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Prospects of charged-oscillator quantum-state generation with Rydberg atoms
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We explore the possibility of engineering quantum states of a charged mechanical oscillator by coupling it to a
stream of atoms in superpositions of high-lying Rydberg states. Our scheme relies on the driving of a two-phonon
resonance within the oscillator by coupling it to an atomic two-photon transition. This approach effectuates a
controllable open system dynamics on the oscillator that in principle permits versatile dissipative creation of
squeezed and other nonclassical states which are central to sensing applications or for studies of fundamental
questions concerning the boundary between classical and quantum-mechanical descriptions of macroscopic
objects. We show that these features survive thermal coupling of the oscillator with the environment. We perform
a detailed feasibility study finding that current state-of-the-art parameters result in atom-oscillator couplings
which are too weak to efficiently implement the proposed oscillator state preparation protocol. Finally, we
comment on ways to circumvent the present limitations.
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I. INTRODUCTION

The interface between different types of quantum systems
has been the subject of much attention in the quest for complex
quantum technologies [1–4]. In order to combine advantages
of various platforms, such as long coherence time, strong inter-
actions, or low-loss transport [5], one has to be able to transfer
quantum states between different systems. Alternatively, the
interactions between two different quantum systems can be
exploited to produce and probe quantum states [6,7].

Mechanical systems in particular have seen rapid ex-
perimental progress. Nowadays, micro- and nanomechanical
oscillators can be cooled down to the quantum regime, where
the quantized dynamics of the oscillator motion and controlled
interaction with other quantum systems have become possi-
ble [5,8–10]. An alternative to the typically used optomechan-
ical interaction is to exploit electric forces to couple an atom
to a charged oscillator [11–15]. The strong dipole moment of
atoms excited to high principal number Rydberg states [16],
allows strong free-space interaction between single atoms
and a charged oscillator, without the need for a mediating
cavity. Atomic dipole–oscillator dipole coupling allows single
atom cooling and the construction of complex superpostions
of phononic Fock states [17]. Moreover, efficient coupling
between Rydberg atoms and microwave cavities [18] and
microwave waveguides [19], acceleration of flying atoms [20],
and creation of superpositions between different Rydberg
states [21] all constitute well established technologies. At
the same time, results in the fabrication of micromechanical
oscillators with resonance frequencies matching Rydberg
transitions in atomic systems, and with high quality factor are
promising, particularly using single-crystal diamonds [22,23].
Additionally, these oscillators can be superconducting, and
thus become chargeable on demand [24].

In this paper we exploit the coupling between flying Ryd-
berg atoms and a charged mechanical oscillator. We show that
when the oscillator is driven at two-phonon resonance and if
the coupling between the atoms and the oscillator is sufficiently

strong, the system dynamics results in a nonclassical state of
the oscillator, whose nature can be tuned by a suitable choice
of the initial atomic state. The desired oscillator states are
obtained after the passage of only tens of atoms corresponding
to the initial transient period of an effective dissipative
dynamics. Specifically we show that under the strong coupling
condition one can create a squeezed or Schrödinger cat states of
the oscillator which are robust with respect to realistic thermal
noise. These states are particularly useful for fundamental
tests of quantum physics and decoherence processes [25,26],
quantum information and quantum simulation [27], metrol-
ogy and sensing of small forces [28], or even for dark
matter detection [29] or to probe quantum gravity inspired
models [30]. While squeezed states of micromechanical
oscillators have been produced [31–33], the creation of large
and robust Schrödinger cat states of macroscopic mechanical
oscillators is yet to be achieved. We perform a feasibility
study and find that with current state-of-the-art technology
it is challenging to access the strong coupling regime. To
ultimately reach the desired coupling strengths may necessitate
further developments, such as the use of collectively enhanced
coupling through oscillator arrays or atomic ensembles.

The article is structured as follows. We introduce the system
and describe its dynamics in Sec. II. We study the effect of
thermal fluctuations and experimental contraints in Sec. III.
Finally we comment on the implications of those constraints
and discuss possible future directions in Sec. IV.

II. THE SYSTEM

The system under consideration is shown in Fig. 1(a). It
consists of a stream of single Rydberg atoms coupled to a
charge Q at the tip of a micromechanical oscillator, which
oscillates in the z direction around the origin. We denote by ẑ =
zosc(â + â†) the displacement operator of the oscillator, where
â† and â are the bosonic phonon creation and annihilation
operators, zosc = √

�/(2meffωosc) the characteristic oscillator
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FIG. 1. (a) Setup of the system. Atoms pass one at a time above
a micromechanical oscillator. An arm with charge +Q oscillates
vertically, while another arm with charge −Q is fixed at position z−Q.
Atoms pass the oscillator at a rate r (see text for details). (b) In the
single-phonon process one deexcitation of the atom excites a single-
phonon transition in the oscillator. (c) In the two-phonon process
a two-photon transition in the atom via an intermediate manifold
excites a two-phonon transition in the oscillator.

length, meff the effective mass of the oscillator, and ωosc is
the mechanical oscillation frequency. The atoms move along a
path R(t) = [X(t),Y (t) = 0,Z(t)] such that only one atom is
interacting with the oscillator at a time.

