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Asymptotically optimal probes for noisy interferometry via quantum annealing to criticality
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Quantum annealing is explored as a resource for quantum information beyond solution of classical combina-
torial problems. Envisaged as a generator of robust interferometric probes, we examine a Hamiltonian of N � 1
uniformly coupled spins subject to a transverse magnetic field. The discrete many-body problem is mapped onto
dynamics of a single one-dimensional particle in a continuous potential. This reveals all the qualitative features of
the ground state beyond typical mean-field or large classical spin models. It illustrates explicitly a graceful warping
from an entangled unimodal to bimodal ground state in the phase transition region. The transitional “Goldilocks”
probe has a component distribution of width N2/3 and exhibits characteristics for enhanced phase estimation in
a decoherent environment. In the presence of realistic local noise and collective dephasing, we find this probe
state asymptotically saturates ultimate precision bounds calculated previously. By reducing the transverse field
adiabatically, the Goldilocks probe is prepared in advance of the minimum gap bottleneck, allowing the annealing
schedule to be terminated “early.” Adiabatic time complexity of probe preparation is shown to be linear in N .
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I. INTRODUCTION

In quantum metrology [1,2] we often seek to estimate
a continuous timelike parameter associated with unitary
evolution. Even without a direct Hermitian observable
for time or phase, one can determine bounds on the
mean-squared error of estimated values as a function of N ,
the number of qubits, particles, spins, or photons involved
in the measurement. The lowest bounds are associated with
initializing the instrument in a particular entangled quantum
configuration of the N qubits, known as a “probe” state.
Without entanglement, the performance cannot exceed the
precision resulting from sending qubits through the instrument
one at a time. Large spin and mean-field models used to
describe many-body systems typically ignore entanglement
altogether. Curiously, in a noisy setting the most entangled
states do not offer the greatest precision [3].

In the noiseless case, it has been known for some time
that the optimal configuration of the N qubits is the NOON
[4,5] or GHZ [6] state. This is an equal superposition of the
two extremal eigenstates of the phase-encoding Hamiltonian.
Subsequently, however, we have come to understand that this
state offers suboptimal performance in the presence of realistic
noise or decoherence, and recent work has unveiled a new
family of optimal probe states for noisy metrology [7].

Unfortunately, these new probes bring with them the
challenge of how they might be generated. The asymptotic
analysis that uncovered the optimal states indicates also that,
for any large-N probes, there will be a large precision penalty
for those with discontinuities in the distribution of probe
components. (This is the case with the NOON-GHZ state.)
For a spin Hamiltonian like Ĵz associated with phase or
frequency estimation, optimal probes typically inhabit the
fully symmetric subspace of largest overall spin j = N/2.
For N � 1, optimality is achieved by a smooth unimodal
distribution of spin projection amplitudes ψm = 〈m|ψ〉; for
most physically relevant noise types, this distribution profile
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matches the ground-state waveform for a one-dimensional
(1D) particle trapped between two repulsive Coulomb sources
[7]. The optimal distribution width �Ĵz is dependent on the
noise strength and is typically wider than

√
N , i.e., it is

antisqueezed in the z direction. Had the optimal probe this
“square-root” width, it would be easily produced by rotating
an N -spin-coherent state (all spins up) by π/2 around the
y axis via an optical pulse. This state is a simple product
state of the component spins, creating “wider” optimal probes
introduces partial or “just the right amount” of entanglement
to the ensemble.

In this paper, we explore techniques to generate such
“Goldilocks” quantum probes, balancing sensitivity against
robustness.

II. HAMILTONIAN FOR PROBE PREPARATION

Bearing in mind the ideal characteristics above, one might
start to imagine how such broad, smooth, unimodal probe-state
distributions could be engineered. To this end, one of the
simplest nontrivial quantum systems that can be investigated
is one with an equal σ̂ (1)

z σ̂ (2)
z coupling between all pairs of

qubits in the presence of a transverse field. The field strength
increases monotonically with an “annealing” parameter �:

Ĥ = −�
Ĵx

j
− (1 − �)

Ĵ 2
z

j 2
, (1)

where 2Ĵz = σ̂ (1)
z + σ̂ (2)

z + σ̂ (3)
z + . . . . In this scaled form,

|〈Ĥ 〉| � 1; so jĤ corresponds to actual energies. This system
exhibits a continuous quantum phase transition, as follows.
Initializing the system in the ground state of a strong transverse
field � � 1, all spins are aligned with the x axis (this is the
coherent-spin state discussed in the Introduction). Then, as the
field is gradually attenuated, the parameter � decreases to a
critical value �c = 2

3 , at which point the ground state warps
continuously into a qualitatively different bimodal NOON-like
profile (exactly a NOON state when � = 0). If the annealing
proceeds slowly enough, the spins will remain in the instanta-
neous ground state at all times; this is adiabatic passage.
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How realistic are such annealing dynamics? Quadratic
terms like Ĵ 2

z appear frequently in models of two-mode
Bose-Einstein condensates [8,9] (BEC), describing collisional
processes. The two modes may correspond to a single
condensate in a double-well potential, or a mixture of atoms
in two distinct hyperfine states in a single potential. One of
the earliest proposals for generating the spin-spin couplings
was introduced in the context of ion traps illuminated by
two laser fields [10]. This Hamiltonian is also referred to as
the isotropic Lipkin-Meshkov-Glick (LMG) model [11], an
infininte-range Ising model with uniform couplings. The LMG
model can provide an effective description of quantum gases
with long-range interactions [12]. In terms of metrology, the
precision offered by some Ising models in a decoherence-free
setting was given careful examination recently in Ref. [13].

Similarities exist with the dynamics of of a single-mode
oscillator (optical field in a cavity), coupled adiabatically to a
collection of spins or atoms via the Dicke Hamiltonian [14],
where the coherence length of the field is much larger than the
physical extent of the particle ensemble. The single-mode field
introduces an effective ferromagnetic spin-spin coupling. The
intensity of light emitted into the Dicke super-radiant phase can
also be utilized for high-precision thermometry [15] for probes
prepared in close proximity to the critical point. More recently,
the concept of ‘criticality as a resource’ was explored for a
general LMG model [16]. Even without presenting an analytic
model of the phase transition region, it was recognized that
in its proximity such systems exhibit enhanced precision for
estimation of temperature and anisotropy in the limit N ∼ ∞
(and also small finite N � 4).

It is not our goal to measure the temperature, evolution time,
transverse field, or any other “native” property of this system.
Rather, the objective is to utilize the annealing dynamics as
a resource for engineering robust high-precision probes for
interferometry in noisy environments.

The Hamiltonian of Eq. (1) has been considered previously
for interferometry in works that suggest that it is a good
source of squeezing and, as such, should lead to better
precision. Those prior works [17,18], however, did not describe
the dynamics through the critical region, where we believe
maximum precision is possible. We now know [7] that the
extent of probe squeezing is not a good quantification of
precision in a noisy interferometer (the most squeezed input
states may be some of the most fragile). We will later show that
for this scheme, ultimate precision is only attained by critically
annealed probes.

III. MAPPING ONTO A PARTICLE IN A POTENTIAL

To capture fully the behavior of this discrete spin system
at large N throughout the phase transition (and determine if it
has appropriate properties for noisy interferometry), we map
it onto a continuous particle problem.

