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Excitable-like chaotic pulses in the bounded-phase regime of an opto-rf oscillator
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We report theoretical and experimental evidence of chaotic pulses with excitable-like properties in an
optoradiofrequency oscillator based on a self-injected dual-frequency laser. The chaotic attractor involved in
the dynamics produces pulses that, albeit chaotic, are quite regular: They all have similar amplitudes, and
are almost periodic in time. Thanks to these features, the system displays properties that are similar to those
of excitable systems. In particular, the pulses exhibit a threshold-like response, of well-defined amplitude, to
perturbations, and it appears possible to define a refractory time. At variance with excitability in injected lasers,
here the excitable-like pulses are not accompanied by phase slips.
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I. INTRODUCTION

Since its first appearance (in the Hodgkin-Huxley model
of the “squid giant axon” [1]), excitability has proven to be a
common feature of many disparate biological, chemical, and
physical systems, such as, for instance, the heart muscle, the
neurons, the Belousov-Zhabotinsky reaction, liquid crystals,
and so forth (see [2–4] and references therein). In optical
systems, excitability has been reported for instance in optically
trapped birefringent particles [5], optoelectronics integrated
circuits [6], and in laser systems, in the presence of optical
feedback [7,8], of saturable absorbers [9,10], or under optical
injection [11–16]. The latter configuration, of particular
interest for the present work, is conveniently described by the
Adler equation [17] when the injected optical power is weak.
In the Adler model, excitability arises close to the saddle-node
bifurcation marking the transition from phase locking to
phase unlocking. Therefore, the unmistakable experimental
signature of an excitable pulse is a 2π phase jump [14].
This is an example of a universal behavior because the Adler
equation is also well adapted to model coupled Josephson
junctions [18], biological [19] or micromechanical [20] os-
cillators, and so forth. In the present work, we consider
an opto-RF oscillator based on a dual-frequency laser with
frequency-shifted feedback. For low feedback levels, the phase
of this system can also be described by the Adler equation,
and its dynamics is analogous to that of optically injected
lasers [21]. Another universal synchronization regime can be
found when the coupling is not weak, and its effects on the
amplitude of the oscillators cannot be neglected [22]. In this
case, the transition from phase locking to phase unlocking
is not direct, but takes place through a window of frequency
locking without phase locking, in which the relative phase is
bounded [23]. This regime has some intriguing features [24,25]
and has attracted some interest recently, not only in the
context of lasers [26,27], but also in hydrodynamics [28] and
in nanomechanical resonators [29]. It is thus natural to ask
whether an excitable response is still possible in the bounded-
phase case. In the present work, we provide theoretical and
experimental evidence of a mechanism leading to an excitable-
like response, occurring at the transition from the phase-
locking to the bounded-phase regime. Our system bifurcates
from a phase-locked to a chaotic, self-pulsating state in which

the pulses are not accompanied by phase slips. In “standard”
excitable systems, the self-pulsating state is associated to a
simple attractor such as a limit cycle, and as a consequence
the system always follows the same, unique path in phase
space and produces identical pulses. This property is not
verified here. Nevertheless, albeit chaotic, the self-pulsating
state is quite regular, because it consists of pulses of similar
amplitudes, almost periodic in time [see inset of Fig. 2(b)
and Fig. 3(b)]. Thus, we found that the response associated
with this particular chaotic attractor presents features that are
similar to excitability: Existence of a threshold, i.e., the need
of a finite perturbation in order to trigger a response (which
is fairly independent of the amplitude of the perturbation),
and a well-defined refractory time during which the system
cannot be excited again, after a first stimulus. The paper is
organized as follows. In the next section, we describe the
model equations and present numerical bifurcation curves and
diagrams. We show that a chaotic, bounded phase attractor
exists, and that close to the bifurcation point, intensity pulses
with excitable-like characteristics can be found. In Sec. III,
we describe the experimental setup and results, and compare
them to the numerical predictions. Section IV is devoted to the
conclusions.

