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Generalized theory of diffusion based on kinetic theory
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We propose to use spin hydrodynamics, a two-fluid model of spin propagation, as a generalization of the
diffusion equation. We show that in the dense limit spin hydrodynamics reduces to Fick’s law and the diffusion
equation. In the opposite limit spin hydrodynamics is equivalent to a collisionless Boltzmann treatment of spin
propagation. Spin hydrodynamics avoids unphysical effects that arise when the diffusion equation is used to
describe to a strongly interacting gas with a dilute corona. We apply spin hydrodynamics to the problem of spin
diffusion in a trapped atomic gas. We find that the observed spin relaxation rate in the high-temperature limit
[Sommer et al., Nature (London) 472, 201 (2011)] is consistent with the diffusion constant predicted by kinetic
theory.
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I. INTRODUCTION

Diffusion plays an important role in many areas of physics,
and the problem of finding numerical and analytical solutions
to the diffusion equation is well understood [1]. However,
many interesting applications of the diffusion equation involve
problems in which the mean-free path varies significantly, so
that the diffusion approximation breaks down in the dilute,
weakly collisional regime. In this case a naive treatment of
the diffusion equation will lead to unphysical results. In a
dilute gas the diffusion coefficient scales inversely with the
density, and the diffusion current can become unphysically
large. This problem can be dealt with in a phenomenological
way by using flux limiters or boundary conditions. However,
given that the dilute regime is physically well understood, it
should be possible to derive quantitatively accurate schemes
that interpolate between diffusion and ballistic motion.

In this work we propose a generalization of the diffusion
equations that correctly extrapolates to the ballistic limit. The
method is based on moments of the Boltzmann equation, and
bears some resemblance to moment methods employed for
radiation hydrodynamics in astrophysics [2,3]. The method
was inspired by recent work on anisotropic fluid dynamics,
which has been used to implement the correct ballistic limit of
the Navier-Stokes equation in relativistic and nonrelativistic
fluid dynamics [4–7] (see Ref. [8] for a different approach to
this problem, based on the lattice Boltzmann method).

The work was motivated by attempts to extract the spin
diffusion constant of ultracold atomic gases from experiments
with optically trapped atoms [9–11], see also Refs. [12–15].
A particularly interesting system is the two-component unitary
Fermi gas. In this case the two-body scattering length is
infinite, and the diffusion constant is expected to enter
the quantum regime D ∼ �/m, where m is the mass of
the particles [16]. The determination of the spin diffusion
constant from experiment is in principle straightforward. The
experiment involves preparing a 50-50 mixture of spin-up and
spin-down particles. The two spin components are spatially
separated and then released. The early time dynamics is
typically complicated, but at late times exponential relaxation
to a locally balanced mixture is observed. The diffusion
constant depends on the local density n and temperature T , but
this dependence can be unfolded by performing experiments at

different temperatures, and for different numbers of particles.
In the unitary Fermi gas the situation is further simplified
by scale invariance, which implies that D = �

m
f (mT n−2/3)

where f (x) is a function of a single variable.
The tool for extracting the diffusion constant is the diffusion

equation. We have to construct solutions of the diffusion equa-
tion in a given trap geometry and adjust the diffusion constant
in order to achieve agreement with the observed spin relaxation
times. The difficulty, as pointed out in the present context by
Bruun and Pethick [17], is that the diffusion approximation
breaks down in the dilute part of the cloud. If this issue
is ignored, observed spin relaxation times disagree with
theoretical expectations by more than an order of magnitude.
Bruun and Pethick proposed to address this issue by imposing
a transverse cutoff on the diffusion equation in an elongated
trap. The cutoff radius is determined by a simple mean-free
path estimate, or fitted to experiment. A similar procedure for
estimating shear viscosity was used in Ref. [18].

In the present work we propose to improve on this procedure
by deriving a generalization of the diffusion equation, which
we call spin hydrodynamics. Spin hydrodynamics describes
the transition from diffusive to ballistic behavior dynamically,
based on a relaxation time equation. The paper is structured
as follows. In Sec. II we review the derivation of Fick’s
law from kinetic theory, and in Sec. III we discuss the
behavior of variational and numeric solutions of the diffusion
equation in a harmonically trapped gas. The equations of spin
fluid dynamics are derived in Sec. IV, and the diffusive and
ballistic limits are studied in Sec. V. A numerical method
for implementing spin hydrodynamics is described in Sec. VI.
Numerical tests are presented in Sec. VII, and numerical results
in a trap geometry are given in Sec. VIII. We provide an outlook
in Sec. IX.

II. KINETIC THEORY AND DIFFUSION EQUATION

In this section we review the derivation of the spin diffusion
equation from kinetic theory in a two-component Fermi gas.
Consider the Boltzmann equation

(∂0 + �v · �∇x + �F · �∇p)fpσ (x,t) = C[fpσ ], (1)
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where fpσ (x,t) is the phase space density of particles with
spin σ =↑↓ ,�v is the velocity of the particles, �F is a force, and
C[fpσ ] is the collision term. For quasiparticles with energy
Ep we have

�v = �∇pEp, �F = −�∇xEp. (2)

We will focus on the case Ep = εp + V (x), where εp is
solely a function of momentum, and V (x) is an external
spin-independent potential. We are interested in the spin
current �jM = �j↑ − �j↓ generated in response to a magnetization
gradient �∇M , where M = n↑ − n↓. Here, the spin densities
and currents are given by

nσ (x,t) =
∫

d� fpσ (x,t), �jσ (x,t) =
∫

d� �v fpσ (x,t),

(3)

where d� = d3p/(2π )3. If the collision term conserves spin
then the Boltzmann equation implies