A. Single atom dynamics

In this article we consider two distinct situations: a single-
phonon and two-phonon resonance (see Fig. 1). In the first
case the atomic ground state |s〉 = |S1/2,1/2〉, the excited state
|p〉 = |P1/2,1/2〉, ωa is the |s〉-|p〉 transition frequency, and
the interaction is described by the interaction Hamiltonian
V̂ = −μ̂ · Ê[R(t)] [see Fig. 1(b)]. Here, μ̂ is the atomic dipole
of the |s〉-|p〉 transition and Ê[R(t)] is the electric field at the
position R(t) created by the oscillator charge. In the latter case,
the two-phonon oscillator transition couples to a two-photon
transition between Rydberg levels |s〉 = |S1/2,1/2〉 and |s ′〉 =
|S ′

1/2,1/2〉, which are S states with different principal quantum
number, via an off-resonant manifold of P states. We denote
by ω′

a the P -S ′ transition frequency and by � = ω′
a − ωosc the

atom-oscillator detuning, which is assumed to be much larger
than the energy separation of states within the P manifold.
The interaction Hamiltonian in this case reads V̂ = −(μ̂2 +
μ̂′

2) · Ê[R(t)], where μ̂2 (μ̂′
2) is the dipole moment of the S-P

(P -S ′) transition (see Appendix A).

B. Single-phonon resonance

The first scenario we are studying is that of a single-phonon
resonance, where ωosc = ωa. Under the assumption of small
oscillator displacement as compared to the distance between
the oscillator and the flying Rydberg atom, z � R, where
R = |R(t)|, one can expand the electric field in powers of ẑ.
Using the rotating wave approximation, the interaction picture

Hamiltonian reads (see Appendix A)

ĤI(t) ≈ �γ (t)|s〉〈p|â† + �γ ∗(t)|p〉〈s|â, (1)

where γ (t) = Qμ0zosc

4πε0�R5
(3Z2−R2)

3 is the time dependent coupling
strength [34]. For this resonant case, the time evolution can be
solved exactly with the propagator Û (tf ,ti) = exp[−iĤI(tf −
ti)/�] = ∑∞

n=0 Ûn(tf ,ti), where

Ûn(tf ,ti) =
(

cos �n −i sin �n

−i sin �n cos �n

)
. (2)

Here n is the oscillator phonon occupation number, �n =√
n + 1 G, G = ∫ tf

ti
dtγ (t) is the integrated coupling strength,

and (2) is written in the {|p,n〉 , |s,n + 1〉} basis. This is
a situation corresponding to the micromaser physics as
described, for example, in Ref. [35].

The atoms are prepared identically and interact one at a
time with the oscillator [see Fig. 1(a)] such that the evolution
of the oscillator can be evaluated according to Û (tf ,ti) after
the passage of each single atom. The initial state of each atom
is assumed to be a superposition of the form

|ψ〉a = α |s〉 + β|p〉, (3)

with the amplitude β =
√

1 − |α|2 eiθ . The state of the
oscillator can be determined at an arbitrary time iteratively
as follows: the state of the oscillator ρ(k)

osc after k atoms have
passed can be obtained by time evolving the initial product
state ρa ⊗ ρ(k−1)

osc [where ρa = |ψ〉a〈ψ |a is the initial state (3)
of the atom] with Û and subsequently tracing out the atomic
degrees of freedom

ρ(k)
osc = Tra

[
Ûρa ⊗ ρ(k−1)

osc Û †]. (4)

The propagator Û gives the exact evolution of the system
as an atom travels past. However, it is useful to describe
the dynamics of the oscillator in terms of an approximate
master equation. We derive the master equation in the limit
where the change in the oscillator state due to the interaction
with a single atom is small such that ρ̇osc ≈ r�ρ(k)

osc, where
�ρ(k)

osc = ρ(k+1)
osc − ρ(k)

osc and r is the rate by which the atoms
fly by the oscillator. The master equation approach has the
advantage that it provides useful insights in the dynamics of
the system without explicit exact solution. It also allows for
adding directly the coupling to a thermal bath [35], as we shall
discuss in detail in the case of the two-phonon resonance.

Next, assuming �n � 1, the propagator (4) can be ex-
panded to second order in �n which yields the effective open
system dynamics

ρ̇osc ≈ −irG[αβ∗â + βα∗â†,ρosc]

+ r{D[αGâ](ρosc) + D[βGâ†](ρosc)}, (5)

where D[ĉ](ρ) = ĉρĉ† − 1
2 (ĉ†ĉρ + ρĉ†ĉ) is the Lindblad dis-

sipator (see Appendix B for details).

C. Two-phonon resonance

In order to move beyond a displaced thermal state and
achieve quantum states that are more complex we consider
coherent two-phonon transitions of the oscillator that generate
explicitly quantum effects. On the atomic side we consider
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two possible coupling mechanisms: direct single-photon and
intermediate states mediated two-photon transition between a
pair of atomic levels. As both situations lead to an equivalent
form of the effective interaction Hamiltonian, we first focus
only on the latter which we analyze in detail. We then invoke
the former in Sec. III for the sake of quantitative comparison.

The situation for atomic two-photon transition via an
intermediate manifold of states coupled to a two-phonon
transition of the oscillator is depicted in Fig. 1(c). When the
intermediate manifold of states is detuned far enough from
resonance with a single phonon it remains unpopulated and can
be eliminated from the dynamics leaving an effective two-level
system.

In the following we consider the case of a two-phonon
resonance with the initial atomic state |ψ〉a = α |s〉 + β |s ′〉 as
described in Fig. 1(c). On two-phonon resonance (ωa + ω′

a =
2ωosc) the intermediate P levels are adiabatically eliminated
and the interaction between the atom and the oscillator is
described by the interaction picture Hamiltonian

ĤI,2(t) ≈ �γ2(t)|s〉〈s ′|(â†)2 + �γ ∗
2 (t)|s ′〉〈s|â2 (6)

with γ2(t) = ( Qzosc

4π�ε0R5 )2 μ0μ
′
0

�
1
3 [R2(R2 + 3Z2)].