II. MODEL AND NUMERICAL RESULTS

A. Model equations and bifurcation diagrams

We start our analysis from a rate-equation model that was
introduced heuristically by Bielawski et al. [30] in order
to study the dynamics of a two-polarization Nd-doped fiber
laser. The model introduces a population inversion for each
polarization mode. Physically, this comes from the fact that
a given active ion will interact preferentially with a given
polarization mode (depending on its orientation, which is
perturbed by its local environment, and, in the case of a
long active medium, on its position along the z direction,
because of longitudinal spatial hole burning [31]). The two
populations are coupled by the fact that an atom in the x

population can produce, by stimulated emission, a photon in
the x mode, but also, with a lower probability quantified by a
coefficient β, a photon in the y mode. We note that the presence
of two population inversions can be justified theoretically
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on a more rigorous basis, starting from the Maxwell-Bloch
equations [31]. This model has also been derived starting
from a Maxwell-Bloch approach by Chartier et al. [32].
These rate equations permit one to reproduce successfully the
antiphase polarization dynamics of Nd- and Er-doped fiber
lasers [30,33], and also of bulk Nd:YAG lasers [34]. The
antiphase oscillation frequency allows retrieving the value of
the coupling coefficient β [33]. The model equations, that
we have also used to analyze the synchronization dynamics
of an optoradiofrequency (opto-rf) oscillator, based on the
beating between the two polarization modes of a self-injected,
dual-frequency laser [35], read as follows:

dex

ds
= (mx + βmy)

1 + β

ex

2
, (1)

dey

ds
= (my + βmx)

1 + β

ey

2
+ i� ey + �ex, (2)

dmx,y

ds
= 1 − (|ex,y |2 + β|ey,x |2)

− ε mx,y[1 + (η − 1)(|ex,y |2 + β|ey,x |2)]. (3)

ex,y are the amplitudes of the two laser fields coupled by
optical injection, and the relative population inversions mx,y .
η is the pump parameter, and ε is the inversion lifetime. The
ex field is injected in the ey field. The injection process is
described by two parameters, the detuning � and the injection
strength �, which in the following are taken as the control
parameters. The other parameters are β = 0.6, ε = 0.0097,
and η =1.2. The scaled time s is related to the physical
time t by s = 2πfRt , where fR is the relaxation oscillation
frequency. In our case fR � 70 kHz. Physically, the ey field
is optically injected into ex via an external cavity (see Fig. 5).
The associated round-trip time τd � 5 ns is much smaller than
1/fR , so that the coupling can be considered instantaneous
in the model. We have numerically checked the validity of
this assumption. In Fig. 1, we present a bifurcation curve in
the parameter plane {�,�}, computed using the continuation
software MATCONT [36]. When |�| < |�|, the model [(1)–(3)]
admits a stable stationary solution, in which the laser fields
are phase locked. This solution bifurcates to a time-dependent
state when |�| becomes larger than |�|. According to [37],
excitability arises when a system is “near a bifurcation
(transition) from quiescence to repetitive firing.” Therefore in
our system excitability has to be searched close to the boundary
of the phase-locking range. Figure 1 shows that the nature of
the bifurcation to the time-dependent state depends on the
values of � and �. For low values of � and �, the stationary
phase-locked state is destabilized by a saddle-node (SN)
bifurcation, leading directly to a phase-unlocked regime. In
this range of parameters, the Adler approximation applies. For
higher values of the parameters, the SN point becomes a Hopf
(H) bifurcation point. In this case, the time-dependent state
arising after the bifurcation corresponds to the bounded-phase
regime, in which, contrary to the Adler case, synchronization
is preserved [24]. The transition from SN to H bifurcation
occurs at the codimension-two zero-Hopf point [38] labeled
ZH in Fig. 1. Furthermore, the Hopf bifurcation can be either
supercritical or, for 0.36 < � � � < 0.97, subcritical. This
region is of particular interest for the present work, because a
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FIG. 1. Bifurcation curve. SN: saddle-node bifurcation. Sup
(Sub) H: supercritical (subcritical) Hopf bifurcation. ZH and
GH are codimension-two zero-Hopf and generalized-Hopf points,
respectively.

subcritical bifurcation causes the system to jump to a distant
region in phase space and thus tends to promote a response
involving large pulses. We underline that this subcritical
bifurcation does not exist if the two laser modes are not
coupled by the cross saturation β in the active medium. Indeed,
for β = 0 the ex field and the respective population are
decoupled from the other variables, and the model reduces
to the description of an optically injected laser, for which the
bifurcation is always supercritical [35]. In this respect, when
the feedback is not weak the system we study here differs
fundamentally from standard optical injection.