The idea of mapping a quadratic spin Hamiltonian in a
transverse field onto a one-dimensional particle in a potential
is not a new one; many examples exist in the literature
[19–23]. A typical approach involves “bosonization” of the
spin operators into combinations of â and â†, using either
Holstein-Primakoff [24] or Villain [25] transformations. Then,
after identifying quadratures x̂ = (â + â†)/2 and p̂ = −i(â −
â†)/2, an operator differential equation in x and p̂ = −id/dx

FIG. 1. Pseudopotential V (y) from Eq. (6) that results in the
large-N limit from mapping the quadratic spin Hamltonian onto a 1D
particle in a potential well. The evolution from a single well in region
III through a critical region II to a double well in region I is apparent
as the transverse field is decreased or, equivalently, as the annealing
parameter � is swept from 1 to 0 (large inset). In region III where the
transverse field is strongest, the ground state will be all spins aligned
with the field along the x axis. In the variable y, this is a Gaussian state
of width 1/

√
N . Gaussian states are the ground state of a quadratic

potential. At � = 1, however, the pseudopotential of the inset figure
looks like a semicircle. There is effectively no disparity because the
ground state is very narrow for large N , and has very low probability
away from y = 0; within this locale V (y) also looks quadratic. The
dark (blue) contour in region II indicates the quartic form of the
potential at the critical point, where the annealing parameter �c = 2

3
or γc = �c/(1 − �c) = 2. For N = 100, the right-hand-side vertical
sequence shows the ground state of the original spin Hamiltonian (red
unbroken peaks) overlaid by the pseudopotential (blue dashed curve),
with potential minima indicated by dots. For an N = 200 ensemble,
eigenstates |ψn〉 with n ∈ {0,1,2,20} pass through the critical region
in the uppermost four panels; lower-energy states exhibit a pitchfork
bifurcation associated with the phase transition, but the highly excited
n = 20 state barely registers the structure of the potential far below
(positive amplitudes in red, negative in blue).

is produced that, after some approximations, may resemble a
Schrödinger equation. (One may choose to linearize the boson
operators about the mean-field direction.) Limitations of a
truncated Holstein-Primakoff description of the LMG model
we consider here are discussed in Ref. [26].

To understand the behavior near the critical point, the
mapping must remain faithful to the original discrete spin
dynamics, both qualitatively and quantitatively (to leading
order, when finite-size effects are considered). As a caveat, it is
admitted that certain subtle phenomena may not be captured,
e.g., exponentially small ground-state splitting that occurs for
a weak transverse field. This requires precision calculation
of small probability “tails” deep inside the barrier dividing a
double potential well [27], e.g., region I of Fig. 1. Luckily,
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interferometric precision is quantified largely by the bulk
probabilities of the probe state concentrated at the bottom of
the potential wells; any evanescent amplitude in the forbidden
region makes an exponentially subordinate contribution.

Using notation Ĵz|m〉 = m|m〉 for eigenstates of Ĵz labeled
by magnetic quantum numbers m ∈ {−j, − j + 1, . . . , + j}
one may represent the quantum ground state as a vector of
amplitudes ψm in the |m〉 basis:

|ψ0〉 =
+j∑

m=−j

ψm|m〉. (2)

Take the overlap 〈m|Ĥ |ψ0〉 in the eigenequation as

−〈m|
{
�

Ĵx

j
+ (1 − �)

Ĵ 2
z

j 2

}
|ψ0〉 = E0〈m|ψ0〉. (3)

Remembering 〈m|ψ0〉 = ψm and 〈m ± 1|ψ0〉 = ψm±1 and the
definition in terms of ladder operators, Ĵx = (Ĵ (+) + Ĵ (−))/2
where Ĵ (±)|m〉 =

√
j 2 − m2 + j ∓ m|m ± 1〉, let us introduce

the annealing “ratio” γ = �/(1 − �). Assuming j � 1, one
can transform into a continuous variable picture (effectively
the reverse technique to solving differential equations nu-
merically by discretizing variables). We assume a small
parameter δ = 1/j for asymptotic expansions, and introduce a
continuous variable y = m/j ∈ [−1,1], mapping ψm 
→ ψ(y)
and ψm±1 
→ ψ(y ± δ). Assuming features change smoothly
on a scale ∼δ one may define derivatives

ψ(y + δ) − ψ(y − δ)

2δ

→ dψ

dy
, (4a)

ψ(y + δ) + ψ(y − δ) − 2ψ(y)

δ2

→ d2ψ

dy2
. (4b)

Having transformed 〈m|Ĥ |ψ〉 from a difference equation
to a differential equation, the eigenequation becomes a
Schrödinger equation for a one-dimensional particle of vari-
able mass in a pseudopotential, as follows:[

1

2
P̂ M̂−1P̂ − M̂−1 − y2

γ

]
ψ(y) = E0

�
ψ(y), (5)

given an inverse mass operator M̂−1(y) =
√

1 − y2 + δ
2

1√
1−y2

and a momentum operator P̂ = −iδ d
dy

. When solved numer-
ically, the eigenstates of this continuous differential equation
map faithfully onto the probability amplitudes for the original
quadratic spin problem (see Fig. 8 in the Appendix). Variable-
mass Schrödinger equations have been tackled analytically
previously, e.g., in Refs. [28,29].

Written as P̂ M̂−1P̂ /2 the kinetic energy operator takes the
form of a manifestly Hermitian operator. The pseudopotential
is

V (y) = −y2

γ
−

√
1 − y2 − δ

2

1√
1 − y2

. (6)

This potential is depicted for δ � 1, i.e., N � 1, in Fig. 1,
taking the form of either a single or double well. For large
N , the distribution will be concentrated at the bottom of
these wells at y0 (red dots in Fig. 1), and one may make

the simplification in the kinetic term: M̂−1(y) 
→ 1/M(y0) =
1/Mγ where y0 will be a function of the parameter γ .

As such, when δ � 1 the Hamiltonian becomes

Ĥ 
→ �

(
P̂ 2

2Mγ

− y2

γ
−

√
1 − y2

)
. (7)

IV. CHARACTERISTIC ENERGY AND LENGTH SCALES
AT CRITICAL POINT

Our hope is that near criticality (bifurcation point of Fig. 1)
the ground state may have properties that make it a promising
candidate for noisy interferometry. Interestingly, the potential
terms quadratic in y can be made to vanish at a critical
transverse field �c. For states strongly concentrated near
y = 0, expand V (y) as a Taylor series

V (y) ≈ −1 + y2

2

(
1 − 2

γ

)
+ y4

8
. (8)

It is seen that the leading-order term of V (y) ≈ y4/8 near
γc = 2 (�c = 2

3 ), when δ � 1. One might expect the quartic
ground state also to have a distribution of width scaling greater
than

√
N and, as such, may be a robust probe in noisy con-

ditions. The width can be checked by employing a Symanzik
scaling argument. (A similar approach was used in Ref. [14]
to recover finite-size corrections to the critical exponents at
exactly γc = 2.) Due to the reflection symmetry about y = 0
the inverse mass 1/Mγ has a minimum value 1/M2 there and
its first derivatives vanish. Again, expand V (y) to the fourth
power and the Schrödinger equation in the vicinity of y = 0
becomes [

− d2

dy2
+ νy2 + gy4

]
ψn = Ẽnψn, (9)

where Ẽn = (EnM2
�

+ 1) 2
δ2 , ν = 4g(1 − 2

γ
), and g = M2

4δ2 ∼
N2/16. Now, one may rewrite everything in a scale-free way
in terms of a single parameter “a”:[

− d2

dz2
+ az2 + z4

]
φn = εn(a)φn, (10)

with scale-free coordinates z = yg1/6, ψ(y) = g1/12φ(z),
a = ν/g2/3 = 4g1/3(1 − 2/γ ), and εn = Ẽn/g

1/3. At the crit-
ical point ν = a = 0, and the eigenvalue problem is reduced
to that of the pure quartic potential. Note that the energy
spectrum, including ε0, and the half-width of its ground state,
let us call it z0, are pure numerical values. Scaling back from εn

to En indicates that the spectrum is compressed near the critical
point

�Ek� = ��εk�

2(41/3)j 4/3
(� ≈ 2/3). (11)

Remembering that �εk� = |εk − ε�| is a pure number, the
energy gap in the original problem is compressed by j−1/3

compared with the strong or very weak transverse field regions
I and III, where it is uniform in jĤ , as we shall see in Sec. VI.
The compression of eigenvalues can be inspected in Fig. 2 for
an N = 100 ensemble. Establishing the true length scale for
y involves dividing z0/g