As in the single-phonon resonance case, the time evolution
of the system can be solved exactly using the propagator
Û2(tf ,ti) = exp[−iĤI,2(tf − ti)/�] = ∑∞

n=0 Ûn,2(tf ,ti). Here

Ûn,2(tf ,ti) =
(

cos �n,2 −i sin �n,2

−i sin �n,2 cos �n,2

)
, (7)

which is now written in the basis {|s ′,n〉,|s,n + 2〉}, �n,2 =√
(n + 1)(n + 2) G2 and G2 = ∫ tf

ti
dtγ2(t). Note that the evo-

lution in the odd and even n subspaces of the oscillator are
independent of each other.

The two-phonon coupling between the atom and the
oscillator is reminiscent of two-photon micromasers [36–38],
and we show here that it allows the creation of squeezed

states, as suggested by the form of the Hamiltonian (6) [39].
For the quantification of squeezing we introduce the standard
quadrature observable

�χ2
φ ≡ 〈χ̂2

φ〉 − 〈χ̂φ〉2 , (8)

where χ̂φ = (âe−iφ + â†eiφ)/
√

2. The quadrature angles φ =
0,π/2 correspond to the X and P quadratures, and the state is
squeezed along φ if �χ2

φ < 1/2. The squeezing of mechanical
motion was in fact achieved in recent experiments [31–33].
The manipulation of the oscillator state using Rydberg
atoms at two-phonon resonance, however, goes beyond the
squeezed state preparation and allows for creation of various
other kinds of nonclassical states. In order to quantify the
nonclassicality of the created states we use the negativ-
ity of the Wigner quasiprobability distribution W (x,p) =

1
π�

∫ ∞
−∞ dy〈x + y|ρosc|x − y〉ei2py/�, where 〈ψ |x〉 = ψ(x) is

the spatial wave function of the oscillator [40]. The negative
volume of the Wigner function then reads [41]

Vneg = 1

2

(∫
dx dp|W (x,p)| − 1

)
. (9)

The exact evolution of the system can be solved by
iteratively applying (4) where Û is replaced by Û2 and we
take ρ(0)

osc = |0〉〈0|. The resulting state depends on the number
k of atoms that pass by the oscillator. The exact value of
k is not particularly important, as long as the number of
atoms is sufficient to reach the desired nonclassical state. For
the following calculations, we fix k = 30, which fulfills this
condition for all considered states.

We now turn to numerical simulation of the exact evolution
as described by Eqs. (3), (4), and (7). The results of the
simulation are summarized in Fig. 2. Figure 2(a) shows the
minimum variance �χ2

φmin
of the state of the oscillator as a

function of the integrated coupling strength G2 and the atomic
excited state population |β|2. The angle φmin minimizing �χ2

φ

depends only on the relative phase θ between the atomic

FIG. 2. (a) Minimum variance �χ 2
φmin

and (b) negative volume of the Wigner function Vneg after k = 30 atoms have passed, as a function
of atomic excited state population |β|2 and two-phonon integrated coupling strength G2. (c)–(f) Wigner function W of the oscillator state for
different parameter choices (G2,|β|2): (c) (0.06,0.1), (d) (0.2,0.2), (e) (1,0.1), and (f) (1,0.4).
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states (see Appendix C). For θ = 0 used in the simulation,
φmin = π/4. The negative volume of the Wigner function
Vneg (9) is plotted in Fig. 2(b).

Finally, Figs. 2(c)–2(f) show the Wigner function for
specific values of G2 and |β|2 denoted by × in Fig. 2(a). Points
(c) and (e) show examples of squeezed states for small G2 and
large G2, respectively. Points (d) and (f) show examples of
states with significant negative regions of the Wigner function.
The state shown in Fig. 2(d) has the qualitative features of a
cat state [42], which is of particular interest as it is used in
metrology for small force sensing [28] and in fundamental
tests of quantum mechanics [26].

III. THERMAL FLUCTUATIONS AND EXPERIMENTAL
CONSIDERATIONS

We now investigate how robust the production of these
quantum states is in the presence of thermal fluctuations.
Combining the master equation for the interaction with the
passing atoms, derived analogously to the single-phonon case
(see Appendix B), with the thermal processes gives

ρ̇osc ≈ La[ρosc] + Lth[ρosc], (10)

where the atomic part is

La[ρosc] = r{−iG2
[
αβ∗â2 + βα∗(â†)2,ρosc

]
+D[αG2â

2](ρosc) + D[βG2(â†)2](ρosc)} (11)

and the thermal part is

Lth[ρosc]=�m(n̄th+1)D[â](ρosc)+�mn̄thD[â†](ρosc). (12)

Here �m is the coupling of the oscillator to the thermal bath
and n̄th = 1

e�ωosc/kBT −1
is the mean phonon number of the bath

at temperature T .
To demonstrate how the coupling to the thermal bath

deteriorates the oscillator quantum states, we solve the master
equation (10) numerically for a total time corresponding to the
passage of 30 atoms and initial thermal state with n̄th [43]. In
Fig. 3(a) we plot the negative volume of the Wigner function

FIG. 3. (a) Negative volume Vneg of the Wigner function of the
charged oscillator state and (b) minimum variance �χ2

φmin
after 30

atoms have passed as a function of relative thermal coupling strength
�m/r and thermal bath occupation n̄th. Parameters (G2,|β|2) used:
(a) (0.2,0.2), (b) (0.06,0.1).