∂0M + �∇ · �jM = 0. (4)

We will focus on near-equilibrium distributions of the form

fpσ (x,t) = f 0
pσ (x,t)

(
1 + χpσ (x,t)

T

)
, (5)

f 0
pσ (x,t) = exp

(
− 1

T (x,t)
[εp + V (x) − μσ (x,t)]

)
. (6)

For simplicity we make the relaxation time [Bhatnagar-Gross-
Krook (BGK)] approximation to the collision term

C[fpσ ] = −f 0
pσ χpσ

T τ
, (7)

where τ is a collision time. It is straightforward to solve the
Boltzmann equation at leading order in τ and in gradients of
the thermodynamic variables. We find

χσp = −τ �v · �∇μσ (8)

and

�jM = −Dμ
�∇δμ, Dμ = τ

3T

∫
d� v2f 0

p , (9)

where δμ = μ↑ − μ↓. For εp = p2/(2m) we get Dμ =
(τn)/(2m). Finally, we obtain the standard form of Fick’s law
by changing variables from δμ to M ,

�jM = −D[ �∇M − kn
�∇n], D = χ−1

M Dμ, (10)

where χM = (∂M)/(∂δμ) and kn = χn/χM with χn =
(∂n)/(∂δμ). For a noninteracting gas χM = n/(2T ),kn =
M/n, and D = (τT )/m. Note that D has units �/m, and the
quantum limit corresponds to τ = �/T . In the following we
will set � = kB = 1. For a given collision term we can express
the collision time τ in terms of the scattering parameters. In
the dilute Fermi gas at unitarity we have σ = 4π/k2 where k

is the relative momentum of the spin up and down particles.
Solving the Boltzmann equation at leading order in gradients
gives [9,16]

D = 9π3/2

32
√

2m

(
T

TF

)3/2

, (11)

where TF = k2
F /(2m) is the Fermi temperature, and kF =

(3π2n)1/3 is the Fermi momentum. The result in Eq. (11) was
obtained at leading order in an expansion of χσp in Laguerre
polynomials. The next order correction has not been computed,
but the corresponding approximation is known to be accurate
to better than 2% for other transport coefficients, such as
the shear viscosity. The most important feature of Eq. (11)
is that D ∼ 1/n, which is a general result that follows from
kinetic theory in the dilute limit. More detailed studies of spin
diffusion were performed by Enss and collaborators [19–22].

III. DIFFUSION IN THE HIGH- AND
LOW-TEMPERATURE LIMITS

Solutions to the diffusion equation is a trapped atomic
system were studied by Bruun and Pethick [17]. Here we
will briefly review their study, and generalize the result to
low-temperature gases. We consider the diffusion equation,
Eqs. (4) and (10). We will assume kn = M/n, so that the
diffusion equation takes a simple form when written in terms
of the polarization P = M/n. We find

∂0P − 1

n
�∇[nD �∇P ] = 0. (12)

We are interested in solutions of the form P (x,t) = e−�i tPi(x).
In the asymptotic limit the solution is dominated by the lowest
mode � ≡ �0. This equation further simplifies in the high-
temperature limit where nD = const. In that case the diffusion
equation is

∂0P − n(0)D(0)

n
∇2P = 0, (13)

where n(0) and D(0) are the density and diffusion constant at
the trap center. Bruun and Pethick observed that this equation
can be solved using variational methods, in analogy to the
Schrödinger equation. The variational bound on � is

� � n(0)D(0)

∫
d3x [ �∇Pv(x)]2∫
d3x n(x)Pv(x)2

, (14)

where Pv(x) is a variational function. Consider a dilute
Fermi gas in a harmonic trapping potential V (x) = 1

2mω2
i x

2
i .

In that case n(x) = n(0) exp[−V (x)/T ]. We will focus on
axially symmetric potentials ωx = ωy ≡ ω⊥ and ωz = λω⊥.
On dimensional grounds we have

� = D(0)

l2
z

�red(λ), (15)

where l2
z = 2T/(mω2

z ) is the square of the oscillator length in
the z direction, and �red is a dimensionless damping constant.
A variational ansatz with the correct symmetry and asymptotic
behavior is

Pv(x) = z

1 + R̃3
, R̃ =

(
x2 + y2

d2
ρ

+ z2

d2
z

)1/2

, (16)

where dρ and dz are variational parameters. Using this
ansatz we find �red(λ=0) = 12.1,�red(λ=0.4) = 29.2 and
�red(λ → 0) = λ−2/ ln(0.13λ−2). The limit λ → 0 can be
derived rigorously using a WKB approximation.
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FIG. 1. Solutions of the spin diffusion equation for a gas confined in a harmonic potential with deformation λ = 0.4. The contours show
the polarization P as a function of the dimensionless variables ρ̄ and z̄, and the vector field shows the spin current �j . The contour plots have
15 equally spaced contour lines between the maximum and minimum polarization at the center of the trap. The left panel shows a solution in
the high-temperature limit D = D(0)n(0)/n, and the right panel corresponds to the low-temperature limit D = D(0).

