031-8949/52/2/008
https://doi.org/10.1103/PhysRevA.70.033811
https://doi.org/10.1103/PhysRevA.70.033811
https://doi.org/10.1103/PhysRevA.70.033811
https://doi.org/10.1103/PhysRevA.70.033811
https://doi.org/10.1209/epl/i2005-10048-8
https://doi.org/10.1209/epl/i2005-10048-8
https://doi.org/10.1209/epl/i2005-10048-8
https://doi.org/10.1209/epl/i2005-10048-8
https://doi.org/10.1209/0295-5075/89/14001
https://doi.org/10.1209/0295-5075/89/14001
https://doi.org/10.1209/0295-5075/89/14001
https://doi.org/10.1209/0295-5075/89/14001
https://doi.org/10.1038/nature10561
https://doi.org/10.1038/nature10561
https://doi.org/10.1038/nature10561
https://doi.org/10.1038/nature10561
https://doi.org/10.1103/PhysRevLett.103.147003
https://doi.org/10.1103/PhysRevLett.103.147003
https://doi.org/10.1103/PhysRevLett.103.147003
https://doi.org/10.1103/PhysRevLett.103.147003
https://doi.org/10.1103/PhysRevA.82.052509
https://doi.org/10.1103/PhysRevA.82.052509
https://doi.org/10.1103/PhysRevA.82.052509
https://doi.org/10.1103/PhysRevA.82.052509
https://doi.org/10.1038/nphys3863
https://doi.org/10.1038/nphys3863
https://doi.org/10.1038/nphys3863
https://doi.org/10.1038/nphys3863
https://doi.org/10.1103/PhysRevA.60.4301
https://doi.org/10.1103/PhysRevA.60.4301
https://doi.org/10.1103/PhysRevA.60.4301
https://doi.org/10.1103/PhysRevA.60.4301
https://doi.org/10.1364/OE.15.017172
https://doi.org/10.1364/OE.15.017172
https://doi.org/10.1364/OE.15.017172
https://doi.org/10.1364/OE.15.017172
https://doi.org/10.1103/RevModPhys.86.1391
https://doi.org/10.1103/RevModPhys.86.1391
https://doi.org/10.1103/RevModPhys.86.1391
https://doi.org/10.1103/RevModPhys.86.1391
https://doi.org/10.1103/PhysRevLett.51.1550
https://doi.org/10.1103/PhysRevLett.51.1550
https://doi.org/10.1103/PhysRevLett.51.1550
https://doi.org/10.1103/PhysRevLett.51.1550
https://doi.org/10.1103/PhysRevLett.99.073601
https://doi.org/10.1103/PhysRevLett.99.073601
https://doi.org/10.1103/PhysRevLett.99.073601
https://doi.org/10.1103/PhysRevLett.99.073601
https://doi.org/10.1103/PhysRevLett.99.093901
https://doi.org/10.1103/PhysRevLett.99.093901
https://doi.org/10.1103/PhysRevLett.99.093901
https://doi.org/10.1103/PhysRevLett.99.093901
https://doi.org/10.1103/PhysRevLett.99.093902
https://doi.org/10.1103/PhysRevLett.99.093902
https://doi.org/10.1103/PhysRevLett.99.093902
https://doi.org/10.1103/PhysRevLett.99.093902
https://doi.org/10.1103/PhysRevA.77.033804
https://doi.org/10.1103/PhysRevA.77.033804
https://doi.org/10.1103/PhysRevA.77.033804
https://doi.org/10.1103/PhysRevA.77.033804
https://doi.org/10.1103/PhysRevA.77.033819
https://doi.org/10.1103/PhysRevA.77.033819
https://doi.org/10.1103/PhysRevA.77.033819
https://doi.org/10.1103/PhysRevA.77.033819
https://doi.org/10.1103/PhysRevLett.101.200503
https://doi.org/10.1103/PhysRevLett.101.200503
https://doi.org/10.1103/PhysRevLett.101.200503
https://doi.org/10.1103/PhysRevLett.101.200503
https://doi.org/10.1103/PhysRevA.79.053810
https://doi.org/10.1103/PhysRevA.79.053810
https://doi.org/10.1103/PhysRevA.79.053810
https://doi.org/10.1103/PhysRevA.79.053810
https://doi.org/10.1103/PhysRevA.81.011801
https://doi.org/10.1103/PhysRevA.81.011801
https://doi.org/10.1103/PhysRevA.81.011801
https://doi.org/10.1103/PhysRevA.81.011801
https://doi.org/10.1103/PhysRevA.82.012333
https://doi.org/10.1103/PhysRevA.82.012333
https://doi.org/10.1103/PhysRevA.82.012333
https://doi.org/10.1103/PhysRevA.82.012333
https://doi.org/10.1016/j.crhy.2011.02.004
https://doi.org/10.1016/j.crhy.2011.02.004
https://doi.org/10.1016/j.crhy.2011.02.004
https://doi.org/10.1016/j.crhy.2011.02.004
https://doi.org/10.1103/PhysRevLett.107.063601
https://doi.org/10.1103/PhysRevLett.107.063601
https://doi.org/10.1103/PhysRevLett.107.063601
https://doi.org/10.1103/PhysRevLett.107.063601
https://doi.org/10.1103/PhysRevLett.109.063601
https://doi.org/10.1103/PhysRevLett.109.063601
https://doi.org/10.1103/PhysRevLett.109.063601
https://doi.org/10.1103/PhysRevLett.109.063601
https://doi.org/10.1103/PhysRevA.86.063829
https://doi.org/10.1103/PhysRevA.86.063829
https://doi.org/10.1103/PhysRevA.86.063829
https://doi.org/10.1103/PhysRevA.86.063829
https://doi.org/10.1103/PhysRevLett.109.223601
https://doi.org/10.1103/PhysRevLett.109.223601
https://doi.org/10.1103/PhysRevLett.109.223601
https://doi.org/10.1103/PhysRevLett.109.223601
https://doi.org/10.1088/1367-2630/14/9/095027
https://doi.org/10.1088/1367-2630/14/9/095027
https://doi.org/10.1088/1367-2630/14/9/095027
https://doi.org/10.1088/1367-2630/14/9/095027


PARAMETRIC AMPLIFICATION OF LIGHT IN A CAVITY . . . PHYSICAL REVIEW A 94, 043823 (2016)
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116, 147202 (2016).

[88] C. Reinhardt, T. Müller, A. Bourassa, and J. C. Sankey, Phys.
Rev. X 6, 021001 (2016).

[89] K. W. Murch, K. L. Moore, S. Gupta, and D. M. Stamper-Kurn,
Nat. Phys. 4, 561 (2008).

[90] F. Brennecke, S. Ritter, T. Donner, and T. Esslinger, Science
322, 235 (2008).

[91] S. Camerer, M. Korppi, A. Jöckel, D. Hunger, T. W. Hänsch,
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