We now focus on the region containing the subcritical
bifurcation, and analyze a bifurcation diagram computed using
� as a control parameter, for a fixed value of �, that we take
equal to 0.9 in the following. A rather complex bifurcation
structure, shown in Fig. 2(a), is uncovered. The phase-locked
state is destabilized by the subcritical Hopf bifurcation, where
an unstable limit cycle appears. This cycle can be tracked by
continuation, and it undergoes several secondary bifurcations
without folding back towards the � > � region [Fig. 2(a),
blue curve]. Indeed, numerical integration of the model
equations (1)–(3) shows that, when � becomes larger than
�, a direct transition from the stationary state to deterministic
chaos occurs [25] [Fig. 2(a), red curve]. Figure 2(b) shows a
projection of the chaotic attractor in the {Re(ey), Im(ey),my}
space, together with a time series of the beat-note intensity
I = |ex + ey |2, consisting of a train of spikes that are quite
regularly spaced. The two parts of a trajectory on the attractor
are shown in red and green, corresponding to two different
intensity spikes. It can be seen that, even if the intensity
associated with the two spikes is very close, they actually
correspond to well separated paths in phase space. The chaotic
nature of the attractor has been assessed by calculating its
largest Lyapunov exponent. To summarize, the bifurcation
from quiescence to repetitive firing occurs at � � �, from a
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FIG. 2. (a) Blue: Bifurcation diagram as a function of the control
parameter �, calculated using continuation methods. Red: Bifurca-
tion diagram calculated by numerical integration of Eqs. (1)–(3). The
bifurcation points are H, Hopf; PD, period doubling; LP, limit point
(saddle-node bifurcation); and LPC, limit point of cycles (saddle-node
bifurcation of limit cycles). (b) Projection of the dynamics in a
tridimensional phase space. The attractor is reconstructed using a time
series calculated with a standard fourth order Runge-Kutta method.
The integration step is 0.1, and the time series length is 50 000 in
normalized units. The whole time series contains about 50 spikes.
Inset: A part of the intensity time series. � = 0.9 and � = � + 10−3.
The green and red trajectories on the attractor correspond to two
different spikes.

stable steady-state (phase-locking) to a self-pulsating chaotic
state.

B. Excitable-like properties of the chaotic pulses

The response of a system to a perturbation is called excitable
if it presents the following features [39]. First, it must have
an all-or-none character. This means that perturbations do
not trigger a response if their amplitude is below a certain
threshold, while perturbations of sufficient amplitude trigger
a response which consists in a large excursion away from
equilibrium and does not depend on the amplitude of the
perturbation. Furthermore, excitable systems possess a well
defined refractory time during which they cannot be excited
again, after a first stimulus. In standard excitable systems, the
system is in a quiescent state close to a simple limit-cycle
attractor, induced by a Hopf or a homoclinic bifurcation
leading to regular oscillations or pulses. In our case, there is a
chaotic attractor, and the pulses do not follow an unique path
in phase space. Despite this important difference, the system’s

FIG. 3. (a) Response to a single perturbation of the detuning
�. Upper (blue) trace: Beat-note intensity. Lower (green) trace:
Population inversion. (b) Amplitude of the response as a function
of the perturbation amplitude A.

response to perturbations of the detuning parameter � still
exhibits features that are reminiscent of those of excitable
systems (Figs. 3 and 4).

First, we have checked that the response to a perturbation
has a well-defined threshold and is fairly independent of
the perturbation’s amplitude when the threshold is exceeded.
In order to study the response to a single perturbation, a
deterministic “kick” [whose analytical form is a very steep
super-Gaussian function p(x) = A exp(−xn), with x = s−s0

W/2
and n = 1000, W being the duration of the kick] was added to
� at a given instant s0, and its effect on the beat-note intensity
I = |ex + ey |2 was computed (Fig. 3). Figures 3(a) and 4(a)
show that the perturbation excites the relaxation oscillations.
A large pulse is produced, followed by oscillations at the
relaxation oscillation frequency of both the intensity and the
population inversion. To produce the Fig. 3(b), we have plotted
the maximum of I as a function of the perturbation amplitude
A, the perturbation “energy” AW being held constant at the
value of 1.6. For each point, we have integrated the equations
100 times, each time taking a different initial condition (the
final point of the previous integration, i.e., a point which is
very close to the fixed point corresponding to the locked state).
This should mimic a real experiment repeated sequentially 100
times. The duration of each time series was 3 000 in normalized
units. For a given value of A, some variation in the response
[illustrated by the error bars, visible only for some points of
Fig. 3(b)] can be observed; since there is no noise in the system,
this variation is due to sensitivity to the initial conditions and
is a signature of the chaotic nature of the attractor. However, it
is clear that this variation is relatively small, and that, despite
the presence of chaos, a response of well-defined amplitude
can be associated to a given perturbation. The amplitude of
the response shows some dependence on the amplitude of the
perturbation, varying from around 7.8 to 13.3 while A changes
from 10−3 to 0.4.