The experimental work reports the spin drag coefficient
�sd = ω2

z/� in units of the Fermi Energy EF (0). Note that
EF (0) refers to the local Fermi energy at the trap center. The
result is based on the observed decay rate of the spin dipole
moment. In the high-temperature limit Sommer et al. find
�sd = 0.16 EF (0)(TF /T )1/2 [9]. The experimental paper does
not provide the value of λ, but states that in the regime that
was investigated the spin drag �sd/EF (0) is independent of λ.
Using Eqs. (11) and (15) we obtain the theoretical prediction

�sd = 1.81 EF (0)

�red(λ)

(
TF

T

)1/2

. (17)

For a strongly deformed cloud �red � �red(0.1) � 200, which
differs from the experimental result �red � 11.3 by more than
an order of magnitude. Bruun and Pethick argued that the
discrepancy is related to the treatment of the dilute part of
the cloud, and suggested imposing a transverse cutoff r0 in
Eq. (14). The result is very sensitive to the precise value of r0,
but the experimental result can be understood for a reasonable
value r0 = 2.1l⊥, where l⊥ is the transverse oscillator length.

For comparison we have studied diffusion in a low-
temperature gas. Here, we assume that the low-temperature
limit corresponds to D = D(0), which means that the diffusion
constant is only a function of temperature and not of density.
This is a slight idealization, because in a degenerate Fermi gas
the diffusion constant is expected to exhibit the Landau Fermi
liquid behavior mD ∼ (TF /T )2 [16]. Combined with Eq. (11)
this result implies that mD has a minimum as a function of
T/TF , and that near the minimum there is a regime in which
the diffusion constant is approximately density independent.

In this limit the diffusion equation is

∂0P − D(0)

n
�∇[n �∇P ] = 0. (18)

The variational principle gives

� � D(0)

∫
d3x n(x)[ �∇Pv(x)]2∫

d3x n(x)Pv(x)2
. (19)

This equation is minimized by �red = 2 and Pv(x) ∼ z,
independent of λ. The result that �red is approximately λ

independent is consistent with experiment, but the value of
�red is not. Whereas the value �red in the dilute limit is too
large, the value in the dense limit is too small. This suggest that
the correct spin current profile must be intermediate between
the structure in the high- and low-temperature limits.

In order to verify the variational estimates we have
numerically solved the diffusion equation in the high- and low-
temperature limits. In the high-temperature limit we assume
that D = D(0)n(0)/n. The diffusion equation in cylindrical
coordinates is

∂t̄P − e−V̄

[
1

ρ̄
∂ρ̄(ρ̄∂ρ̄P ) + ∂2

z̄ P

]
= 0, (20)

where ρ̄ = (x2 + y2)1/2/lz and z̄ = z/lz are dimensionless
variables and V̄ = λ−2ρ̄2 + z̄2. The dimensionless time vari-
able is t̄ = mω2

zD(0)t/(2T ), so that � is automatically given
in units of D(0)/l2

z . A solution of the diffusion equation for
λ = 0.4 is shown in Fig. 1. The decay constant of the spin
current is �red � 29, which agrees with the variational estimate
�red = 29.2. It is important to note that the spin current is not
quasi-one-dimensional, even in a deformed trap.
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Using cylindrical coordinates the diffusion equation in the
dense limit is given by

∂t̄P −
[
∂2
ρ̄ + 1

ρ̄
∂ρ̄ + ∂2

z̄ − 2

(
z̄∂z̄ + ρ̄

λ2
∂ρ̄

)]
P = 0. (21)

A solution of the diffusion equation is shown in the right
panel of Fig. 1. We observe that the distribution of spin
current is very different from the dilute limit. In particular,
we find that diffusion is approximately one dimensional. The
decay constant is �red � 2, in very good agreement with the
variational estimate. This result implies that the decay of
the magnetization is much slower (by almost a factor 15) as
compared to the dilute limit. This result is easy to understand:
In the dilute regime spin polarization decays by generating a
large spin current in the dilute corona. In the dense limit the
polarization has to decay by producing much smaller currents
in the dense part of the cloud.

IV. SPIN HYDRODYNAMICS AND KINETIC THEORY

In order to improve the accuracy of the diffusion equation
in the dilute limit we revisit the derivation of the diffusion
equation in kinetic theory. Consider the Boltzmann transport
equation, Eq. (1), with a two-body collision term

C[fp1σ1 ] =
∑

σ2σ3σ4

∫
d�234

(
fp1σ1fp2σ2 − fp3σ3fp4σ4

)
×w(p1σ1,p2σ2; p3σ3,p4σ4), (22)

where w is the transition amplitude. We assume that w is of
the form

w(p1σ1,p2σ2; p3σ3,p4σ4)

= (2π )4δ

(∑
i

Ei

)
δ

(∑
i

pi

)
δσ1+σ2,σ3+σ4 |

×Aσ1σ2 (P,q)|2, (23)

where 2P = p1 + p2 and 2q = p1 − p2. In this case moments
of the collision operator with respect to particle number,
momentum, and energy vanish

∑
σ

∫
d� Ri(p)C[fpσ ] = 0, (24)

where Ri = {1, �p,εp}. Similarly, conservation of spin implies

∑
σ

∫
d� σ̄C[fpσ ] = 0, (25)

where σ̄ = ± for σ = ↑,↓. This relation does not generalize to
other moments such as σ̄ �p and σ̄ εp. The Boltzmann equation
and Eq. (24) imply conservation laws for particle number,
momentum, and energy

∂0n + �∇ · �jn = 0, (26)

∂0π
i + �∇j�

ij = 0, (27)

∂0E + �∇ · �jε = 0. (28)

Here, n = n↑ + n↓, �jn = �j↑ + �j↓ and �π = m �jn. We also have

�ij =
∑

σ

∫
d� fσp pivj , (29)

E =
∑

σ

∫
d� fσp εp, (30)

�jε =
∑

σ

∫
d� fσp �v εp. (31)