Vneg as a function of thermal coupling �m and mean thermal
occupation number n̄th. The used parameters G2 = 0.2, |β|2 =
0.2 correspond to the cat state in Fig. 2(d). Figure 3(b) shows
the minimum variance �χ2

φmin
for parameters corresponding to

the squeezed state in Fig. 2(c).
It follows from Figs. 2(a) and 2(b) and Figs. 3(a) and 3(b)

that in order to create a nonclassical state one requires G2 ∼
0.1 and the atom passage rate r should be maximized while
minimizing �m and n̄th. With the help of specific examples,
we demonstrate the performance of the scheme below.

Considering �m = 2π × 500 Hz and the state-of-the-art
temperature T = 10 mK corresponding to n̄th = 0.1, we find
for the cat state of Fig. 3(a) that Vneg = 0.25Vneg,0. Here
Vneg,0 denotes the value of Vneg for the system not coupled
to a thermal bath [Vneg,0 = 0.24 for the parameters used in
Fig. 3(a)]. Similarly, using (10) with the parameters from
Fig. 3(b), we find that for squeezing to be achieved one needs
n̄th � 6 corresponding to T � 150 mK.

Next, in order to assess what couplings can be achieved in a
realistic experiment, we consider the following parameters:
133Cs Rydberg atoms with a transition between n = 100
and n = 101 which are separated by ωa + ω′

a ≈ 2π × 6 GHz
[44] corresponding to an oscillator resonant frequency ωosc =
2π × 3 GHz, which are achievable, e.g., with clamped
mechanical beams [45] or diamond nanoresonators [46].
The detuning between the oscillator frequency and the P -S ′
transition frequency is � = ω′

a − ωosc ≈ 2π × 300 MHz,
while the splitting P3/2 − P1/2 < 20 MHz [44]. We take the
oscillator characteristic length zosc = 10−13 m, the charge on
the tip of the oscillator Q = 200e (compatible, e.g., with ∼
aF capacitances of micron size electromechanical resonators
operated with ∼ V voltages [47,48]) and thermal bath coupling
strength �m = 2π × 500 Hz (corresponding to a relatively
high quality factor Q = 6 × 106 of the oscillator [49]). For
n ≈ 100 Rydberg states the atomic size is ≈104a0 ≈ 1 μm,
and the corresponding dipole moments are μ0 ≈ μ′

0 ≈ 104ea0

(a0 is the Bohr radius). For the atomic motion, we consider
a simple linear trajectory R(t) = [vt,0,Z0] with t going from
−∞ to ∞, where we neglect any deflection of the atom’s path
due to the interaction with the oscillator (the static monopole
part of the field resulting from the charge Q can always be
compensated by additional static charges; see Appendix A
for details of the interaction). Assuming the atom-cantilever
distance to be Z0 = 5 μm we choose the atomic speed v =
10 m/s and the rate of atoms r = 105 atoms per second, giving
the separation between successive atoms of 100 μm and the
interaction time of a couple of microseconds. This guarantees,
to a good approximation, that only one atom is interacting
with the oscillator at a time and that one can neglect the
decay of the Rydberg states which have a lifetime of 100 μs
[52,53]. We then obtain for the integrated coupling strength
G2 = ( Qzosc

4π�ε0
)2 μ0μ

′
0

�
21π

48vZ5
0

≈ 10−5.

We now turn our attention to the direct single-photon–two-
phonon resonance provided by the atomic dipole–oscillator
quadrupole coupling as we show in Appendix A. Here, an
analogous derivation leads to the integrated coupling strength

G2,quad = Qμ0z
2
osc

4πε0�

2
3vZ3

0
≈ 10−9 which is smaller by orders of

magnitude compared to G2 in the two-photon two-phonon
resonance scheme.
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IV. DISCUSSION AND OUTLOOK

We have explored a method of creating squeezed and nonclas-
sical states of a charged macroscopic mechanical oscillator.
Such on-demand quantum state preparation constitutes a
basic element of the mechanical oscillators state manipu-
lation toolbox using atoms. Specifically, the squeezed and
Schrödinger cat states that can be in principle generated
might find applications as probes of decoherence processes of
macroscopic bodies, in quantum information processing or in
sensing and metrology. The values of the estimated couplings
that are achievable with current state-of-the-art technology and
typical parameter regimes turn out to be too small to be of a
practical use. Further improvement might be sought, e.g., by
increasing the charge of the oscillator or by more suitable
choice of the employed Rydberg states which would increase
the dipole moment and decrease the two-photon detuning
�. Another possibility is to exploit the enhancement of the

coupling when considering an ensemble of atoms coupled to
an array of oscillators which we leave for future investigations.

Note added. Recently, we became aware of a related
work [54].

ACKNOWLEDGMENTS

J.M. would like to thank M. Marcuzzi and A. Armour for
useful discussions. R.S. would like to thank A. Kouzelis for his
comments. We thank W. Li for his help and the feedback on the
manuscript. The research leading to these results has received
funding from the European Research Council under the
European Union’s Seventh Framework Programme (FP/2007-
2013)/ERC Grant Agreement No. 335266 (ESCQUMA). S.H.
was supported by the German Research Foundation (DFG)
through Emmy Noether Grant No. HO 4787/1-1 and within
SFB/TRR21.