1/6 ∝ δ1/3 or j−1/3, without having
to recover any features of the wave function explicitly. Recall
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FIG. 2. In upper plot (a) energy levels En for n ∈ [0,11] (left
vertical axis, multiple curve sequence with maxima near �c) and
ground-state energy gap �E20 = E2 − E0 (curve plotted with mini-
mum at �0, right vertical axes) for an N = 100 spin ensemble as the
annealing parameter � is swept from 0 to 1 through the location of the
minimum gap �0 and the critical �c where the phase transition occurs
in the thermodynamic limit N � 1. In regions I and III, energy levels
are uniformly distributed �E ∝ 1/j , although in region I neighboring
even- and odd-numbered levels pair up; only exponentially small
gaps separate them. Dashed curve indicates the energy gap in the
thermodynamic limit of Eq. (14). Plot (b) shows region II landmarks:
numerical results in the scale-free system are shown for the precision
penalty factor (lower red curve) from Eq. (18), and ground-state gap
(upper blue curve) near the critical point a = 0 (or � = 2

3 ). It is
observed that aF , the point of maximum precision is to the right of
the minimum gap a0, and therefore �F > �0, also. Any annealing
schedule from strong to weak transverse field will reach the point of
highest precision before it encounters the minimum gap.

that y = m/j ; the width scales as j 2/3 in m, or indeed N2/3.
As we hoped, this partially entangled Goldilocks state at the
critical point has greater width than the Gaussian separable
distribution of width

√
N associated with a spin-coherent state

(such as the ground state at � = 1).

V. LOCATION OF MINIMUM GAP

From the beginning, our desire has been to prepare a
Goldilocks probe via quantum annealing; we reduce the
transverse field adiabatically, keeping the system in the
instantaneous ground state at all times. The annealing must
proceed especially slowly when the gap between ground
and excited states is smallest, avoiding diabatic passage into
another eigenstate whose contribution to precision may be

FIG. 3. Rescaled spectrum. The eigenstates φ0,1,2 (unbroken,
dashed, dotted lines) in (a) and energy eigenvalues ε0,1,2 in (b) found
numerically for the scale-free quartic potential from Eq. (10) with
single parameter a. The minimum gap a0 and maximum precision
point aF are indicated. In the third subplot (c), blue points show the
difference �� between the value of the annealing parameter at the
minimum gap �0 and the j � 1 critical point �c = 2

3 in the original
discrete spin Hamiltonian of Eq. (1). The (red) unbroken curve in
subplot (c) has function 0.349/j 2/3 − 0.183/j 4/3 derived in Sec. V.

negative. It is necessary, therefore, to establish the size and
location of the minimum gap during the schedule, as this
will be the dominant bottleneck affecting efficient probe
preparation.

Close to the critical point in the thermodynamic limit,
|a| � 1. In the scale-free setting, one could potentially treat
the 〈z2〉 term of Eq. (10) perturbatively, ε0(a) = ε0(0) +
aε′

0(0) + . . . . It turns out, however, from an exact numerical
analysis shown in Figs. 2(b) and 3(b), that the minimum
gap ε2(a0) − ε0(a0) does not correspond to a convergent
perturbative regime since |a0| > 1. We focus on the 0 ↔ 2
energy level transitions because there is no matrix element
between the ground and first excited states; they have opposite
parity.

The annealing parameter �0 at the minimum gap may be
identified as

�0 = �c

1 − a0
12g1/3

≈ �c +
(

41/3a0

18

)
1

j 2/3
+

(
21/3a2

0

108

)
1

j 4/3
,

(12)
again recalling the relation a = 12g1/3(1 − �c/�), and sub-
stituting a 
→ a0 and � 
→ �0. Using the numerical result
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a0 ≈ −3.9556, the prefactor to the dominant j−2/3 scaling
of ��c = �c − �0 is approximately 0.349. Prefactors and
scaling for the leading terms are confirmed by comparison
with the minimum gap of the original spin problem for different
ensemble sizes j in Fig. 3(c). Throughout this paper our goal is
to map out this spin system’s features in the Goldilocks critical
region at finite ensemble size N , including the dominant
“finite-size effects.” The apparent discontinuities occurring in
the thermodynamic limit N ∼ ∞ provide no guidance here,
as the Goldilocks zone vanishes in this limit.

From the shape of the ground-state wave function φ0, the
red curve plotted in Fig. 3(a), it is apparent that modeling
the ensemble approximately as a large coherent spin state, as
is done in classical mean-field models, is not valid near the
minimum gap; the distribution is clearly not even unimodal
here. Neither is it accurate to model the state as a GHZ-
like bimodal distribution, as in region I. A more faithful
description, as we have seen, is a ground state of a quartic
potential.

VI. GROUND STATES: REGIONS I AND III

Reference [9] proposed annealing all the way from a
spin-coherent state in region III to a “Schrödinger cat” (GHZ-
or NOON-like) state in region I. A similar technique was
advocated in Ref. [30] where atom-atom couplings were
generated via interaction with a strong classical driving field
in a thermal cavity to produce multiatom states such as the
GHZ state. At � = 0 the ground state is exactly a GHZ state
and, as the field is ramped back up, its two delta components
broaden into symmetrized (|ψ+〉 + |ψ−〉) or antisymmetrized
(|ψ+〉 − |ψ−〉) pairs of Gaussian lobes (Fig. 1). Close to the
well bottoms ±y0 the potential is predominantly quadratic.
One must remember that this is a position-dependent mass
problem and that the mass function is well approximated
by its value at y0. M(y0) = Mγ + O(δ2) for γ < 2, where
Mγ = 2/γ . The mass increases monotonically with decreasing
transverse field. To second order V (y) = V0 + V ′′

0 (y ± y0)2/2

close to turning points ±y0 = ±
√

1 − M−2
γ + O(δ), where

V0 = −(Mγ + M−1
γ )/2 and V ′′

0 = Mγ (M2
γ − 1).

Overall, we have a superposition of twin harmonic oscilla-

tors with frequency ω =
√

M2
γ − 1, minimum gap E2 − E0 =

δω, and ground-state energy E1 ≈ E0 = δω/2, indicating
the almost degeneracy between the even- and odd-parity
eigenstates |ψ+〉 ± |ψ−〉.

This approximation at quadratic turning points has been
shown robust, even outside the wells extending into much
of the forbidden central barrier region [27]. The width σ =√

δ/(Mγ ω) of each Gaussian lobe in the y variable increases
monotonically with the applied field and one may write
σ = �/

√
N where coefficient � is independent of N . The

small tunneling probability through the barrier slightly lifts
the energy of the antisymmetric state |ψ+〉 − |ψ−〉, but this
gap remains exponentially small in N . The energy gap to
the second and third excited states, also nearly degenerate,
is approximately δω. [In fact, the Sturm-Liouville theorem
guarantees that there can be no degeneracies in a one-
dimensional system, and that pairs of almost degenerate states

are grouped with odd states above the even states (see for
instance Ref. [31]).]

In the strong transverse field of region III, the pseu-
dopotential V (y) of Eq. (8) is dominated by its quadratic
term V (y) ≈ −1 + (1 − 2/γ )y2/2 and the eigenstates will
be approximately those of a harmonic oscillator centered on
y = 0; therefore, the effective mass remains M2 ≈ 1, and
is no longer a function of the applied field for γ > 2. The
Schrödinger equation for the strong transverse field is[

− δ2

2M2

d2

dy2
+ M2

2

(
1 − 2

γ

)
y2

]
ψn =

(
En

�
+ 1

M2

)
ψn.

(13)

The unnormalized eigenstate is 〈y|ψ0〉 ∝
exp{−jM2(

√
1 − 2/γ )y2/2}. Collecting these results,

in the thermodynamic limit (N � 1) the energy gap of jĤ is

ω =
√

(� − 2)(3� − 2), (� < �c) (14a)

= 2�
√

3 − 2/�, (� > �c). (14b)

We shall see in subsequent sections how these three quali-
tatively very different ground states (the bimodal distribution
in region I; the broad centrally weighted Goldilocks state in
region II; and the Gaussian state in region III) compare as
interferometric probes. In the Appendix, we also examine the
entanglement present during the annealing through the three
regions.