Equation (25) implies the spin conservation equation (4). In
order to derive the diffusion equation we need a constitutive
equation for the spin current �jM . As shown in Sec. II Fick’s law
�jM = −D �∇M can be derived by assuming that fpσ is close to
the equilibrium distribution, see Eq. (5). In this section we will
follow a different strategy. We derive an equation of motion
for �jσ from the �p moment of the Boltzmann equation for each
σ . We find

∂0
(
mji

σ

) + �∇j�
ij
σ − F inσ =

∫
d� pi C[fpσ ]. (32)

In order for the equations of motion to close we need a
constitutive equation for the spin stress �

ij
σ , and an explicit

expression for the collision term. We will make a generalized
ansatz for the distribution function

fpσ (x,t)

= exp

(
1

T (x,t)

{
μσ (x,t)− 1

2m

[
pi −mui

σ (x,t)
]2

})
, (33)

where �uσ is a spin velocity. Note that this distribution functions
includes the Chapman-Enskog ansatz in Eqs. (5) and (8) as
a special case. If �w = 1

2 (�u↑ − �u↓) is small we can expand
Eq. (33) and obtain

fpσ (x,t) � f 0
pσ (x,t)

(
1 ± m

T
�v · �w

)
, (34)

where the ± sign corresponds to σ =↑↓. We observe that
Eq. (8) is recovered for m �w = − τ

2
�∇δμ. However, if �w is large

then fpσ is not close to equilibrium. We will show below that
Eq. (33) solves the Boltzmann equation in the ballistic limit,
and in this way provides a smooth connection between the
diffusive and ballistic limits.

We can now derive equations of motion by taking moments
of the Boltzmann equation with respect to particle number and
momentum for fixed spin. Moments with respect to particle
number give the continuity equations

∂0nσ + �∇ · (nσ �uσ ) = 0. (35)

Moments with �p give equations of motion for nσ �uσ . We get

∂0
(
mnσui

σ

) + �∇j�
ij
σ + nσF i = Sσ , (36)

where F i is an external force and we have defined the spin
stresses

�ij
σ = mnσui

σ uj
σ + nσT δij . (37)

The source term Sσ depends on the collision term. In the BGK
approximation

C[fpσ ] = −fpσ − f 0
pσ

τ
, (38)
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where f 0
pσ is given in Eq. (6) we obtain Sσ = ∓(mnσwi)/τ .

This result exhibits some unphysical features, related to
shortcomings of the BGK approximation. In particular, Sσ

does not conserve the total momentum of spin-up and spin-
down particles, even though the microscopic collision term
in Eq. (22) conserves momentum. We address this problem
by replacing nσ → ng , where ng = n↑n↓/(n↑ + n↓) is the
geometric mean of the up and down densities. This gives

Sσ = ∓mngw
i

τ
. (39)

Like the BGK collision term, this is a model for collisional
relaxation in a two-component gas. It does, however, have two
advantages compared to the BGK model: (i) It conserves total
momentum; (ii) The collision rate goes to zero if either one of
the two densities goes to zero, as predicted by the full collision
term. We note that the collision term is characterized by a single
parameter τ , which may depend on n and T . In the following
section we will show that in order to reproduce the diffusion
equation with diffusion constant D(n,T ) the relaxation time
should be chosen as

τ (T ,n) = mD(n,T )

T
. (40)

In a weakly polarized gas (n↑ � n↓) this is the same relation
we obtained from the BGK model in Sec. II.

Equations (35)–(37) are the defining equations of spin
hydrodynamics. We note that the equations indeed close. There
are eight variables n↑,n↓,�u↑, and �u↓ and eight equations of
motion. This is the case as long as we consider the temperature
of the cloud to be fixed. If the evolution of T is needed then we
can add an equation for the total energy density E , see Eq. (28).
We also note that if �u ≡ �u↑ = �u↓ summing Eqs. (35)–(37)
gives the usual Euler equation. If viscous effects are important,
then we can either extend Eq. (33) to include an anisotropic
temperature as in Ref. [6], or include a spin-independent term
in �

ij
σ , which is proportional to the viscous stresses.

V. DIFFUSIVE AND BALLISTIC LIMITS

In this section we will check that spin hydrodynamics
does indeed correctly reproduce the diffusive and ballistic
limits. First consider the diffusive case. The difference of the
continuity equations gives

∂0M + �∇ · (M �u + n �w) = 0. (41)

The first term in the spin current is the advection term �jM ∼
M �u. The second term, �jM ∼ n �w can be computed using the
difference of the spin stress equations. In the diffusive limit
these equations can be solved order by order in the small
parameter τT . At leading order, and ignoring external forces,
we find �w = − τT

mn
�∇M + �wa . Here, �wa is an O(τ ) correction

to the advection term M �u. Neglecting this term, we get

∂0M − �∇ · (D �∇M − �uM) = 0, (42)

with D = τT /m, in agreement with the result in Sec. II. We
can also study the effect of an external force. In hydrostatic
equilibrium we neglect the time derivatives and velocity terms.

