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Simultaneous slow and fast light involving the Faraday effect
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We theoretically study the linear transmission of linearly polarized light pulses in an ensemble of cold atoms
submitted to a static magnetic field parallel to the direction of propagation. The carrier frequency of the incident
pulses coincides with a resonance frequency of the atoms. The transmitted light, the electric field of which
is transversal, is examined in the polarizations parallel and perpendicular to that of the incident pulses. We
give explicit analytic expressions for the transfer functions of the system for both polarizations and for the
corresponding group delays. We demonstrate that slow light can be observed in a polarization, whereas fast light
is simultaneously observed in the perpendicular polarization. Moreover, we point out that, due to the polarization
postselection, the system is not necessarily minimum phase shift. Slow light can then be obtained in situations
where an irrelevant application of the Kramers-Kronig relations could lead one to expect fast light. When the
incident light is step modulated, we finally show that, in suitable conditions, the system enables one to separate
optical precursor and main field.
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Dilute atomic or molecular media are precious tools for the
study of the propagation of light in material [1,2] and, more
specifically, of the phenomena of slow light, fast light, and
optical precursors [3–6]. With their refractive index n being
very close to unity, the parasitic reflections at the input and the
output of the medium (“etalon effects”) that may complicate
the analysis of the transmitted signals [7] are practically
eliminated. On the other hand, the narrowness of their
absorption or gain lines originates the singular group velocities
vg required to observe significant slow light (0 < vg � c,
where c is the light velocity in vacuum) or fast light (vg > c

or vg < 0) [3]. These group velocities are often obtained when
the carrier frequency of the probe pulses coincides with a
well-marked peak in the medium transmission in the slow-light
case or a well-marked dip in the fast-light case. In most of the
experiments, these conditions are created by applying extra
fields (pump and/or coupling fields) whose interaction with the
medium is nonlinear [3–5,8]. It is, however, worth recalling
that the pioneering experimental demonstrations of slow and
fast light have been performed without any pump or coupling
fields [7,9,10]. More recent experiments in “natural” atomic
media are reported in [11–15]. The challenge in all these
experiments is to obtain significant effects with moderate pulse
distortion.

Fast-light and slow-light experiments have also been
performed in nondispersive media by exploiting the effects
of field polarization [16–19]. In these experiments, a medium
[16,17,19] or fiber [18] with linear birefringence is placed
between two linear polarizers. Note that fast light and slow
light are then observed in different experimental conditions,
the transition from fast to slow light being achieved by
changing the orientation of the output polarizer. A similar
behavior is obtained in the related system considered in [20].

In the present article, we propose a system combining
effects of light polarization and of medium dispersion. It
involves two detection channels, enabling one to observe fast
light and slow light in the same experiment. The medium
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consists of a cloud of cold atoms submitted to a uniform [21],
static magnetic field parallel to the direction of propagation
of the (unique) probe field (Fig. 1). The incident field is
transversal and linearly polarized by a polarizer (P), and the
field transmitted by the medium is received on a polarization
beam splitter (PBS) that separates the polarizations parallel
and perpendicular to that of the incident field, with both
directions of polarization being perpendicular to the direction
of propagation. Cold atoms avoid the complications of Doppler
broadening and ensure significant Faraday effects (circular
birefringence and dichroism) for moderate values of the
magnetic field [22]. For simplicity, the carrier frequency ωc of
the incident pulse is assumed to coincide with the frequency
ω0 of the transition from a ground level of total angular
momentum F = 1 to an excited state F = 0. In the presence
of magnetic field the transition is split into two components
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FIG. 1. Proposed level arrangement (top) and experimental setup

(bottom).
−→
B is the magnetic field parallel to the direction of the light

propagation, P and PBS respectively designate a linear polarizer and
a polarization beam splitter separating the polarizations parallel (‖)
and perpendicular (⊥) to the polarization of the incident pulse.
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of frequency ω0 ± � associated with the circular polarizations
σ± [23]. In a frame rotating at the angular frequency ω0, the
transfer functions H±(�) relating the Fourier transforms of
the envelopes of the incident and transmitted pulses for the
polarizations σ± read [24,25]

H±(�) = exp

(
− α�γ

2(γ + i� ∓ i�)

)
, (1)

where α is the resonance absorption coefficient for the intensity
of the medium, � is the medium thickness, and γ is the half
width at half maximum (HWHM) of the resonances. Notice
that Eq. (1) is obtained by using a time retarded by the transit
time at the velocity c. Decomposing the unit vector of the
linearly polarized incident field in the complex unit vectors
associated with the circular polarizations σ±, we apply the
transfer functions H±(�) to these polarizations and project
each of the resulting fields on the directions parallel and
perpendicular to that of the incident field. In this way we
get the transfer functions H‖(�) and H⊥(�) corresponding to
the fields transmitted in each polarization. They read

H‖(�) = 1

2
[H+(�) + H−(�)], (2)

H⊥(�) = i

2
[H+(�) − H−(�)]. (3)

When the probe wave is a continuous wave (cw) of optical fre-
quency ω0 (� = 0), the amplitude transmissions are reduced
to H‖(0) = e−γ θ/� cos θ and H⊥(0) = e−γ θ/� sin θ , where

θ = α��

2γ (1 + �2/γ 2)
(4)

is nothing more than the Faraday rotation angle of the field
polarization in the medium.