Second, we have found that, after a first excitation, well-
defined time intervals during which the system’s response
is either completely or partially inhibited can be identified
(Fig. 4). These time intervals are reminiscent of the absolute
and relative refractory times of excitable systems, as we will
discuss below. In order to investigate this property, we have
submitted the system to two kicks, with variable delay D

between them [see Fig. 4(a)]. Again, the crucial point is the
repeatability of the response for a fixed delay D. So, it is
mandatory to repeat the same sequence of two pulses many
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FIG. 4. (a) Response to two perturbations separated by a delay D.
(b) Amplitude of the response to the second perturbation as a function
of D. Dashed black curve: Single realization. Red line: Average over
40 realizations. τA: Absolute refractory period. τR: Relative refractory
period.

times, starting from different initial conditions. This is how
the response curve in Fig. 4(b) has been obtained. In order to
mimic a real experiment, we have taken, for each given value of
the delay D, a sequence of 40 double pulses. Two consecutive
double excitations are separated by a time interval of 2000 in
normalized units. The response as a function of D, averaged
over 40 double excitations, is displayed in Fig. 4(b). An
absolute refractory period τA � 280 can be unambiguously
identified. If D < τA, then the system can never be triggered by
the second perturbation. The τA can be understood as follows.
Looking at Fig. 4(a), it can be observed that the intensity
spike appears with a substantial time delay after the kick. It
is this time delay which determines the τA: If the second kick
arrives before that intensity spike has developed, then it will
not generate a response. The time delay depends mainly on the
distance from the bifurcation point after the perturbation, i.e.,
on the initial value of the detuning � and on the size of the
perturbation, as can be observed by comparing the responses
in Figs. 3(a) and 4(a). In particular, a larger perturbation
determines a faster response. So, also the τA depends on the
distance from the bifurcation point, i.e., on the detuning �

and on the size of the perturbation. On the contrary, it does
not depend much on which path the system follows in phase
space: This makes it possible to observe even in our case a
feature similar to the refractory time of excitable systems.

If the delay D between the two kicks is larger than 620,
a second excitation always triggers a response. In excitable
systems, there exists also a relative refractory period τR , during
which the response of the system is weaker, but not completely
inhibited [10]. Interestingly, the delay interval 280 < D < 620
can be identified, in a sense which will be precised in a
moment, with the relative refractory period. The dashed black
curve in Fig. 4(b) represents the response to a single double
perturbation, as a function of D. It can be seen that, in the
relative refractory period, the system’s response depends on D

in a seemingly random fashion. Indeed, we have found that,
for a given delay inside the τR , the response is not always the
same for two consecutive double excitations, i.e., for different
initial conditions. Since our model is deterministic, this is,
again, an effect of the sensitivity of chaotic systems to the
initial conditions. However, it can be seen that, when averaging
over several realizations, the probability of triggering a second
pulse increases linearly from 0 to 1 when D goes from 280
to 620, thus producing a response curve which is very similar

to the one presented, for instance, in Fig. 3(b) of [10], where
the relative refractory period of an excitable semiconductor
laser is investigated. In this sense, the [280,620] interval is
reminiscent of the relative refractory period. We stress that
the persistence of these features, typical of excitability, even
in a chaotic situation, depends on the particular nature of
the chaotic attractor we deal with. First, the pulses, albeit
chaotic, all have very similar amplitudes, so that a well-defined
response is obtained. Second, even if the pulses are chaotic, and
are thus associated with different trajectories in phase space,
a well-defined refractory time can still be defined, because it
is essentially determined by the distance from the bifurcation
point. Thanks to these characteristics, the system’s behavior
is effectively close to an excitable one. Of course, in general
this is not expected to be the case when chaos is present [40].
Loosely speaking, it can be expected that a behavior similar to
excitability may be obtained only if, as in our case, the chaotic
self-pulsating state does not differ too much from a perfectly
periodic one.