We get

T �∇nσ

nσ

= −�∇Vext, (43)

which implies nσ (x) ∼ exp[−Vext(x)/T ]. We can use this
relation to express Vext in terms of the density when solving
for the spin current �w. We get

n �w = −τT

m

(
�∇M − M

n
�∇n

)
, (44)

in agreement with Eq. (10).
In the opposite limit, that of infinite collision time, we ex-

pect the spin hydrodynamic equations to agree with solutions
of the ballistic Boltzmann equation. In a trap these solutions
correspond to simple spin-sloshing modes. Consider

fpσ (x,t) = n0(x⊥,p⊥) exp

(
−mω2

z

2T
[z − σ̄ z0 cos(ωt)]2

)

× exp

(
− 1

2mT
[pz − σ̄p0 sin(ωt)]2

)
(45)

with σ̄ = ± for σ =↑↓ and

n0(x⊥,p⊥) = exp

(
−mω2

⊥x2
⊥

2T
− p2

⊥
2mT

)
. (46)

This distribution solves the ballistic Boltzmann equation in
a trap if ω = ωz and p0 = z0mωz. We can compute the spin
densities

nσ = n0 exp

(
−mω2

z

2T
[z − σz0 cos(ωt)]2

)
(47)

and the spin velocity �uσ = ± �w with wz = p0/m = ωzz0. The
spin stresses are given by

�ij
σ = mnσwiwj + nσT δij . (48)

It is now straightforward to check that Eqs. (47)–(48) satisfy
the spin continuity equations (35) and the spin Euler equation

∂0
(
mnσui

σ

) + �∇j�
ij
σ = −mnσF i. (49)

It is then reasonable to assume that spin hydrodynamics can
describe the transition between diffusion and spin oscillations
in a trap.

VI. SIMULATING SPIN HYDRODYNAMICS

We have implemented spin hydrodynamics in close analogy
with our implementation of viscous fluid dynamics [23] and
anisotropic fluid dynamics [6] for cold atomic Fermi gases. The
numerical code is based on the piecewise parabolic method
(PPM) Strike (Lagrangian remap) method of Colella and
Woodward [24], as implemented in the VH1 code developed
by Blondin and Lufkin [25]. We solve the conservation laws
using Lagrangian coordinates. The momentum equations can
be written as

Dσui
σ = − 1

ρσ

�∇ iPσ ∓ ρg

ρσ τ
wi, (50)

where Dσ = ∂0 + �uσ · �∇ is the comoving derivative, ρσ =
mnσ is the mass density, and Pσ = nσT is the partial
pressure of the spin state σ . After a Lagrangian time step
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the hydrodynamic quantities are remapped onto a Eulerian
grid. The spin current �jM = M �u + n �w can be compared to
the expectation from Fick’s law, �jM = M �u − D �∇M , where
D = τT /m.

We consider diffusion in an axially symmetric trapping
potential V (x) = 1

2mω2
i x

2
i with ωx = ωy = ω⊥ and ωz =

λω⊥. We introduce dimensionless variables for distance, time,
and velocity based on the following system of units [23]

x0 = (3Nλ)1/6

(
2

3mω⊥

)1/2

, t0 = ω−1
⊥ , u0 = x0ω⊥,

(51)

where N = N↑ + N↓ is the total number of particles. The
unit of density is n0 = x−3

0 , and the unit of temperature is
T0 = mω2

⊥x2
0 . Finally, the unit of the diffusion constant in

D0 = ω⊥x2
0 . (52)

We will use an overbar to denote dimensionless quantities, for
example x̄ = x/x0,T̄ = T/T0, and D̄ = D/D0.

In the high-temperature limit the initial density is a
Gaussian. The density is

n(x) = n(0) exp

(
−EF

E0
[x̄2 + ȳ2 + λ2z̄2]

)
, (53)

where x̄ = x/x0 is the dimensionless position, EF =
(3Nλ)1/3ω⊥ is the Fermi energy in the trap, and E0 is the total
energy per particle of the trapped gas. For an ideal gas E0 =
3NT , and the dimensionless temperature is T̄ = 1

2 (E0/EF ).
The central density is given by

n(0) = n0
Nλ

π3/2

(
EF

E0

)3/2

. (54)

It is convenient to normalize the central density to one,1 so
that n̄ = n/n(0) and M̄ = M/n(0).

A simple parametrization of the diffusion constant can be
given in terms of a density-independent part, reflecting the
low-temperature (quantum) behavior, and a part that scales
inversely with density, corresponding to the high-temperature
(kinetic) limit. We write

D = β

m
+ βT

m

(mT )3/2

n
, (55)

where β and βT are constants. The kinetic theory result given
in Eq. (11) corresponds to βT = 3/(16

√
π ). In dimensionless

units this formula becomes

D̄ = β̄ + β̄T

T̄ 3/2

n̄
, (56)

where D̄ = D/D0 and

β̄ = 3

2

β

(3λN )1/3
, β̄T = 4π3/2

3

βT

(3λN)1/3

(
E0

EF

)3/2

. (57)

1In this work we will focus on the high-temperature limit, so that the
equilibrium density is a Gaussian. We note, however, that the choice
of units n̄ = n/nid(0), where nid(0) is the central density of the ideal
gas at the same temperature is convenient also for a general equation
of state.

Using these parameters we can provide some simple estimates
for the time scales involved in simulations of diffusion in a
trapped atomic gas. We saw that empirically the spin decay
rate scales as � = ω2

z/(γEF )(T/TF )1/2, see the discussion
preceding Eq. (17). The experiment of Sommer et al. gives γ �
0.16. Based on the units described above the dimensionless
decay time is

�̄−1 = 2.87γ
(λN)1/3

λ

(
EF

E0

)2

, (58)

where �̄ = �/ω⊥. Sommer et al. do not provide the precise
values of λ and N in their experiment, but typical values used
in the viscosity measurements reported in Refs. [26,27] are
N = 2 × 105 and λ = 0.045. These parameters lead to long
decay times �̄−1 � 212(EF /E0)2.