The study of the time-dependent regime is greatly sim-
plified by remarking that the transfer functions given in
Eqs. (2) and (3) are such that H (�) = H ∗(−�), where the
asterisk stands for the complex conjugate. Assuming that the
envelope x(t) of the incident pulse is real positive (amplitude
modulation), the envelope y(t) of the transmitted pulse will
also be real, and a simple application of the moment theorem
[25] shows that its center of gravity is delayed by the group
delay

τg = i

H (0)

dH (�)

d�

∣∣∣∣
�=0

= −d�(�)

d�

∣∣∣∣
�=0

, (5)

where �(�) is the argument of H (�) [26]. It also results from
the relation H (�) = H ∗(−�) that |H (�)| and d�(�)/d�

are stationary around � = 0. If the spectrum of the incident
pulse is narrow enough, the envelope y(t) of the transmitted
pulse can thus be determined by approximating H (�) by
H (0) exp (−i�τg) and reads

y(t) ≈ H (0) x(t − τg). (6)

The incident pulse will then be transmitted without significant
distortion. Keeping in mind that we use retarded times, the
transmission will be superluminal (or even have absolute time
advancement) when τg < 0 and subluminal when τg > 0.

From Eqs. (1)–(3) and (5), we easily derive the group
delays for the parallel and perpendicular polarizations. They
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FIG. 2. Top: normalized intensity profiles of the transmitted
pulses in the polarizations ‖ and ⊥ for an incident pulse of Gaussian
envelope x(t) = exp [−t2/(2σ 2)]. The solid (dashed) lines are the
exact profiles obtained by Fourier transform [the approximate analyt-
ical profiles given by Eq.(6)]. Parameters: � = γ , θ = π/4 (α� = π ),
and σ = 2.6/γ . Bottom: corresponding amplitude transmission and
phase as a function of �.

respectively read

τg‖ = − θ

γ (1 + �2/γ 2)

[
(1 − �2/γ 2) + 2� tan θ

γ

]
, (7)

τg⊥ = − θ

γ (1 + �2/γ 2)

[
(1 − �2/γ 2) − 2�

γ tan θ

]
. (8)

The previous results are valid for arbitrary values of �. We
restrict ourselves in the following the analysis to the particular
case � = γ , a condition easily met with cold atoms for
reasonable magnetic fields [22]. This case is of special interest
because the group velocities for the circular polarizations σ+
and σ− are both equal to c (luminal propagation) at the carrier
frequency of the incident pulse [27]. We then get θ = α�/4,
H‖(0) = e−θ cos θ , H⊥(0) = e−θ sin θ , γ τg‖ = −θ tan θ , and
γ τg⊥ = θ/ tan θ . A remarkable result is obtained when θ =
π/4 (α� = π ), for which |H‖(0)| = |H⊥(0)| = e−π/4/

√
2,

τg‖ = −π/(4γ ), and τg⊥ = π/(4γ ). Figure 2 shows the
normalized intensity profiles of the transmitted pulses for an
incident Gaussian pulse of envelope x(t) = exp[−t2/(2σ 2)],
with σ = 2.6/γ , a value conciliating moderate pulse distortion
with significant fractional time advancement or delay. As
expected, there is advancement for the polarization parallel
and delay for the polarization perpendicular, these quantities
both being nearly equal to π/(4γ ). Figure 2 also shows the
corresponding amplitude transmission |H (�)| and phase �(�)
as functions of �. We see that fast light and slow light
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obtained in the parallel and perpendicular polarizations are,
respectively, associated with a minimum and a maximum
of transmission at � = 0. This result is often considered a
consequence of the Kramers-Kronig relations, from which one
gets

�(�) = �KK (�) = −H{ln |H(�)|}, (9)

where H designates the Hilbert transform [25]. The group
delay then reads

τg = τKK = −d�KK (�)

d�

∣∣∣∣
�=0

. (10)