APPENDIX A: ATOM-OSCILLATOR INTERACTION

The interaction Hamiltonian between the dipole moment μ̂ = [μ̂x,μ̂y,μ̂z] = μ0[M̂x,M̂y,M̂z] of an atom at position R and
the electric field Ê(R) created by a charge at position ẑ can be expressed as a power series in ẑ:

V̂ = −μ̂ · Ê(R) (A1)

= − Q

4πε0

μ̂xX + μ̂yY + μ̂z(Z − ẑ)

[(X2 + Y 2 + (Z − ẑ)2]3/2
(A2)

≈ − Qμ̂ · R
4πε0R3

− Qμ0

4πε0R5
[M̂z(3Z2 − R2) + 3Z(M̂xX + M̂yY )]ẑ + O(ẑ2) (A3)

≡ �γ0(R) − �

∑
j=x,y,z

[γj (R)M̂j (â + â†)] + O[(â + â†)2] (A4)

with R = |R| and the last line introduces notation for the coupling strengths γj that are used in the following.
The first term in Eq. (A3) corresponds to a Coulomb interaction, which can be canceled by additional static charges with

opposite sign [see also Fig. 1(a)] and thus we omit it in the following. The matrices M̂x,y,z depend on the specific atomic transitions
that couple to the electric field of the oscillator. We compute the matrix elements using the standard angular momentum theory
as [55,56]

(Mα)
L′

J ′ ,m′
J

LJ ,mJ
= 〈L′

J ′ ,m
′
J | χ̂α|LJ ,mJ 〉, (A5)

where α = x,y,z, L is the electron angular momentum, J the total angular momentum, and mJ the projection of the total angular
momentum on the z axis. The operators χ̂ are given by the relations χ̂±1 = ∓ 1√

2
(χ̂x ± iχ̂y) and χ̂0 = χ̂z. When expressed in the

coordinate basis, they are simply rescaled spherical harmonics 〈χ̂±〉 =
√

4π
3 Y1,±1(θ,φ), 〈χ̂0〉 =

√
4π
3 Y1,0(θ,φ). The dipole matrix

elements are then obtained with the help of the relation

〈L′
J ′ ,m

′
J | χ̂q |LJ ,mJ 〉

= (−1)J
′−m′

J

(
J ′ 1 J

−m′
J q mJ

)
(−1)J+S ′+1

√
(2J ′ + 1)(2J + 1)

{
L′ 1 L

J S ′ J ′

}√
(2L′ + 1)(2L + 1)

(
L′ 1 L

0 0 0

)
, (A6)

where q = −1,0,1, S ′ = J ′ − L′ is the total spin, and (· · ·· · ·), {· · ·· · ·} are the Wigner 3j and 6j symbols, respectively.
Note that we have absorbed the radial part of the dipole transition elements into the dipole moment amplitude μ0.
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Single-phonon transition

For a single-phonon transition we consider resonant tran-
sitions between the S and P manifolds of an atom within the
same principal quantum number, as shown in Fig. 4(a). The
transition matrices in the |LJ ,mJ 〉 = {|S1/2, − 1/2〉,|P1/2, −
1/2〉,|S1/2,1/2〉,|P1/2,1/2〉} basis read

M̂x = −1

3

⎛
⎜⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎠,

M̂y = −1

3

⎛
⎜⎝

0 0 0 i

0 0 i 0
0 −i 0 0
−i 0 0 0

⎞
⎟⎠,

M̂z = −1

3

⎛
⎜⎝

0 −1 0 0
−1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎠. (A7)

FIG. 4. (a) Level scheme and transitions for a four-level manifold.
(b) Coupling strength γi for i = x, y, and z in short-dashed, long-
dashed, and solid lines, respectively, for an atom at position R =
[AZ0,0,Z0]. The coupling strength has been scaled to the maximum
of γz.

We calculate the coupling strengths for a position
R(A) = [AZ0,0,Z0]. We find that γy[R(A)] = 0 and that
γz[R(A)]/γx[R(A)] = 2−A2

A
. Note that the last ratio is inde-

pendent of Z0. Figure 4(b) shows the dipole coupling strengths
γj [R(A)] as a function of the scaled coordinate A, where
the coupling strengths have been normalized to the maximum
value of γz. Since γz � γx we neglect γx . This simplifies the
description so that one can use only two of the four levels and
we choose |s〉 ≡ |S1/2,1/2〉 and |p〉 ≡ |P1/2,1/2〉.

With this two-level system the atom-oscillator Hamiltonian can be written as Ĥ = Ĥ0 + V̂ , where Ĥ0 = �ωoscâ
†â + �ωaσ̂

z

and

V̂ = Qμ0zosc

4πε0R5

1

3
[σ̂ x(3Z2 − R2)](â + â†) + O([zosc(â + â†)]2), (A8)

where σ̂ z = |p〉〈p| − |s〉〈s|, σ̂ x = |p〉〈s| + |s〉〈p| and we have used ẑ = zosc(â + â†). When ωosc = ωa the |s〉-|p〉 transition
of the atom is resonant with the one-phonon transition of the oscillator and the interaction picture Hamiltonian ĤI =
exp[−iĤ0t/�]Ĥ exp[iĤ0t/�] reads

ĤI = 1

3

Qμ0zosc

4πε0R5
[(|s〉〈p|e−iωosct + |p〉〈s|eiωosct )(3Z2 − R2)](âe−iωosct + â†eiωosct ) + F

= 1

3

Qμ0zosc

4πε0R5
[|s〉〈p|â†(3Z2 − R2) + |p〉〈s|â(3Z2 − R2)] + F ′

≈ �γ (t)|s〉〈p|â† + H.c., (A9)

where F and F ′ contain only terms oscillating at ωosc or higher frequency, which can be neglected through the rotating wave
approximation and we have introduced the single-phonon coupling strength γ (t) = Qμ0zosc

4πε0�R5
(3Z2−R2)

3 .