VII. QUANTUM PARAMETER ESTIMATION
IN PRESENCE OF NOISE

It would seem that the Goldilocks state in region II has
some of the right qualitative features for metrology. To
quantify the supraclassical precision in, e.g., estimation of an
interferometric phase θ , the mean-squared error �2θ is lower
bounded by the Cramer-Rao inequality

�2θ � 1/(kF ), (15)

where k is the number of repetitions of the experiment and
F is the quantum Fisher information (QFI). Our objective
in quantum metrology is usually to maximize this objective
function F , which depends on both probe state |ψ〉 and the
dynamics during phase acquisition. The formalism developed
in Refs. [7,32] for realistic noise processes (incorporating
dephasing, relaxation, excitation) presents the QFI as an exact
asymptotic series in powers of 1/j or 1/N . Writing dψ/dy

as ψ ′(y) the QFI for estimation of a phase θ associated with
unitary evolution under Ĵz in the presence of “real-world”
noise has the form of a generalized “action”:

F

N2
�

∫ +1

y=−1

ψ(y)2

μ(y)
dy − 4

∫ +1

y=−1

ψ ′(y)2

μ2(y)
dy, (16)

excluding cubic and higher powers of 1/μ(y), as is valid in
the N � 1 asymptotic limit. Above in the action integral, the
“noise function” μ(y) > 0 produces an effective mass in the
kinetic term and 1/μ(y) plays the role of a potential. This
function μ is proportional to N or N2, depending on the type
and strength of the noise present (see Appendix D).
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From Eq. (16), it is apparent that, for large ensembles
N � 1, only those state profiles ψ(y) with smoothly varying
features will be optimal. The term squared in the gradients
ψ ′(y) has a negative sign, penalizing QFI, and therefore
precision. Optimal interferometric probes should have real
amplitudes in the Ĵz or y basis, at least for the quite general
types of noise we will examine, because robustness to noise
depends on the survival of off-diagonal amplitudes. If these
real (not complex) noise processes mix state amplitudes into
off-diagonal matrix elements, those elements will have greater
size if the component amplitudes are all real. (A mixture of
amplitudes with different phases will have smaller overall
amplitude.)

VIII. INTERFEROMETRIC PERFORMANCE OF
GOLDILOCKS GROUND STATE

Consider a combination of classical phase fluctuations of
size �θ =

√
κ0 and local noise κ (L). Putting μ(y) = N2κ0 +

Nκ (L)/(1 − y2) (more details in the Appendix) into Eq. (16)
means calculating terms like the second moment 〈y2〉 =∫
y
y2ψ2(y)(dy), and paying particular attention to the penalty

terms featuring squared gradients:
∫
y
ψ ′(y)2(dy) = δ−2〈P̂ 2〉

[because ψ ′(y) = iδ−1P̂ψ]. We might naively propose the
“phase” state, which has ψm = 1/

√
N + 1 for m ∈ [−j, + j ]

as a quantum probe; it is a completely flat distribution. But,
it produces a large spurious gradient ∝√

N at the boundary
between ψj = 1/

√
N + 1 and ψj+1 = 0 remembering the

definition of Eq. (4a). Also, the role of the probe component
variance or, equivalently, the amount of “squeezing” is
significant; it is not simply that more is better. Optimal probes
will have variance dictated by the strength of noise present.

For a Goldilocks state close to the critical point γc = 2, let
us examine the dominant penalty term δ−2〈P̂ 2〉. For eigenstates
of H it is easy to show 〈[Ĥ ,P̂ y]〉 = 0 and calculating this
commutator1 provides an expression for 〈P̂ 2〉. Expanding to
y4 near y = 0 and converting to the scale-free variable z gives

〈P̂ 2〉
δ2

= 4

(
1 − 2

γ

)
g2/3〈z2〉 + 2g1/3〈z4〉

= g1/3(a〈z2〉 + 2〈z4〉). (17)

But we also have, from the Schrödinger equation, that
〈P̂ 2〉/δ2 = g1/3[εn(a) − a〈z2〉 − 〈z4〉] so we can eliminate
〈z4〉 
→ [εn(a) − 2〈z2〉]/3. Identifying ε′(a) = dε(a)/da =
〈z2〉 using the Hellmann-Feynman theorem for parameter a

gives the precision penalty factor (PPF)

〈P̂ 2〉
δ2

= g1/3

3
[2ε0(a) − aε′

0(a)]. (18)

An exact numerical search (finding the zero-point energy
in the quartic potential as a function of a) reveals a 
→ aF ≈
−2.5536. This parameter value aF minimizes the PPF above
at 1.4239g1/3/3; this is analogous to how the location a0 of the

1Remembering [y,P̂ ] = iδ and the inner derivatives [Q(y),P̂ ] =
iδ

dQ(y)
dy

and [R(P̂ ),y] = −iδ dR(P̂ )
dP̂

.

minimum gap was found earlier [see Fig. 2(b)]. Scaled back
to the annealing variable �, optimal precision occurs at

�F = �c

(
1 − aF

12g1/3

)−1

= �c

[
1 − aF

3

(
1

2M2N

)2/3]−1

.

(19)
Note that this optimum point on the annealing schedule is not
a function of the decoherence strength or type: it depends only
on the number of qubits (to leading order).

The expansion of minimum error is

[�2θ ]II � 1

F (�F )

= κ0 + κ (L)

N
+ 2

3N4/3

(
M2

2

) 1
3

× [2ε0(aF ) − aF ε′
0(aF )] (20)

ignoring terms O(1/N5/3) and smaller. The leading two terms
are independent phase errors from collective phase noise and
local noise that has shot-noise scaling ∝1/N . Together, they
represent the lowest possible mean-squared phase error. The
next significant term, in 1/N4/3, would provide the leading-N
dependence in the absence of local noise. It also dictates how
fast the bound κ0 + κ (L)

N
may be approached in an asymptotic

sense (the more negative is the power of N in the third term
above, the faster the convergence). Note that both κ0 and κ (L)

are absent from this term ∝N−4/3, its contribution to phase
error comes from 〈P̂ 2〉 alone, i.e., the probe shape. The generic
1/N scaling of precision for most quantum channels was first
derived in Ref. [33] and later, optimal probe shapes were found
for lossy interferometry [34].

It should be emphasized that this result [Eq. (20)] is generic
for any combination of local and collective noise (parameters
κ0 and κ (L)) including noise that is completely one or the other.
The differing functional dependence of μ(y) in each case plays
a subleading role, arising at the O(1/N5/3) level or smaller.
Figure 4 shows the precision curves F (�) for different types
of noise of equivalent strength.