In reality, Eq. (9) only holds if H (�) is a minimum-
phase-shift (MPS) function [25,28]. This condition is met for
purely propagative systems but may fail for systems involving
polarizers [16,18–20]. With � being continued in the complex
plane, the condition to ensure that H (�) is MPS is that all
its zeros lie in the upper half plane [Im(�) > 0]. Assuming
again that � = γ , it is easily shown that the zeros that may
eventually have a negative imaginary part will occur at

� = iγ

(
1 −

√
4θ

(2p − 1)π
− 1

)
(11)

for H‖(�) and at

� = iγ

(
1 −

√
2θ

pπ
− 1

)
(12)

for H⊥(�), where p is a positive integer. No such zeros exist
for 0 < θ < π/2, and H (�) is MPS for both polarizations.
In the conditions of Fig. 2 (θ = π/4), we have numerically
verified that the group delays derived from Eqs. (9) and (10) are
actually equal to the exact values ±π/(4γ ). When θ > π/2,
H (�) is not MPS, at least for one polarization. It can then
be written as the product of a MPS transfer function by the
transfer function HAP (�) of a causal all-pass filter of the form

HAP (�) =
∏
p

(
� − �p

� − �∗
p

)
, (13)

where �p designates the zeros of H (�) actually lying
in the lower complex half plane [25,28,29]. As shown in
Eqs. (11) and (12), these zeros are purely imaginary, and the
contributions of HAP (�) to add to the phase shift �KK (�) and
to the group delay τKK respectively given by Eqs. (9) and (10)
take the simple forms

�AP (�) = −2
∑

p

tan−1

(
�

i�p

)
, (14)

τAP = −d�AP (�)

d�

∣∣∣∣
�=0

= 2
∑

p

1

i�p

. (15)

Note that all the terms intervening in Eq. (15) are positive
and thus contribute to an increase of the group delay. When
τKK < 0, this contribution can even change the advancement
predicted by the Kramers-Kronig relations in a delay of
comparable magnitude. Figure 3, obtained for θ = 3π/4
(α� = 3π ), illustrates such a case. We have then |H‖(0)| =
|H⊥(0)| = e−3π/4/

√
2, τg‖ = 3π/(4γ ), and τg⊥ = −3π/(4γ ).
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FIG. 3. Same as Fig. 2 for � = γ , θ = 3π/4 (α� = 3π ), and
σ = 8.0/γ . The duration σ of the incident pulse has been chosen so
that the distortion of the transmitted pulse does not exceed that of
Fig. 2.

For both polarizations, the amplitude transmission |H (�)| has
a well-marked dip at � = 0. Equation (12) shows that H⊥(�)
has no zeros in the lower half plane and thus is MPS. As
usual, the corresponding transmitted pulse is advanced, and
we have again verified that τg = τKK = −3π/(4γ ). On the
other hand, H‖(�) is not MPS. Equation (11) indeed shows
that it has one active zero �1 = −iγ (

√
2 − 1) in the lower

half plane. The associated time delay reads τAP = 2/(i�1) =
2/[γ (

√
2 − 1)] ≈ 4.828/γ . From Eqs. (9) and (10), we get in

this case τKK = −2.472/γ and, finally, τg‖ = τKK + τAP ≈
2.356/γ , in agreement with the expression τg‖ = 3π/(4γ )
given above. We are actually in a case where the time delay
has a value nearly opposite to that derived by an irrelevant
application of the Kramers-Kronig relations. The transmitted
pulse is then delayed in spite of a dip in the system transmission
at the pulse carrier frequency.

Singular behaviors are obtained when θ = (2k − 1)π/2 for
H‖(�) and when θ = kπ for H⊥(�), where k is a positive
integer. The cw transmission |H (0)| is then null, and the phase
�(�) displays a π discontinuity at � = 0. Note that such
phase singularities have been clearly recognized in the analysis
of the pioneering experiments on nondispersive birefringent
media [17,18]. As |H (0) = 0|, the area

∫ +∞
−∞ y(t) dt of the

envelope y(t) of the transmitted pulse is also null [30], its
center of gravity is not defined, and the pulse distortion is
considerable, as narrow as the spectrum of the incident pulse
may be. Figure 4 shows the results obtained for θ = π/2.
There is no problem for H⊥(�) with H⊥(0) = e−π/2, τg⊥ = 0,
and if its spectrum is narrow enough, the incident pulse will

043801-3
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FIG. 4. Top: envelopes y‖(t) and y⊥(t) of the transmitted pulses
for x(t) = exp[−t2/(2σ 2)]. The solid (dashed) lines are the exact
envelopes obtained by fast Fourier transforms [the approximate
analytical envelopes y‖(t) given by Eq. (16) and y⊥(t) = e−π/2x(t)
]. Parameters: � = γ , θ = π/2 (α� = 2π ), and σ = 2.0/γ . Bottom:
corresponding amplitude transmission and phase as a function of �.