Two-phonon resonance

Here we consider a situation where a two-photon atomic transition between different principal quantum number S states
|s〉 = |S1/2,1/2〉 and |s ′〉 = |S ′

1/2,1/2〉 couples to a two-phonon oscillator transition. The two-phonon transition is mediated by
an off-resonant coupling to the P1/2 and P3/2 manifolds. We denote by ω1/2 (ω3/2) the P1/2-S ′ (P3/2-S ′) transition frequencies and
by �j = ωj − ωosc, j = 1

2 , 3
2 the respective detunings. In what follows, we refer to both manifolds combined as the P manifold.

Formally, the S-P (P -S ′) transitions are described by a dipole moment operator μ̂2 (μ̂′
2) with magnitude μ0 (μ′

0), respectively.
The atom-oscillator interaction is given by the sum V̂ (μ̂2) + V̂ (μ̂′

2), where V̂ is given by (A3), and the transition matrices M̂j

(M̂ ′
j ), j = x,y,z for the S-P (P -S ′) transitions now read

M̂x = |s〉
(

−1

3
〈P1/2, − 1/2| + 1

3
√

2
〈P3/2, − 1/2| − 1√

6
〈P3/2,3/2|

)
+ H.c.,

M̂y = i |s〉
(

1

3
〈P1/2, − 1/2| − 1

3
√

2
〈P3/2, − 1/2| − 1√

6
〈P3/2,3/2|

)
+ H.c.,

M̂z = |s〉
(

−1

3
〈P1/2,1/2| +

√
2

3
〈P3/2,1/2|

)
+ H.c.,
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M̂ ′
x = |s ′〉

(
−1

3
〈P1/2, − 1/2| + 1

3
√

2
〈P3/2, − 1/2| − 1√

6
〈P3/2,3/2|

)
+ H.c.,

M̂ ′
y = i |s ′〉

(
1

3
〈P1/2, − 1/2| − 1

3
√

2
〈P3/2, − 1/2| − 1√

6
〈P3/2,3/2|

)
+ H.c.,

M̂ ′
z = |s ′〉

(
−1

3
〈P1/2,1/2| +

√
2

3
〈P3/2,1/2|

)
+ H.c. (A10)

To first order in ẑ, the total Hamiltonian in the atomic basis {|s〉,|s ′〉,|P1/2, − 1/2〉,|P1/2,1/2〉,P3/2, − 1/2〉,|P3/2,1/2〉,|P3/2,3/2〉}
reads

Ĥ = �

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0
0 2ωosc 0 0 0 0 0
0 0 ωosc + �1/2 0 0 0 0
0 0 0 ωosc + �1/2 0 0 0
0 0 0 0 ωosc + �3/2 0 0
0 0 0 0 0 ωosc + �3/2 0
0 0 0 0 0 0 ωosc + �3/2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

+ �ωoscâ
†â − �

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 −γ− −γz
1√
2
γ−

√
2γz −

√
3
2γ+

0 0 −γ ′
− −γ ′

z
1√
2
γ ′

−
√

2γ ′
z −

√
3
2γ ′

+
−γ+ −γ ′

+ 0 0 0 0 0

−γz −γ ′
z 0 0 0 0 0

1√
2
γ+ 1√

2
γ ′

+ 0 0 0 0 0√
2γz

√
2γ ′

z 0 0 0 0 0

−
√

3
2γ− −

√
3
2γ ′

− 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(â + â†), (A11)

with ẑ = zosc(â + â†), and the atom-oscillator coupling strengths γ± = Qμ0zosc

4πε0�R5 Z(X ± iY ), γz = Qμ0zosc

4πε0�R5
3Z2−R2

3 and similarly for
γ ′

±,γ ′
z , where μ0 is replaced by μ′

0. Taking the rotating wave approximation, the interaction picture Hamiltonian is

ĤI = −�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 −γ−â† −γzâ
† 1√

2
γ−â† √

2γzâ
† −

√
3
2γ+â†

0 0 −γ ′
−â −γ ′

z â
1√
2
γ ′

−â
√

2γ ′
z â −

√
3
2γ ′

+â

−γ+â −γ ′
+â† �1/2 0 0 0 0

−γzâ −γ ′
z â

† 0 �1/2 0 0 0
1√
2
γ+â 1√

2
γ ′

+â† 0 0 �3/2 0 0√
2γzâ

√
2γ ′

z â
† 0 0 0 �3/2 0

−
√

3
2γ−â −

√
3
2γ ′

−â† 0 0 0 0 �3/2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A12)

If |�1/2| ≈ |�3/2| � |γ | for all single-phonon coupling rates γ , we can adiabatically eliminate the P manifold to get an effective
two-level atom. Such situation occurs for different species and a range of principal quantum numbers. For instance, taking 133Cs,
n = 100 for |s〉, n = 101 for |s ′〉, and ωosc = 2π × 3 GHz (the example considered in the main text) yields �1/2 = 2π × 283 MHz
and �3/2 = 2π × 263 MHz. In order to simplify the treatment, we thus replace the detunings in Eq. (A12) by � ≈ �1/2 ≈ �3/2.
This also motivates the introduction of the effective transition frequency ω′

a between the combined P manifold and the |s ′〉 state
such that � = ω′

a − ωosc.
We are now in a position to apply the methods of degenerate perturbation theory [57] to find an effective Hamiltonian in

the space spanned by {|s〉,|s ′〉}. Defining the projector P̂ = |s〉〈s| + |s ′〉〈s ′| and its complement Q̂ = 1 − P̂ , the Hamiltonian is
partitioned into the block diagonal part HD = P̂ ĤIP̂ + Q̂ĤIQ̂ and the off-diagonal perturbation V̂x = P̂ ĤIQ̂ + Q̂ĤIP̂ . We find
a unitary transformation Û = eĜ, with Ĝ = −Ĝ†, such that Ĥeff = ÛĤIÛ