This estimate should be compared to the typical time step in
a spin hydrodynamic simulation. In ordinary fluid dynamics
the time step is controlled by the speed of sound and the
resolution, �t = C�x/cs , where the Courant number C is
typically chosen to be 1/2. Using dimensionless units and the
speed of sound of an ideal gas we find

�t̄ = C

√
6

5

(
EF

E0

)1/2

�x̄. (59)

The units are chosen such that the cloud size is of order 1. Then
�t̄ � �x � 0.1 is a typical time step for the hydrodynamic
evolution. In spin fluid dynamics we also have to ensure that
the time step is small compared to the relaxation time. The
dimensionless relaxation time is

τ̄ = β̄

T̄
+ β̄T T̄ 1/2

n̄
. (60)

Using the estimate βT = 3/(16
√

π ) together with Eq. (57),
as well as the values of N and λ given above, we get
τ̄ (0) = 0.02(E0/EF )2. This suggests that for small λ and
typical values of E0/EF there is a significant disparity of scales
between the diffusive scale Eq. (58) and the relaxation scale
Eq. (60). As a result, in the limit that the cloud is very deformed
(λ → 0) and the diffusion constant is very small (β̄ → 0), spin
hydrodynamics is potentially an inefficient method for simu-
lating the diffusion equation. This is not necessarily a problem.
First, if the diffusion constant is small diffusive behavior sets
in quickly and the decay constant can be accurately determined
even if the simulation time is less that �−1. Second, a similar
disparity of scales appears in the anisotropic hydrodynamics
method as the shear viscosity becomes small. Anisotropic
hydrodynamics is indeed an inefficient method for solving
the Euler equation, but a powerful tool to extract the shear
viscosity for realistic geometries [7].

VII. NUMERICAL RESULTS: BOX

In order to test spin hydrodynamics we have solved
the equations of motion in a three-dimensional box. The
simulation is carried out on a three-dimensional Cartesian grid
with 503 points and a grid spacing �x̄ = 0.2. We consider a
constant background density n̄↑ = n̄↓ = 1/2 with a Gaussian
perturbation δn̄↑↓ = ±0.05 exp(−x̄2

i ). The left panel in Fig. 2
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FIG. 2. The left panel shows the mean-square size 〈r2〉 of the magnetization M = n↑ − n↓ as a function of time for the evolution of a Gaussian
initial state. The different curves correspond to different values of the diffusion parameter, from top to bottom β̄ = (1000,1,0.5,0.2,0.1). We
observe the transition from free expansion, 〈r2〉 ∼ t̄2, to diffusion, 〈r2〉 ∼ t̄ . The right panel shows the diffusion constant extracted from the
growth of 〈r2〉. The dashed curve shows the theoretical expectation in the small β̄ limit.

shows the evolution of the mean-square magnetization radius

〈r2〉 = 1

Mtot

∫
d3x̄ x̄2

i M(x̄,t̄) (61)

as a function of time. Here, Mtot is the integrated magneti-
zation. The plot shows the result for a range of values of β̄,
corresponding to a range of relaxation times. We note that
in a box, in which the background density is constant, there
is no difference between the scaling with β̄ and β̄T . In the
limit of large β̄ the squared radius grows quadratically with
time, corresponding to a constant spin velocity �w and ballistic
expansion. For small values of β̄ the squared radius grows
linear with time, as expected from the solution of the diffusion
equation. The diffusion equation predicts

M(x̄,t̄) = M0

(1 + 4D̄t̄)3/2
exp

(
− x̄2

1 + 4D̄t̄

)
. (62)

In the right panel of Fig. 2 we show the diffusion constant
extracted from the slope of 〈r2〉 together with the theoretical

expectation D̄ = β̄. The agreement for small β̄ is quite good.
In this regime there is a systematic shift between β̄ and
the extracted value of D, which indicates some amount of
numerical diffusion.

In Fig. 3 we show the evolution of the magnetization in more
detail. The left panel of Fig. 3 demonstrates that for large β̄

(large relaxation time) the evolution is not diffusive. There
is a magnetization front, which propagates at approximately
constant speed. For small β̄ (small relaxation time), on the
other hand, the evolution is consistent with diffusion. This is
seen more clearly in the right panel of Fig. 3, in which we
compare the time and spatial dependence of the magnetization
in spin hydrodynamics with the prediction from the diffusion
law in Eq. (62).

In Fig. 4 we compare the spin current jM in spin
hydrodynamics with the expectation from Fick’s law, �jM =
−D �∇M . Note that in the present case there is no convective
contribution M �u. Fick’s law predicts that the spin current
turns on instantaneously, and then decays slowly as the cloud

FIG. 3. The left panel shows the time evolution of the dimensionless magnetization M̄(x̄,t̄) for two different values of β̄ = 1000 (green
diamonds) and β̄ = 0.1 (blue circles). The curves at t̄ = 0 (top) are identical, and only the β̄ = 0.1 graph is visible. The time step between
successive curves is �t̄ = 1.25. The right panel shows the time evolution of M(x̄,t̄) for a small value of β̄ = 0.05. The dots show the result of
spin hydrodynamics at different time steps separated by �t̄ = 0.5 (time increasing from top to bottom), and the lines are the expectations from
the diffusion equation (62).
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FIG. 4. Spin current �jM = n �w + M �u in spin hydrodynamics
(dots) compared to the expectation from Fick’s law, �jM = −D �∇M

(lines). We show the z component of the dimensionless current as a
function of z̄ (with x̄ = ȳ = 0) for β̄ = 0.05 and several values of
t̄ = (0,0.05,0.10,0.15,0.20). Note that the prediction from Fick’s law
starts maximal and then decays (very slowly, on the time scale shown
in this figure), whereas the current in spin hydrodynamics starts at
zero and the approaches Fick’s law.

expands. Spin hydrodynamics, on the other hand, predicts that
the spin current vanishes at t̄ = 0 and then approaches Fick’s
law on a time scale set by the relaxation time. At late time the
spin hydrodynamics current tracks Fick’s law.