IX. INTERFEROMETRIC PERFORMANCE OF GROUND
STATE IN STRONG AND WEAK FIELDS

To contrast, for increasing transverse field � > 2
3 the

ground state is an approximately Gaussian-distributed
wave function ψ(y) ∝ exp{−jM2(

√
1 − 2/γ )y2/2}, becom-

ing eventually a spin-coherent state aligned with the field
in the spatial x direction, a separable state. For 1/F one
recovers an exact expression bounding the mean-squared phase
error:

[�2θ ]III � κ0 + (M2

√
3 − 2/� + κ (L))/N. (21)

It appears that the ultimate lower bound κ0 + κ (L)/N can be
approached in the limit � ∼ 2

3 ; the associated Gaussian wave
packet would, however, have infinite variance. But for κ (L) < 1
and smaller κ0 < κ (L)/N , there exists a good argument for
preparing the probe state as close to �c as possible. The
error minimum predicted above for region III at criticality,
combined with the more accurate results derived previously
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FIG. 4. Local vs global noise. For N = 31 qubits, processes of
collective or global or correlated dephasing (green continuous curve),
individual or local or uncorrelated dephasing (blue dotted curve)
and local relaxation (red dashed curve) are seen to have the same
detrimental effect on precision F for the annealed system. To leading
order, they all produce the same characteristic precision curve (upper
plot) for the full range of values of the annealing parameter �. The
inset plot shows the performance in the noiseless case (unbroken
black line) compared with the three noisy scenarios, which it dwarves
in region I (it approaches F = N2 at � = 0). When instead the
expectation value of the spin operator Ĵ 2 is plotted (lower plot) one
observes that collective dephasing preserves the overall spin quantum
number j = jmax = 31

2 , so j (j + 1) = ( 31
2 ) × ( 33

2 ). Local noise, in
contrast, results in drift and diffusion of the probe state into lower
spin spaces. Local relaxation (red dashed line) of the GHZ-like state
in region I is particularly symmetry breaking, resulting in a substantial
drift into lower spin spaces. All three noise processes, however,
dramatically reduce the precision of this fragile superposition state;
F approaches zero for all decoherence types in the weak field limit
� ∼ 0. We chose {κ0,κ (L)} 
→ {0.009,0} for collective dephasing
and {0,31 × 0.009} for local noise, deliberately keeping the overall
precision limit the same: F < 1/(κ0 + κ (L)/N ) and to illustrate how
similar the F curves can be. Appendix D has more detailed discussion
of noise. For the local noise case, the qubits are each coupled to their
own individual bosonic baths, rather than to the same bath, as in the
collective noise case.

for region II, both promote the vicinity of �c as optimal for
probe preparation. But, what about region I?

In region I, transitions between the ground state |ψ+〉 +
|ψ−〉 and first excited state |ψ+〉 − |ψ−〉 are prohibited,
due to their opposite parity and because evolution via the
time-dependent Schrödinger equation is parity conserving.

Unfortunately, any noise or decoherence is unlikely to respect
parity, so even at very low temperatures, thermalization occurs
to an equal mixture of the two near-degenerate states. Such an
effectively two-level (qubit) maximally mixed state will be
symmetric under unitary evolution by the interferometric Ĵz

operator, and useless in estimating the phase parameter [35].
Let us imagine that the symmetrized superposition of

Gaussians could be prepared adiabatically. For hybrid noise,
the QFI action integral of Eq. (16) produces

[�2θ ]I � κ0 + 1

N

{
κ (L)(1 + y2

0 ) + 1

�2

}
+ O

(
1

N2

)

= κ0 + 1

N

{
κ (L)

(
2 − 1

M2
γ

)
+ Mγ

√
M2

γ − 1

}

+ O

(
1

N2

)
(22)

approximately valid as long as the wells retain a parabolic
shape across the width of the ground-state lobes. Notice that,
for this noisy scenario, error increases with the width of
the central barrier separating the two wells 2y0 (shown in
Fig. 1) and there is an additional precision penalty for narrower
Gaussian lobes of width σ = �/

√
N ; the opposite behavior

is seen in a noiseless environment, where QFI increases
quadratically with the ratio y0/σ . Apparently, wider lobes that
are closer together (less “catlike”) improve robustness to noise.

In the limit � ∼ 0, the assumption of smoothly varying
ground-state amplitudes is no longer valid; the state is in reality
a NOON or GHZ state, whose interferometric performance
in the presence of noise has been shown elsewhere to
scale exponentially badly in ensemble size N . For collective
dephasing QFI is N2 exp{−κ0N2} and in dissipative systems
of transmission η < 1 it is N2ηN [36,37].

The unbroken curves in Fig. 5 show the performance
F (�) calculated numerically for the original spin system in
the presence of interferometric phase noise. These curves
asymptote for N � 1 to give the analytical result in the
thermodynamic limit

F∞(ω) =
(

κ0 + κ (L)

N
+ Mω

N

)−1

, (23)

where ω is given in Eq. (14) and M 
→ Mγ = 2/γ for γ <

γc and M 
→ M2 ≈ 1 for γ > γc. The asymptotes ignore the
critical region entirely; recall that it vanishes in �� near �c at
a rate ∝1/N2/3.

Comparing 1/F∞(ω) with Eq. (20), we see explicitly that
the ultimate precision limit κ0 + κ (L)/N is only asymptotically
saturable in region II; in the other regions there is an additional
contribution to mean-squared error of order 1/N proportional
to the gap ω. This is a central result of this paper.

X. ANNEALING TIME COMPLEXITY

Annealing time can depend on the requirement of adiabatic-
ity, i.e., whether the system needs to be in the instantaneous
ground state at all times. If this can be relaxed, the annealing
time can be reduced. Roughly speaking, the annealing schedule
must progress slowly when the gap between the ground and
first excited states is small. The exponential scaling in N
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FIG. 5. Numerics and analytics compared for collective de-
phasing. In (a), dashed curves show precision F (�) � 1/κ0 for
analytic ground states of regions I and III in the thermodynamic
limit: states discussed in Sec. VI and precision given in Eq. (23).
Here, N = 51,101,201 qubit ensembles are subjected to collective
dephasing κ0 = 1

200 . Exact numerical results are unbroken curves of
the same color, with the calculation proceeding as follows. First,
ground states of the original spin problem are found by direct
matrix diagonalization. Second, the QFI is calculated by additional
diagonalization of the mixed state to which the ground state evolves
under decoherence [see Eq. (C1) in the Appendix]. The discrepancy
between dashed and unbroken curves in the upper figure (a) is due
to the absence of (Goldilocks) region II in the thermodynamic limit
(dashed curves). The lower plot (b) zooms in on the critical region
for larger dephasing κ0 = 1

50 and N ∈ {51,101,201,401}. Colored
curves are still numerical results of QFI. The steep unbroken black
curve in (b) gives the analytic locus of the predicted QFI maxima
{�F ,F (�F )} for all finite N , using the asymptotic results of Eqs. (19)
and (20). The formula for F (�F ) is only valid when the condition
κ0N 2 � 1 is met, as it is in (b).

of the time complexity of certain quantum algorithms can
be traced to an exponentially small minimum gap. In the
current context, the gaps for jĤ in regions I and III are fixed
and independent of j or N (derived from the ground-state
approximation calculated in Sec. VI). That leaves only region
II. Choosing the final annealing parameter as �τ and using a
prescription from Ref. [38], an optimal annealing time T can
be calculated as

T ≈
∫ 1

�τ

∣∣∣∣
∣∣∣∣d(jĤ )

d�

∣∣∣∣
∣∣∣∣
2

d�

ω2(�)
, (24)

where ||M||2 is the 2-norm of a matrix M . For the current
Hamiltonian || d(jĤ )

d�
||

2
= ||Ĵ 2

z /j − Ĵx ||2 ∼ 5j/4 for j � 1.
This matrix norm factor is linear in N and independent of �

FIG. 6. Annealing. Upper plots (a) and (b) show for N = 100
the overlap |〈ψ |ψn〉| of the annealed state with the 20 lowest-energy
states |ψn〉 with n ∈ {0,19} subject to a linear annealing schedule
of total time τ , so �(t) = 1 − (1 − �τ )t/τ . Odd-numbered energy
eigenstates are excluded because their overlap with the annealed
state is zero at all times. They have odd parity and the annealing
Hamiltonian respects the even parity of the initial state at t = 0. On
the left, the annealing schedule is terminated at the critical point
�τ = �c, and on the right, it is terminated some way into region I
after traversing the minimum gap. When the annealing is halted in
the critical region, the instantaneous ground state is still dominant
across many orders of annealing time. The lower two plots (c) and
(d) show the probability P0 to be in the target ground state, again
for an annealing cycle halted at � = 2

3 and 0.55. The horizontal axis
is the total annealing time in the linear schedule, in units scaled by
the number of qubits: τ/N . The blue, green, and red curves are for
systems of 25, 50, and 100 qubits, respectively; larger systems exhibit
more fluctuations about the same general trend in (d). In (c), the three
trend curves are identical and smooth, exhibiting no superimposed
fluctuations. Annealing success for a linear schedule apparently scales
linearly with ensemble size, discussed in Sec. X.

throughout all regions. As presented in Eqs. (14), irrespective
of where the annealing is halted the contributions from 1/ω2

in both regions I and III approach a constant, leaving only
the calculation for region II. There, �τ ⊂ �c ± ��G, and the
gap ωII = �E20 ∝ j 2/3/� from Eq. (11). Then, we have an
annealing time TII ≈

5j

4

∫ �c+��G

�c−��G

d�

ω2
II(�)

∝ j
5
3

∫ �c+��G

�c−��G

d�

�2
∼ j

5
3
��G

�2
c

∝ j,

(25)

where, in the last step, we have recalled that the Goldilocks
zone scales ��G ∼ j−2/3.