propagate without significant distortion at the velocity c. On
the other hand, H‖(0) = 0. The phase �‖(�) has the predicted
discontinuity, and the area of y‖(t) is actually null. Again, if
the spectrum of x(t) is narrow enough, y‖(t) can be calculated
by using the power-series expansion of H‖(�) at the first order
in �, which reads H‖(�) ≈ θe−θ (i�/γ ). Passing in the time
domain (i� → d/dt), we get

y‖(t) = πe−π/2

2γ

dx

dt
= −πe−π/2

2γ σ

(
t

σ

)
exp

(
− t2

2σ 2

)
. (16)

For the value σ = 2/γ used in Fig. 4, y⊥(t) = e−π/2x(t) and
y‖(t) given by Eq. (16) appear to be good approximations of
the exact envelope of the transmitted pulses.

When θ is close to the pathologic values considered in
the previous paragraph, the phase discontinuity is replaced
by a rapid variation around � = 0, and in agreement with
the relations γ τg‖ = −θ tan θ and γ τg⊥ = θ/ tan θ , one of the
group delays takes very large values. However, the fractional
delays (delays in units of σ ) with moderate distortion that can
be obtained are not significantly larger than those evidenced
in the reference case θ = π/4 (Fig. 2). Indeed, the spectral
domain where d�(�)/d� and |H (�)| do not vary too
considerably is very narrow, and large pulse durations σ are
necessary to avoid significant distortion of the transmitted
pulse. In addition, the corresponding transmission is very low.
When, e.g., θ = (π/2) − (π/20), we have γ τg‖ = −19, but a
numerical simulation shows that σ as large as 47/γ is required
to obtain a distortion comparable to that of the reference case.
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FIG. 5. Numerically determined intensity profiles of the trans-
mitted pulses when the incident pulse is step modulated with
x(t) = uH (t). Parameters: θ = π/2 and � = πγ (α� = 1 + π2). The
optical precursor and the main field are, respectively, detected in the
parallel and perpendicular polarizations. The inset shows the intensity
profile obtained in the absence of the polarization beam splitter.

The fractional time-advancement of the transmitted pulse is
then about 40% instead of 30% in the reference case, but this
is at the expense of a reduction of the pulse intensity by a factor
exceeding 300!

The observation of slow light and, particularly, of fast
light requires the use of incident pulses with ideally smooth
envelope. We now consider briefly the opposite case where the
incident field is switched on with a rise time infinitely short
with respect to all the characteristic times of the system but
long compared to 1/ω0, so that the slowly varying envelope
approximation remains valid [1]. If the envelope x(t) of the
incident pulse is a Heaviside unit step function uH (t), as
currently considered in the study of optical precursors [6],
that of the transmitted pulse reads

y(t) =
∫ t

−∞
h(t ′)dt ′, (17)

where h(t) is the impulse response of the system, the inverse
Fourier transform of its transfer function H (�). Using standard
results of Laplace transforms [31], we get

h‖(t) = δ(t) − γα�
J1(

√
2γα�t)√

2γα�t
cos(�t)e−γ tuH (t), (18)

h⊥(t) = γα�
J1(

√
2γα�t)√

2γα�t
sin(�t)e−γ tuH (t), (19)

where δ(z) and J1(z) respectively designate the Dirac delta
function and the Bessel function of the first kind and index 1.
Interesting features are obtained when θ = π/2 whatever � is.
Figure 5 shows the result obtained in this case for � = πγ , a
value chosen so that the precursor and steady state or main field
have comparable intensities and are not clearly distinguishable
in the absence of the PBS (see the inset of Fig. 5). A similar
situation occurs in experiments involving a single absorption
line. See Ref. [32] and the related discussion in [33]. When
the PBS is operating, our system separates the transmitted field
into two parts. The part detected in the parallel polarization
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can be attributed to the precursor. Indeed, insofar as the field
polarization does not rotate instantaneously, its initial intensity
equals 1 but tends to zero as soon as the polarization rotates
by π/2. On the contrary, the part detected in the perpendicular
polarization starts from zero before asymptotically increasing
to a steady value and is nothing but the so-called main field in
the precursor theory.

To summarize, we have proposed a hybrid system asso-
ciating the effects of medium dispersion with the effects of
polarization selection. At least conceptually, this system is
relatively simple. It enables one to obtain simultaneous fast
and slow light. Due to the nonminimum phase shift of its

transfer function, it presents a great variety of behaviors, only
a few of which have been explored. Additionally, it can also
be used to separate the optical precursor and main field when
the incident wave is step modulated.
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