VIII. NUMERICAL RESULTS: TRAPPED GAS

In this section we will consider a harmonically trapped gas.
We assume axial symmetry, and the simulations are carried out
in cylindrical coordinates on a grid with dimensions 502 and
grid spacing �z̄ = 0.2 and �ρ̄ = 0.2. The main observable is
the spin dipole moment

dz = 2

Ntot

∫
d3x̄ z̄ M(x̄,t̄), (63)

which is the same quantity that was studied in the experimental
work of Sommer et al. [9]. We first consider a density-
independent relaxation time, governed by the parameter β̄.
The initial spin density is given by two shifted Gaussians

n̄σ = 1

2
exp

(
−EF

E0
[λ2(z̄ ± z̄0)2 + ρ̄2]

)
. (64)

We use E0/EF = 1,λ = 0.4 and z̄0 = 2. For β̄ → ∞ we
expect the system to show undamped spin oscillations with
frequency ω̄ = λ, as described in Sec. V. This can be seen
in Fig. 5. For finite but large β̄ the gas exhibits damped
oscillations, and for small β the motion is overdamped.

More details are shown in Fig. 6. The left and right panels
show the evolution of the magnetization for β̄ = 1000 and
β̄ = 1, respectively. We observe that for β̄ = 1000 the mag-
netization oscillates, and for β̄ = 1 it is strictly decaying. The
decay is not precisely exponential, because the decay of the
magnetization is superimposed on an undamped quadrupole
oscillation of the total density. Physically, this mode is damped
by shear viscosity, but we have not included viscosity in our
study. Another possibility is to consider initial conditions that

FIG. 5. Evolution of the spin dipole moment in a trapped gas
a function of time. The initial condition is given by two shifted
Gaussians, see Eq. (64). The solid line shows an undamped spin
oscillation with frequency ω̄ = 0.4. The points show the results of
a spin hydrodynamics simulation with β̄ = (1000,5,2,1,0.5), going
from oscillatory to overdamped behavior.

correspond to the late time dynamics of the trapped gas, and
for which the total density is equilibrated. We choose

n̄σ = 1

2

(
1 ± A

z̄

1 + λ2z̄2 + ρ̄2

)
exp

(
−EF

E0
[λ2z̄2 + ρ̄2]

)
,

(65)

which is motivated by the variational results derived in Sec. III.
The evolution of the spin dipole moment is shown in

Fig. 7. The left panel demonstrates that the decay of the
dipole moment is indeed exponential. The right panel shows
the dependence of the decay constant on β̄. For small β̄ we
observe a linear relationship. This behavior can be compared
with the solution of the diffusion equation obtained in Sec. III.
We obtained � = D0

l2
z
�red with �red = 2. In dimensionless units

this can be written as

�̄ = 1

2T̄
β̄λ2 �red. (66)

This relation is shown as the dashed line in the right panel of
Fig. 7. We observe that �red = 2 indeed provides a very good
description of the data for β̄ � 0.5. We conclude that spin
hydrodynamics indeed converges to the expected solution of
the diffusion equation in a trapped geometry.

We are now in a position to study the problem that motivated
this study. Consider a diffusion constant that is inversely
proportional to density, governed by the parameter β̄T in
Eqs. (55) and (56). We study the evolution in a deformed
trap, beginning from the initial condition given in Eq. (65).
As explained in Sec. III the diffusion equation predicts that
for fixed diffusion constant D0 at the trap center the decay of
the spin polarization is much faster. This effect is caused by a
large spin current in the dilute regime. In spin hydrodynamics,
on the other hand, the relaxation time in the dilute regime is
large, and we do not expect a large spin current to develop.

The time evolution of the spin dipole moment for different
values of β̄T is shown in the left panel of Fig. 8. We observe that
for βT � 0.2 the decay of the spin polarization is exponential.
The extracted spin decay constant is shown in the right panel
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FIG. 6. Magnetization as a function of position for a trapped Fermi gas. The left panel shows the magnetization for different times in the
ballistic (spin oscillation) limit β̄ = 1000. The curves are separated by �t̄ = 1.25, starting with t̄ = 0 (blue circles). The right panel shows the
magnetization at different times for β̄ = 1, closer to the diffusive limit.

of Fig. 8. As before, we can compare the result to solutions of
the diffusion equation. In dimensionless units we get

�̄ = 1

2T̄
β̄λ2T̄ 3/2 �red. (67)

We found that the diffusion equation predicts �red(0.4) =
22.9, whereas the experiment of Sommer et al. [9] indi-
cates that �red = 11.3. Note that this result assumes the
validity of kinetic theory, in particular the relation D(0) =
0.106(mT )3/2/[mn(0)], see Eq. (11). In spin hydrodynamics
we can extract �red from the slope of the β̄T − �̄ relation.
The dashed line in the right panel of Fig. 8 corresponds to
�red = 11, and the error band indicates that the uncertainty in
this analysis is about 10%. We can therefore deduce that

D(0) = (0.1 ± 0.01)
(mT )3/2

mn(0)
. (68)

As a consistency check we have studied the dependence on
the trap deformation λ. We have repeated the analysis shown
in Fig. 8 for a smaller value λ = 0.25. We find smaller decay

constants �̄, and a slightly delayed onset of the linear behavior
in the �̄ − β̄T plot, but the reduced decay constant �red =
11 ± 1 is unchanged. This is consistent with the experimental
finding that the reduced decay constant does not depend on the
trap deformation.