Overall time complexity is T ∼ O(j ) in all three annealing
regions. This estimate could be considered pessimistic as
it applies only to adiabatic passage. For a linear annealing
schedule, numerical results confirm that, irrespective of where
the annealing is halted (near criticality or all the way to the
weak field limit), the annealing time for any desired fidelity to
the target ground state is linear in N (see Fig. 6). Whether
terminating at a GHZ-like state or Goldilocks probe, the
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total time differs only by a fixed factor independent of N .
Since the annealing time scales favorably with the size of the
ensemble, then decoherence may be less significant during
probe preparation.

XI. CONVERGENCE ON ASYMPTOTICS

In the scale-free setting of region II, the pure numerical
values of minimum gap and precision penalty factor are
predicted to be ε2(a0) − ε0(a0) and 2ε0(aF ) − aF ε′

0(aF ), re-
spectively. This latter minimum corresponds to maximum QFI.
If instead the maximum QFI is found by brute force numerical
diagonalization and Eq. (C1) for different ensemble sizes N

and collective phase noise amplitude κ0, the true penalty
factor can be determined including all finite-size corrections.
The ground-state gap in the original spin dynamics �E20 is
also easily converted into that of the scale-free setting. The
convergence to the predicted asymptotic values is seen in
Fig. 7. From these graphs it is clear that convergence is fairly
slow, but by N ≈ 103 and μ0 > 104 the numerical values do
approach these asymptotic bounds. This observation provides
crucial evidence in validating the sequence of approximations
that have been made; mapping from a spin system to a 1D
particle in a potential, restriction to a quartic potential in the
critical region, and approximation of the QFI by its two leading

FIG. 7. Convergence to asymptotics. Vertical axes plot pure
numerical factors expected to converge on ε2(a0) − ε0(a0) in (a) and
2ε0(aF ) − aF ε ′

0(aF ) in (b), a rearrangement of Eqs. (11) and (20).
The asymptotic predictions are 3.6519 and 1.4239, respectively, for
the gap and penalty factor (blue and red dashed lines). Since these
derive from the scale-free picture, they are independent of both �

and N .

terms in the exact asymptotic series. The reason for the slow
convergence could be attributed to the first term excluded from
the QFI series being only slightly smaller than the last included
term N−5/3 versus N−4/3. The value of N has to become quite
large before N−4/3 can dominate.

XII. CONCLUSIONS AND OUTLOOK

We have examined a network of uniformly coupled spins
in a transverse field as an interferometric probe for use in
noisy conditions. Mapping the ensemble onto a variable-mass
particle in a potential allowed quantitative understanding of
the dynamics in the critical region, i.e., we were able to
characterize correctly the dominant properties of the con-
tinuous phase transition. In terms of annealing parameter �,
we discovered the ordering and distances between the critical
point in the thermodynamic limit �c, the minimum gap �0, and
the point of maximum precision �F using an exact numerical
approach. These latter landmarks are the relevant ones for
annealing and metrology, and are sufficiently far from �c

that conventional perturbative techniques would fail. Utilizing
asymptotic formulas for QFI, we predicted that in a noisy
environment, best precision is offered only by ground states
prepared near the critical point. We saw in Eq. (20) that such
states asymptotically saturate the ultimate precision bounds
for interferometers subjected to typical noisy environments.
We confirmed the accuracy of both the asymptotic QFI ex-
pansion and the legitimacy of the continuous particle mapping
by brute force matrix diagonalization methods for the original
spin system, for N ∈ [30,3000]. (In the asymptotic approach,
only the combined parameter μ is required to be large: the
product of noise strength and ensemble size.) We determined
that adiabatic probe preparation has a time-complexity scaling
linearly with ensemble size.

In Ref. [7], the calculus of variations dictated that asymp-
totically the best-performing interferometric state was always
the ground state of a 1D particle in a special pseudopotential,
created between two repulsive Coulomb sources and identical
to the noise function μ(y). In some sense, we have tried to
engineer nonlinear dynamics that best mimics that optimal
potential. Although a quartic potential does not much resemble
the optimal one, any ground state of width in the variable y

that narrows with increasing N will not “explore” the structure
of the potential far from y = 0; such a probe can have some
of the desired properties in the large-N limit.

Decoherence during probe preparation must be strongly
suppressed, e.g., fluctuations in the transverse field γ are
amplified in the a variable2 by N2/3; the strength of these
fluctuations places an upper limit on the size of the spin
ensemble that can be prepared in the critical region. The full
effects of decoherence during the annealing schedule we leave

2Assuming � is a Gaussian-distributed random variable of width σ ,
then a is also a random variable, but with a non-Gaussian distribution
q(a) = p(a)| d�

da
| that looks increasingly Gaussian for N � 1 and

fluctuations near the mean. The width in a is now approximately
σg1/3/18. Remember the interesting range of a ∈ [−4,0] so the
transverse field noise must be suppressed by a factor N2/3 if the
Goldilocks zone is to be located at all.
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to a future publication. Certainly, thermal transitions between
ε0 ↔ ε1 will always be problematic throughout the annealing
schedule, at least to the critical point this gap is polynomially
rather than exponentially small. Because the energy eigenbasis
is constantly rotating during annealing, one must also consider
that Kraus jump operators physically responsible for excitation
and relaxation at the beginning of the schedule may play the
role of dephasing or some other combined process inside the
critical region.

The results of this paper promote an alternative perspective
on the developing technology that is the quantum annealing
machine, e.g., the pioneering work of Ref. [39]. Typically, the
goal of such devices is to prepare a ground state that represents
the optimal solution to a combinatorial problem encoded
directly in the couplings of an Ising Hamiltonian. Here, it has
been proposed that such customizable dynamics might instead
be used to prepare some exotic, yet useful, multiqubit quantum
state. Perhaps the application is metrology as discussed; other
possibilities include quantum communication, or generation of
different types of entanglement [40] for distributed quantum
information. Presented in the context of ion traps and optical
lattices, the authors of Ref. [41] had already recognized
the potential of a Dicke-Ising model of quantum computing
for simulation of quantum systems, and as a resource for
generating squeezing and entanglement. More recently, the
creation of tunable Ising systems optically has been proposed
in QED cavities [42] but not yet considered for metrology
applications.

The inverted challenge in terms of global optimization is to
“reverse engineer” the Ising couplings to prepare a particular
known ground state of interest. Now, the search objective is
the associated Hamiltonian couplings and topology. When
preparation time is a significant resource, one may have to
offset state fidelity against shorter annealing times, if the
landscape necessitates annealing through gap regions, or if
adiabaticity is not a strict requirement. Adding external control
fields might avoid proximity to the smallest gaps, and allow
adiabatic shortcuts [43] such as transitionless driving [44].