† is block diagonal, i.e., Ĥeff = P̂ ĤeffP̂ + Q̂ĤeffQ̂

and Ĝ = ∑∞
j=0

1
�j G

(j ).
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The first nonzero contribution to the effective Hamiltonian is first order in 1
�

(second order in the expansion):

Ĥeff = HD + 1

2�
[G(1),V̂x], with G(1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 −γ−â† −γzâ
† 1√

2
γ−â† √

2γzâ
† −

√
3
2γ+â†

0 0 −γ ′
−â −γ ′

z â
1√
2
γ ′

−â
√

2γ ′
z â −

√
3
2γ ′

+â

−γ+â −γ ′
+â† 0 0 0 0 0

−γzâ −γ ′
z â

† 0 0 0 0 0
1√
2
γ+â 1√

2
γ ′

+â† 0 0 0 0 0√
2γzâ

√
2γ ′

z â
† 0 0 0 0 0

−
√

3
2γ−â −

√
3
2γ ′

−â† 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(A13)

The resulting Hamiltonian in the space {|s〉,|s ′〉} is

P̂ ĤeffP̂ = 3�

�

(
â†â(γ−γ+ + γz

2) (â†)2 1
2 (γ ′

−γ+ + γ−γ ′
+ + 2γzγ

′
z)

â2 1
2 (γ ′

−γ+ + γ−γ ′
+ + 2γzγ

′
z) â†â(γ ′

−γ ′
+ + γ ′

z
2)

)
. (A14)

The diagonal terms are the dispersive frequency shifts. A quasiperfect two-photon–two-phonon resonance is achieved if
3�n
�

[(γ−γ+ + γz
2) − (γ ′

−γ ′
+ + γ ′

z
2)], with n the phonon number, is negligibly small as compared to the off-diagonal terms

in (A14). For sufficiently small n which is the situation of this article, and under the realistic assumption of μ0 ≈ μ′
0 the

quasiperfect resonance can be achieved and we thus consider only the off-diagonal terms of (A14). The effective two-phonon
coupling rate γ2 is given by the off-diagonal terms

γ2(t) = 3

2�
(γ ′

−γ+ + γ−γ ′
+ + 2γzγ

′
z) =

(
Qzosc

4π�ε0R5

)2
μ0μ

′
0

�

1

3
[R2(R2 + 3Z2)] (A15)

and the resulting interaction picture Hamiltonian reads

ĤI,2(t) ≈ �γ2(t)|s〉〈s ′|(â†)2 + �γ ∗
2 (t)|s ′〉〈s|â2. (A16)

The integrated coupling strength, for an atom taking a path R(t) = [vt,0,Z0] then becomes

G2 =
∫ ∞

−∞
dtγ2(t) =

(
Qzosc

4π�ε0

)2
μ0μ

′
0

�

21π

48vZ5
0

. (A17)

Atomic dipole–oscillator quadrupole coupling

In principle, the two-phonon resonance condition with interaction Hamiltonian similar to (6) can be achieved by exploiting
the coupling between the atomic dipole and the oscillator quadrupole as we now show. The oscillator quadrupole corresponds to
the ẑ2 term in the expansion of Ê(r). Specifically, the O(ẑ2) term in (A1) reads

O(ẑ2) = − Qμ0

4πε0R7

3

2
[M̂xX(5Z2 − R2) + M̂yY (5Z2 − R2) + M̂zZ(5Z2 − 3R2)]ẑ2 + O(ẑ3).

Under the two-phonon resonance condition ωosc = ωa/2, this term dominates the atom-oscillator interaction, and the resulting
interaction picture Hamiltonian reads

ĤI,quad = 1

2

Qμ0z
2
osc

4πε0R7
Z(5Z2 − 3R2)[|s〉〈p|(â†)2 + |p〉〈s|â2] + F ′

≈ �γ2,quad(t)|s〉〈p|(â†)2 + H.c., (A18)

where F ′ contains only terms oscillating at ωosc or higher frequency, which can be neglected through the rotating wave

approximation, and γ2,quad = Qμ0z
2
osc

4πε0�R7
Z(5Z2−3R2)

2 is the two-phonon coupling strength.

For an atom trajectory R(t) = [vt,0,Z0] the integrated two-phonon coupling strength is G2,quad = ∫ ∞
−∞ γ2,quaddt = Qμ0z

2
osc

4πε0�

2
3vZ3

0
.

APPENDIX B: DERIVATION OF THE MASTER EQUATION

We start the derivation of the master equation for the single-phonon resonance by using (2) and the atomic initial state (3)
and find the state of the oscillator after the passage of a single atom. For brevity we will write the state before the kth atom has
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passed ρ = ρ(k−1)
osc ⊗ ρa. Expanding (4) yields

ρ(k)
osc = Tra[ÛnρÛ †

n] =
∞∑

n,m=0

ρnm[|β|2|n〉 cos(�n) cos(�m)〈m| + |α|2|n − 1〉 sin(�n−1) sin(�m−1)〈m − 1|

− iαβ∗|n − 1〉 sin(�n−1) cos(�m)〈m| + iβα∗|n〉 cos(�n) sin(�m−1)〈m − 1|
+ |α|2|n〉 cos(�n−1) cos(�m−1)〈m| + |β|2|n + 1〉 sin(�n) sin(�m)〈m + 1|
− iβα∗|n + 1〉 sin(�n) cos(�m−1)〈m| + iαβ∗|n〉 cos(�n−1) sin(�m)〈m + 1|], (B1)

where �n = G
√

n + 1, and ρ(k−1)
osc = ∑∞

n,m=0 ρnm|n〉〈m|. In a similar fashion to the derivation in [35] we transform the sum over

n and m into an operator equation. First, we can rewrite the bras and kets as |n − 1〉 = â√
â†â

|n〉 and |n + 1〉 = â†√
ââ† |n〉. Secondly,

n and n + 1 are written as â†â and ââ†, resulting in the replacements

|n〉 cos(G
√

n) → cos(G
√

â†â)|n〉, (B2)

|n〉 cos(G
√

n + 1) → cos(G
√

ââ†)|n〉, (B3)

|n − 1〉 sin(G
√

n) → â sin(G
√

â†â)√
â†â

|n〉, (B4)

|n + 1〉 sin(G
√

n + 1) → â† sin(G
√

ââ†)√
ââ†

|n〉. (B5)