III. EXPERIMENTAL RESULTS

A. Experimental setup

The numerical results can be compared to experiments
using the optoradiofrequency oscillator described for instance
in [24]. This system produces an optically carried radiofre-
quency signal, thanks to the interference between the two
modes of a dual-frequency laser (see Fig. 5). The experimental
setup is as follows. The laser cavity, of length L = 75 mm, is
closed on one side by a high-reflection plane mirror, coated on
the 5-mm long Nd:YAG active medium, and on the other side
by a concave mirror (radius of curvature of 100 mm, intensity

M1

Nd:YAG

Pump (0.808 μm)

étalon QWP’s

Ex(νx) Ey(νy)

M2

(a)

Output (1.06μm)

(Master oscillator)

DFL

fAO

AOM

QWP M
PEx(νx+ 2fAO )

νy -νx

Ex Ey

I D

RF
Synthesizer

P-Q Analyzer

(Opto-RF oscillator)

(b)

FIG. 5. (a) Dual-frequency laser. M1,2: Cavity mirrors. QWP:
Quarter-wave plate. (b) Experimental setup that allows synchro-
nizing the DFL beat-note frequency to a RF synthesizer. DFL:
Dual-frequency laser (slave oscillator). M: Feedback mirror. QWP:
Quarter-wave plate. AOM: Acousto-optic modulator. P: Polarizer. D:
Detector. P-Q analyzer: Digital vector signal analyzer, permitting one
to measure the quadratures of I with respect to the reference signal
delivered by the RF synthesizer.
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transmission of 1% at the lasing wavelength λ= 1064 nm). The
active medium is pumped by a laser diode emitting at 808 nm.
A 1 mm-thick silica étalon ensures single longitudinal mode
oscillation. Two eigenmodes Ex and Ey , polarized along x̂

and ŷ, with eigenfrequencies νx and νy , respectively, oscillate
simultaneously. An intracavity birefringent element (here two
quarter-wave plates QWPs) induces a frequency difference,
finely tunable from 0 to c

4L
= 1 GHz by rotating one QWP

with respect to the other [41]. Here νy − νx � 180 MHz. The
typical output power of the two-frequency laser is 10 mW
when pumped with 500 mW. When the laser output is
detected by a photodiode after a polarizer at 45◦, an electrical
signal oscillating at the frequency difference �ν0 = νy − νx is
obtained. The DFL can thus be seen as an opto-RF oscillator.
In order to lock this oscillator to an external reference signal,
we use optical frequency-shifted feedback [42] [Fig. 5(b)]. The
feedback cavity contains an acousto-optic modulator (AOM),
driven by a stable RF synthesizer, which provides an external
phase reference. Next, a quarter-wave plate at 45◦ followed
by a mirror flips the x̂ and ŷ polarizations, and finally the
laser beam is reinjected in the laser cavity after crossing again
the AOM. As a result, a x̂-polarized field oscillating at the
frequency νy + 2fAO and a ŷ-polarized field oscillating at the
frequency νx + 2fAO are reinjected into the laser. We choose
the value of 2fAO so that νx + 2fAO is close to νy . Under
suitable feedback conditions, νy locks to the injected beam
frequency νx + 2fAO , i.e., the frequency difference νy − νx

locks to 2fAO . We note that the optical reinjection has no direct
effect on Ex , because the frequency difference between νx and
νy + 2fAO is too large. For the same reason, multiple round
trips in the feedback cavity have no effect on the dynamics.
The laser output is detected with a photodiode (3 GHz
analog bandwidth) after a crossed polarizer, thus providing an
electrical signal proportional to I = |Ex + Ey |2. The signal is
then analyzed with an electrical spectrum analyzer, a digital
P-Q signal analyzer, and an oscilloscope.

B. Bounded-phase pulses

We call the Adler frequency fA the maximum value of the
detuning �ν for which phase locking can be achieved. In the
experiments, the feedback strength is set in order to have fA

a little smaller than the relaxation oscillation frequency fR �
70 kHz. Typically fA = 0.9fR , i.e., � = 0.9. The detuning
is set in order to put the opto-rf oscillator very close to
the boundary of the phase-locking range, i.e., to the Hopf
bifurcation point: �ν � fA. Typically fA − �ν � 100 Hz,
i.e., |� − �| � 1. An experimental time series of the beat-note
intensity and phase under these experimental conditions is
shown in Fig. 6. Large spiking events appear in the time series
at random instants. When observed at a shorter time scale,
each isolated event consists of a bunch of pulses, originated by
strong oscillations at the relaxation oscillation frequency. From
the experimental phase time series, it is clearly seen that the
phase of the beat-note signal is weakly affected by an intensity
spike. In particular, the phase remains bounded throughout
all the bunch of pulses. This differs strongly from previous
reports on excitability generated by saddle-node bifurcations
and explained by the Adler mechanism [13,14,16], and also
from multipulse excitability [12,15], where an excitable pulse