XIII. END NOTE

A final sidelight to our proposal is provided by an
earlier scheme [45], due originally to Kitagawa and Ulam-
Orgikh, that uses entangled quantum spin states for noisy
frequency estimation. (It was analyzed recently and more
comprehensively in terms of Fisher information in Ref. [46].)
Beginning with the same spin-coherent state aligned with
the strong transverse field, subsequently the field is abruptly
and discontinuously stepped to zero. The ensemble then
evolves diabatically for some time under the influence of its
σ (1)

z σ (2)
z couplings. After a particular elapsed time t , the state

is rotated by an angle θ around Ĵy to produce an optimal
probe for noisy interferometry. The propagator is effectively
exp{−iĴyθ} exp{−iĴ 2

z t/j} acting on the spin-coherent state. In
such proposals, for ν repeated independent trials with a single
instrument, the overall time T = νt is considered a resource
and kept constant, whereas the individual interrogation time t

is optimized over. Typically, an optimal t is found to be very
small; the amount of necessary squeezing is very slight, as
is the effect of decoherence. These proposals are examined

in depth in the encyclopedic work on spin squeezing by Ma,
Wang, Sun, and Nori [47].

One might now ask whether it is more feasible to prepare
optimal probes by manipulating two control parameters dia-
batically, or just a single parameter, under the constraint that
it be attenuated adiabatically. For both adiabatic and diabatic
schemes, the “sweet spot” of supraclassical performance in
parameter space (�, or t and θ ) shrinks dramatically with
increasing N ; experimentally, it becomes a challenge to reach.
It is not clear yet which approach is more amenable to
experimental implementation as our proposal has not been
considered previously. In terms of feasibility, prior work
on frequency estimation allowed for instantaneous resetting
of the instrument and interferometer (zero dead-time) and
arbitrarily short interrogation times t , which may be outside
the realm of possibility for real instruments and detectors,
and may violate Markovian principles. (In a sequence of
independent interrogations of the phase, the instrument and
environment must have no memory of the previous evolution
and measurement; one therefore cannot neglect, for example,
the autocorrelation time of the environment or bath. The limit
t ∼ 0 is thus forbidden.) Certainly, a direct comparison of
the adiabatic and the diabatic squeezing approaches for probe
preparation and phase estimation under realistic local and
global noise should be the subject of future work.
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APPENDIX A: VARIABLE-MASS CONTINUOUS
VARIABLE GROUND STATE COMPARED WITH

THAT OF DISCRETE SPIN SYSTEM

Solutions to Eq. (5) are shown in Fig. 8 for the ground
[upper (red)] and second excited state [lower (green)] for
the variable-mass particle in the one-dimensional potential
V (y) and different values of the annealing ratio 0 < γ < ∞
(remembering the critical point is at γc = 2). Compared
with the discrete ground-state amplitudes ψm for the original
quadratic spin Hamiltonian, good agreement is obtained.
Fidelity to the original Hamiltonian eigenstates improves with
larger ensembles and larger values of γ . For γ � 0, the spin
eigenstates contain discrete deltalike components (GHZ state)
and the continuous approximation is no longer valid. Also,
the continuous variable solution depends on the boundary
conditions; we have chosen ψ(y) = 0 at y = ±1 but the
discrete amplitude set {ψm} can be nonzero at m = ±j for
finite j . An additional difference between the models is the
discrete number of eigenstates for the spin system; in contrast,
the particle model has no upper bound to the number of excited
states.
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FIG. 8. Three annealing regions exist: (I) weak field, (II) critical
field, and (III) strong field. Discrete ground-state amplitudes and
second-excited-state amplitudes for a system of 50 qubits (N = 2j )
are indicated by black dots. The equivalent continuous wave-function
eigenstates for the variable-mass particle are shown by upper (red)
(ground-state) and lower (green) (second-excited-state) lines.

APPENDIX B: GLOBAL ENTANGLEMENT

Partial entanglement is necessary for probes to offer
supraclassical precision in noisy interferometry. It will be a
useful exercise, therefore, to quantify the entanglement present
during the annealing process, in particular through the phase
transition. To characterize entanglement, a useful measure is
the global geometric entanglement [48] (gge) which we can
define for a pure entangled state |ψ〉 as

G[|ψ〉] = min{− log2 |〈χ |ψ〉|2} , ∀ |χ〉 ∈ S (B1)

i.e., where |χ〉 belongs to the set of separable states S and the
minimization is performed over all S. The function G is the
negative logarithm of the fidelity of the entangled state to the
nearest separable state. The nearest separable state will in fact
be a pure (product) state since the ground state is pure. The gge
is sensitive to bipartite and multipartite entanglement, although
it does not differentiate between different entanglement depths.

For the current dynamics, the spin ensemble lives in the
maximum spin sector (jmax = N/2), and therefore the ground
state is fully permutation symmetric. It is simple to argue
that the nearest separable state also shares this permutation
symmetry. If part of that state lived in a different j sector, an
orthogonal subspace, it would only reduce the overlap |〈χ |ψ〉|.
The only fully symmetric pure separable states are in fact
the spin-coherent states |χ〉 
→ |α,β〉. Finding the gge can be
a difficult optimization in general, but for symmetric states
it means finding the optimal α,β angle pair, the polar and
azimuthal angles of the spin vector giving maximum overlap
with |ψ〉. The spin-coherent state [49] has components

〈m|α,β〉 =
(

cos
α

2

)2j
√(

2j

j + m

)(
e−iβ tan

α

2

)j+m

. (B2)

The ground state of the quadratic spin system has real
coefficients, as does the closest spin-coherent state: β = 0.
Also, the probability distribution |〈m|α,β〉|2 is binomial,
with mean 〈Ĵz〉 = j cos α and variance (�Ĵz)2 = (j/2) sin2 α.
Approximating the binomial distribution as Gaussian in the
j � 1 limit and converting to y produces a mean yα = cos α

and standard deviation σα = j−1/2| sin α|. Obviously, σα �
j−1/2 is the upper bound on wave-function “width” for a
separable state.

In region III, the ground state is centered on y = 0 and
the nearest spin-coherent state will also be centered on the
origin, being as wide as possible, i.e., α = π/2. The squared
overlap of two Gaussian wave functions with the same mean
but different variances is 2σaσb/(σ 2

a + σ 2
b ). The gge for

� > �c is then

G = log2[(3 − 2/�)1/4 + (3 − 2/�)−1/4] − 1. (B3)

As we have seen, the ground-state passing into region I
during an annealing cycle bifurcates into two approximately
Gaussian lobes. The nearest spin-coherent state will choose
one of those lobes and attempt to match both its mean
and variance (to achieve maximum fidelity). Interestingly, an
almost exact matching for both quantities is possible although
the spin-coherent state is a function of a single parameter α.
The bimodal lobes of the ground state have means ±y0 =
±

√
1 − 1/M2

γ and standard deviation
√

1/y0 − y0. Fidelity to

the spin-coherent state, with yα and σα given above, can be
close to unity only if

αopt = arctan

[ √
Mγ

(M2
γ − 1)3/4

]
, 0 < γ < 2 (B4)

remembering that Mγ = 2/γ = 2�/(1 − �). This gives an
asymptotic result for the entanglement in terms of the variable
mass:

G = log2

[(
1 − 1/M2

γ

)1/4 + (
1 − 1/M2

γ

)−1/4]
(B5)

valid in the parameter range � < �c. Only half the probability
(with some exponentially small correction) is concentrated in
a single lobe, so the overall fidelity to the ground state will
quickly converge on 1/

√
2 in region I. Then, G ∼ 1, which

is the known gge for a GHZ state, a state with only N -partite
entanglement. This analysis also indicates how well conceived
is the model of a cat state with two superposed spin-coherent
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FIG. 9. Global entanglement: upper plot (a) shows the analytic
bounds on global geometric entanglement G in the thermodynamic
limit (dashed green curve) as a function of �. The unbroken green
curves depict the entanglement for finite-sized ensembles up to
N = 200 (black curve). The superimposed red and (dotted) blue
distributions show the amplitudes of the nearest spin-coherent state
(red) to the ground state of the annealed system [blue (dotted)] in the
original spin problem. This spin-coherent state is also the nearest
(or highest fidelity) separable state. Finding this state is crucial,
due to G being the negative logarithm of the square of the overlap
between these two states. When the ground state centered on y = 0
bifurcates into two lobes as it passes from region III to region I
the nearest spin-coherent state (having an approximately Gaussian
distribution) can only track one of the lobes; its mean yα = cos α starts
to move with decreasing � < 2

3 . As � approaches 0, the entanglement
asymptotes to G = 1, the entanglement of a GHZ state. The lower
graph (b) plots the entanglement G more closely in region II for
a system of N = 100 qubits in the scale-free setting. Maximum
entanglement is seen to occur in the vicinity of the minimum gap,
but this maximum will be closer to a = 0 or � = �c for larger N .
As N increases the maximum width of a spin-coherent state scales as
N−1/6 in the z variable. Thus, maximum entanglement grows slowly
as 1

6 ln N . The red dotted curve plots the locus of the mean yα of the
nearest spin-coherent state. Apparently, as a or � decreases the ground
state has already begun to bifurcate before maximum entanglement
is reached.

states, for this spin Hamiltonian and � < �c, as presented in
Ref. [9].