This lets us replace
∑

nm ρnm|n〉〈m| with ρ(k−1)
osc giving

ρ(k)
osc = |β|2

[
cos(G

√
ââ†)ρ(k−1)

osc cos(G
√

ââ†) + sin(G
√

ââ†)
â†

√
ââ†

ρ(k−1)
osc

â√
ââ†

sin(G
√

ââ†)

]

+ |α|2
[

cos(G
√

â†â)ρ(k−1)
osc cos(G

√
â†â) + sin(G

√
â†â)

â√
â†â

ρ(k−1)
osc

â†
√

â†â
sin(G

√
â†â)

]

+ iαβ∗
[

cos(G
√

â†â)ρ(k−1)
osc

â√
ââ†

sin(G
√

ââ†) − sin(G
√

â†â)
â√
â†â

ρ(k−1)
osc cos(G

√
ââ†)

]

+ iβα∗
[

cos(G
√

ââ†)ρ(k−1)
osc

â†
√

â†â
sin(G

√
â†â) − sin(G

√
ââ†)

â†
√

ââ†
ρ(k−1)

osc cos(G
√

â†â)

]
. (B6)

Note that, up until now, these equations remain exact. We are now interested in an approximation where 〈n|Gâ†â|n〉 � 1
for all oscillator levels n up to some maximum nmax that we set as a truncation of the oscillator space. To second order
cos(G

√
â†â) ≈ 1 − G2

2 â†â, cos(G
√

ââ†) ≈ 1 − G2

2 ââ†, sin(G
√

â†â) â√
â†â

≈ Gâ, and sin(G
√

ââ†) â†√
ââ† ≈ Gâ† leaving

ρ(k)
osc = |β|2

(
ρ(k−1)

osc + G2

[
â†ρ(k−1)

osc â − 1

2

(
ââ†ρ(k−1)

osc + ρ(k−1)
osc ââ†)])

+ |α|2
(

ρ + G2

[
âρ(k−1)

osc â† − 1

2

(
â†âρ(k−1)

osc + ρ(k−1)
osc â†â

)])

+ iαβ∗G
(
ρ(k−1)

osc â − âρ(k−1)
osc

) + iβα∗G
(
ρ(k−1)

osc â† − â†ρ(k−1)
osc

) + O(G3). (B7)

We then can find our approximate master equation:

ρ̇(k)
osc ≈ r

(
ρ(k)

osc − ρ(k−1)
osc

)
(B8)

= r
(
D[αGâ](ρosc) + D[βGâ†](ρosc) − iG

[
αβ∗â + βα∗â†,ρosc

])
(B9)

where we have used |α|2 + |β|2 = 1, and for the last line the index k has been suppressed, as none of the dynamics depend on
it. The derivation of the master equation for the two-phonon resonance follows the same lines, with â(â†) replaced by â2[(â†)2].

The steady state of the evolution under (B8) is a displaced thermal state ρosc = D(A)ρthD
†(A), where ρth = ∑∞

n=0

|n〉 〈n| ( n̄
1+n̄

)n 1
1+n̄

is the thermal state with average occupation number n̄ = |β|2
|α|2−|β|2 , D(A) = exp[Aâ† − A∗â] is the coherent

displacement operator, and A = i
2α∗β

G(|α|2−|β|2) is the coherent shift amplitude. The solution is valid for values of |β|2 below 0.5 as
it becomes unstable for higher β (negative n̄).
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APPENDIX C: SQUEEZING ANGLE

A system described by a Hamiltonian Ĥ = �[e−iθ â2 + eiθ (â†)2] evolves according to the operator Ŝ = exp[−iĤ t] =
exp{−i�t[e−iθ â2 + e−iθ (â†)2]} = exp{�t[e−i(θ+π/2)â2 − ei(θ+π/2)(â†)2]}. This yields the following operator relations:

Ŝ†âŜ = â cosh(�t/2) − â†ei(θ+π/2) sinh(�t/2), (C1)

Ŝ†â†Ŝ = â† cosh(�t/2) − âe−i(θ+π/2) sinh(�t/2). (C2)

We can now calculate the variance in the φ quadrature with a vacuum initial state |0〉, with χ̂φ = (âe−iφ + â†eiφ)/
√

2.

�χ2
φ = 〈0|Ŝ†χ̂2

φŜ|0〉 − 〈0|Ŝ†χ̂φŜ|0〉2. (C3)

Using relations (C1) and (C2), (C3) becomes

�χ2
φ = 1

2

[
cosh2(�t/2) + sinh2(�t/2)

] − sinh(�t/2) cosh(�t/2) cos(2φ − θ − π/2)

= 1
2 [cosh(�t) − sinh(�t) cos(2φ − θ − π/2)]. (C4)

For θ = 0, as considered in the main text, �χ2
φ is minimized for φ = π/4.
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