FIG. 6. Experimental intensity (top) and phase (bottom) time
series. Note that in this figure the DC part of the signal has been
removed for technical reasons.

is necessarily accompanied by a 2π phase jump, as experi-
mentally demonstrated in [14]. By comparing the experimental
intensity time series and the inset of Fig. 2(b), it appears clearly
that frequency noise has to be included in the model in order
to reproduce the experimental observations. Indeed, the time
interval between two chaotic spikes is very regular in a purely
deterministic model, in evident contrast with the experiments.
So, we interpret the experimental observations as follows: The
oscillator is actually inside the phase-locking range, but very
close to the bifurcation point, so that we observe noise-induced
pulses as in [14]. A simulation taking into account these
observations is presented in Fig. 7, which shows a calculated
time series of the beat-note intensity I = |ex + ey |2 and of
the relative phase. In this simulation, the system is close to
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FIG. 7. Computed beat-note intensity (top) and phase (bottom)
time series, using Eqs. (1)–(3). The parameter values are β = 0.6, fR

= 70 kHz, ε = 0.0097, η = 1.2, � = 0.9, and � = � − 10−3 + ξ (s),
where ξ (s) is a normally distributed stochastic process with a standard
deviation σ = 5 × 10−3.
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FIG. 8. Experimental beat-note intensity as a function of the
amplitude A of a kick to the detuning parameter.

the boundary of the phase-locking range, and the detuning
parameter includes an additive stochastic contribution ξ (s) in
order to account for the experimentally observed fluctuations
of the beat-note frequency when the laser is free running. These
fluctuations are typically of the order of some tens of hertz on a
1 s time scale. A good qualitative agreement with experiments
is found. In particular it is confirmed that the phase of the
beat-note signal is weakly affected by an intensity spike. The
size of the phase excursion during the spike appears very close
to the experimental observations.

C. Experimental tests of excitable-like properties: All-or-none
response, refractory period

We have tested experimentally the excitable-like character
of the observed dynamics, by applying abrupt, deterministic
perturbations to the driving frequency of the AOM, which
amounts to switching the detuning between two different
values as in Fig. 3(a). For Fig. 8, the system was prepared
in the quiescent state, close to the bifurcation point, and then
perturbations of increasing amplitude A were applied. The
response is plotted as a function of A. When A is smaller than
a certain value Ath, there is no response. When A is sufficiently
large, pulses of similar amplitude are emitted, irrespective of
the precise value of A. The existence of a threshold value
for A, and the all-or-none character of the response appear in
Fig. 8. It can also be seen that Ath varies from one ramp to
the other. We attribute this to the fact that Ath is determined
by the distance to the bifurcation point, i.e., by the value of
�, and in the experiment this parameter has inevitably some
fluctuations, as explained in the discussion of Fig. 6. We have
also investigated the issue of the response to two consecutive
excitations, to see if a property analogous to the refractory time
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FIG. 9. Experimental response to two perturbations of the detun-
ing parameter �, separated by a different time interval.

of excitable systems could be observed. It was not possible
to obtain a meaningful experimental curve to be compared
to the calculated one in Fig. 4(b). Again, the reason is that
the technical fluctuations of � have an important impact on
the value of the absolute refractory time, expected from the
theory to depend on the precise value of the distance from the
bifurcation point. However, we were at least able to verify that,
when the response to the first perturbation happens to develop
when, or just before, the second kick is applied, then there is
systematically no response to it [Fig. 9(a)]. On the contrary
for sufficient delay there are two nearly identical responses.
This is coherent with the interpretation discussed in Sec. II,
and suggests that the proposed analogy with excitable systems
is meaningful.

IV. CONCLUSIONS

In conclusion, we have provided experimental and numer-
ical evidence of a behavior having several unusual features,
and some properties that are reminiscent of excitable systems.
We have observed large intensity spikes in the output of
a driven opto-RF oscillator, and shown by measuring the
phase variations that these events occur in the bounded-phase
regime. We have interpreted our observations as noise-induced
chaotic pulses. Numerical calculations indicate that, despite
the presence of a chaotic attractor, the self-pulsating state
associated with it is sufficiently regular to produce a response
with properties resembling those of excitable systems. The
experimental results are coherent with the numerical findings
and suggest that the above picture is meaningful. These
results illustrate the robustness of excitable-like properties as
a generic feature of nonlinear systems, since they can appear,
as in our case, in the presence of higher dimensionality, and
even chaos.
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