In the scale-free setting of Fig. 9 it is seen that for
N = 100 qubits the maximum global entanglement is at aG ≈
−3.85414. For larger N or j this maximum will therefore
occur in the region aG < a < 0 because of the properties of

the nearest spin-coherent state. In the y variable this state has
width 1/

√
j but in the scale-free variable z = yg1/6 ∝ yj 1/3,

the maximum width becomes j−1/6. The squared overlap of
the widest spin-coherent state with the ground state in region
II (whose variance is just a pure number in the z variable near
critical annealing) is going to scale asymptotically as ∝1/j 1/6

or 1/N1/6. The gge in the limit N � 1 therefore approaches

G∞ ∼ 1
6 log2 N (B6)

which confirms the central result of Ref. [11] for the (isotropic)
Lipkin-Meshkov-Glick model. Note that the entanglement per
copy vanishes in the thermodynamic limit, as (ln N )/N ∼ 0.
We should not be too shocked by this scaling law as it has
been shown that although in generalG < N − 1, the maximum
entanglement for symmetric states is G∞ ∼ log2(N + 1).

APPENDIX C: CALCULATING QUANTUM FISHER
INFORMATION

Consider a phase parameter θ encoded by a spin Hamil-
tonian, e.g., Ĵz aligned with the spatial z direction, acting
on a noisy mixed quantum state ρ, of N qubits. Assume
the noise process commutes with the phase rotation, as is
the case, e.g., dissipation and for collective dephasing. The
mixed state is transformed by exp{−iθ Ĵz} and for such
finite-dimensional systems the calculation of QFI typically
involves diagonalization of the density matrix [50,51]. For
ρ(θ ) = ∑

i λi |ψi〉〈ψi | then defining the QFI as F (θ ), it is

2
∑
i,j

|〈|ψi |ρ ′(θ )|ψj 〉|2
λi + λj


→ 2
∑
i,j

(λi − λj )2

λi + λj

|〈ψi |Ĵz|ψj 〉|2,

(C1)
where ρ ′(θ ) = dρ/dθ . The computation becomes increasingly
arduous for N � 1 without introducing any insight into the
result. Recently, a different formulation was proposed, useful
in the large-N case, where F (θ ) may be expanded as an exact
asymptotic series [32,52]:

F = 〈[
Ĵz,2 tanh

(
1
2

[− ln(ρ), • ])
Ĵz

]〉
. (C2)

Here, square brackets denote an operator commutator,
[A,B] = AB − BA, and angular brackets indicate an expec-
tation value taken with the density matrix, 〈Â〉 = T r(ρÂ). The
adjoint endomorphism [A,•] = adA acts as a superoperator.
Thus, [A,•]Ĵz = [A,Ĵz], and [A,•]3Ĵz = [A[A,[A,Ĵz]]] are
terms in the power series expansion of the hyperbolic tangent;
tanh x = x − x3/3 + . . . with x = [A,•], and acting on the
Ĵz total spin operator. This series expression (C2) provides the
leading terms in the formulation of the QFI as an action [52]
in Eq. (16).

APPENDIX D: DECOHERENCE FUNCTION μ

For pure collective dephasing (background phase fluctua-
tions with variance κ0, possibly due to stochastic path length
fluctuations inside the interferometer), this becomes a con-
stant μ(y) 
→ μ0 = N2κ0 within the physical box boundary
y = m/j ∈ [−1,1] and infinite outside the boundary. This
collective dephasing is the most significant type of noise
for a Bose-Einstein condensate, existing only in the fully
symmetric subspace of its constituent atoms, although losses

043821-12



ASYMPTOTICALLY OPTIMAL PROBES FOR NOISY . . . PHYSICAL REVIEW A 94, 043821 (2016)

may also occur as atoms leave the condensate. Likewise,
along with losses, collective dephasing is a dominant noise
source in photonic interferometry. The dephasing process can
be seen as a convolution of a pure probe state |ψ〉 with
a Gaussian probability distribution pG(θ,θ̄ ,κ0) = exp{−(θ −
θ̄)2/2κ0}/

√
2πκ0 with mean θ̄ and variance κ0:

ρ =
∫

2π

pG(θ,θ̄ ,κ0) |ψ(θ )〉〈ψ(θ )| dθ. (D1)

The density matrix is a mixture of these probes, each
evolved by a different phase: |ψ(θ )〉 = exp{−iĴzθ}|ψ(0)〉. The
analysis also requires that κ0 � 1. For strong phase noise
beyond this limit the stochastic phase distribution can no
longer be approximately Gaussian and localized within a 2π

window; periodic boundary conditions turn the random phase
distribution into a wrapped normal distribution. By then, any
probe state is so noisy it becomes almost completely insensitive
to phase, and precision begins to decay exponentially fast in κ0

(due to the phase uncertainty relation [7,53]). There are now
two bounds on our analysis. Including the requirement that the
noise parameter κ0N2 is large, so that the asymptotic series
can be truncated:

1/N �
√

κ0 � 1. (D2)

Collective dephasing is also important in a Bayesian
estimation scheme, featuring a prior phase distribution that
is updated via measurements. Dephasing is entirely equiva-
lent to Gaussian-distributed prior phase uncertainty [54,55]
�θ =

√
κ0. In general, there will always be some prior phase

uncertainty (estimation would be otherwise unnecessary) and
thus collective phase noise is always present.

Adding local noise κ (L) = eζ − 1 while the interferometric
phase θ is being acquired is governed by a Markovian master
equation:

dρ

dθ
= −i[Ĵz,ρ] + dζ

dθ

N∑
i=1

L(i)
s ρ, (D3a)

Ls(ρ) = {ŝ†ŝ,ρ} − 2ŝρŝ† (D3b)

(the latter expression defines the Linbladian superoperator
L). Possible noise processes are local dephasing in the
interferometric phase basis ŝ 
→ 1

2 σ̂z, excitation ŝ 
→ 1
2 σ̂+, and

relaxation ŝ 
→ 1
2 σ̂− defined in terms of individual Pauli spin

operators. Other noise processes are plausible, e.g., transverse
dephasing ŝ 
→ 1

2 σ̂x , but this is much less deleterious to
precision, and its slight influence will be swamped by the
z-basis noise for N � 1. Note that

∑N
i=1

1
2 σ̂ (i)

z = Ĵz. In the
current analysis, all qubits are permutation invariant and
decohere at the same rate; there are no topological features
to this model. Including local noise, the noise parameter
μ0 becomes a function of the y = m/j spin projection
variable

μ(y) = N2κ0 + Nκ (L)/(1 − y2), (D4)

with more details in Ref. [7]. It was also shown there that for
local noise only the combination of dephasing, relaxation, and
excitation included in κ (L) = eζ − 1 matters asymptotically,
not their individual contributions:

ζ = ζz + ζ− + ζ+. (D5)

In this paper, we considered the hybrid noise function μ(y) in
the general form given above.
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