We note that the linear scaling with β̄T implies that the
damping constant is proportional to T̄ 3/2E

3/2
0 ∼ T 3. The first

factor arises from the temperature dependence of the diffusion
constant, and the second factor is due to the relation TF (0) ∼
T −1 at fixed N and ω⊥,ωz. The overall scaling of the damping
constant contains an extra factor l−2

z ∼ T −1, so that � ∼ T 2.
This is indeed the behavior observed in Ref. [9].

IX. CONCLUSIONS AND OUTLOOK

In this work we have derived the equations of spin hydrody-
namics from an underlying kinetic theory. Spin hydrodynamics
reduces to the diffusion equation in the dense limit, and
to ballistic motion in the dilute limit. We have validated
a numerical implementation of spin hydrodynamics using a

FIG. 7. The left panel shows the time evolution of the spin dipole moment in a trapped gas with a density-independent diffusion constant.
The initial condition is given by Eq. (65). The points show the results of a spin hydrodynamics simulation with β̄ = (0.5,0.2,0.1,0.05), and
the dashed lines are exponential fits. The right panel shows the extracted spin decay constant �̄ as a function of β̄. The dashed line corresponds
to �red = 2 in Eq. (66).
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FIG. 8. The left panel shows the time evolution of the spin dipole moment in a trapped gas with D ∼ 1/n. The initial condition is given by
Eq. (65). The points show the results of a spin hydrodynamics simulation with β̄T = (0.2,0.1,0.05,0.02), and the dashed lines are exponential
fits. The right panel shows the extracted spin decay constant �̄ as a function of β̄. The dashed line corresponds to �red = 11 in Eq. (67). The
band shows a ±10% uncertainty in �red.

number of test cases. The diffusive limit was studied using the
expansion of a Gaussian magnetization in a gas at constant
density, and by following the decay of the spin dipole mode in
a harmonic trap with density-independent diffusion constant.
The ballistic limit was studied using the spin slosh mode in a
harmonic trap.

We applied spin hydrodynamics to the decay of the spin
dipole mode in a dilute Fermi gas at unitarity. In the high-
temperature limit kinetic theory predicts that D ∼ T 3/2/n. We
verified that the experiment of Sommer et al. [9] is consistent
with this prediction, and that the coefficient of proportionality
agrees with kinetic theory. This conclusion was previously
reached in the beautiful work of Bruun and Pethick [17], but
these authors were forced to introduce an unknown parameter,
the radial cutoff in the diffusion equation. Our method has
no free parameters other than the diffusion constant. Sommer
et al. concluded that agreement with kinetic theory can be
achieved if the diffusion constant is corrected for the finite
size of the trap.

A more detailed comparison to earlier work is shown in
Fig. 9. The figure displays the profile of the spin current
jM and the spin velocity w in the transverse plane. We
consider a diffusion constant of the form D ∼ T 3/2/n, and
we choose β̄T = 0.05. The left panel shows the spin current
(dots) compared to the expectation from Fick’s law (solid
line) and the variational estimate discussed in Sec. III. We
observe that the variational estimate is indeed close to Fick’s
law, but that the full spin current is significantly smaller
than the variational result for x̄ � 2. This is consistent with
the conclusion of Bruun and Pethick that in order to match
experimental data one has to impose a cutoff r0 � 2.1lx .
The right panel shows the spin velocity at different times
t̄ = 0.25,0.50,0.75. For comparison, we show the variational
ansatz for the drift velocity wz � w0

z (x/x0)2 proposed by
Sommer et al. [9], matched to fit the data. We observe that the
agreement is very good in the regime x � lx , and that the data
match the variational estimate out to larger distances as time
progresses.

FIG. 9. Longitudinal spin current jM (left) and spin velocity w (right) in the transverse plane. We show the z component of the current and
the velocity at z̄ = 0 as a function of the transverse position x̄ for β̄T = 0.05. The dots in the left panel show the spin current at t̄ = 0.25. The
solid line is the expectation from Fick’s law, and the dashed line is the variational estimate of the current profile obtained in Sec. III (scaled to
fit Fick’s law). The right panel shows the spin current at different times t̄ = 0.25,0.50,0.75 (top to bottom). The dashed line is the variational
estimate of the drift velocity from Ref. [9], scaled to fit the data.
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Our work can be extended in a number of ways. First,
it is important to further test spin hydrodynamics using
detailed comparisons with numerical simulations based on
the Boltzmann equation in the weakly collisional limit. A
similar study for anisotropic fluid dynamics is described in
Refs. [7,28]. Second, we would like to perform precision
determinations of the spin diffusion constant not only in the
high-temperature limit, but also in the vicinity of the critical
temperature for superfluidity. This will require implementing
a more general functional form of the diffusion constant, and
performing detailed fits of the temperature dependence of the
decay rate of the spin dipole mode. The ultimate goal of this
effort is to provide determinations of both the shear viscosity
and the diffusion constant in the perfect fluid regime a → ∞

and T ∼ Tc, and to compare the results with expectations
from quasiparticle theories as well as holographic models
[29–31].
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[6] M. Bluhm and T. Schäfer, Dissipative fluid dynamics for
the dilute Fermi gas at unitarity: Anisotropic fluid dynamics,
Phys. Rev. A 92, 043602 (2015).
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