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Supersolid phases of dipolar fermions in a two-dimensional-lattice bilayer array
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Supersolid phases as a result of a coexistence of superfluid and density ordered checkerboard phases are
predicted to appear in ultracold Fermi molecules confined in a bilayer array of two-dimensional square optical
lattices. We demonstrate the existence of these phases within the inhomogeneous mean-field approach. In
particular, we show that tuning the interlayer separation distance at a fixed value of the chemical potential
produces different fractions of superfluid, density ordered, and supersolid phases.
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I. INTRODUCTION

Several phases of matter appear in the quantum degenerate
regime only, namely, superconductivity, superfluidity (SF),
and supersolid (SS) phases. While the two formers have been
successfully explained, the observation of the supersolid phase
remains still elusive [1]. New efforts both experimentally [2,3]
and theoretically [4,5] suggest that this exotic state of matter
might be much more nontrivial than that initially thought [6].
On the other hand, not at necessarily low temperatures, but
also manifesting many-body quantum statistical behavior, the
high-Tc superconductivity phenomenon still continues as an
open question in the context of condensed matter. Experiments
with ultracold neutral gases are at the present time the closest
candidates to quantum simulate, and thus address the descrip-
tion of such not quite yet understood quantum phases [7–12].

Recent experimental studies have shown how quantum
phases such as SF, SS, Mott insulator, and charge-density
wave, emerge from competing short- and long-range
interactions among ultracold Bose atoms confined in an
optical lattice coupled to a high finesse optical cavity [13].
Those phases arise as a result of exploiting the matter-light
coupling since in such a case interactions can be tuned on
demand. There is, however, an alternative way of handling
either the range or direction of interactions in ultracold
neutral gases, which is by confining dipolar atoms or
molecules in optical lattices. As it has been shown from
the theoretical perspective, the combination of both the
long-range anisotropic character of dipolar interactions and
the controllable lattice structure where the atoms/molecules
lie make the many-body physics become very rich [14–18].

In this work we consider a model proposed previously
[19–21] to demonstrate that ordered density wave (DW), SS,
and SF phases can be accessed by changing the external fields
that set the system. In Fig. 1 we show a scheme of the quantum
simulator that can be created in the laboratory to explore the
referred phases. The model system is composed of dipolar
Fermi molecules lying in a bilayer array of square lattices in
two dimensions. Although such a configuration has not been
realized yet, the current experimental panorama of ultracold
dipolar gases, in particular the potential capacity of loading
long-lived Fermi molecules of NaK, KRb, and NaLi [22,23]
in optical lattices as well as the recently produced rovibrational
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ground state in molecules of NaK, is promising in setting the
array here considered.

Previous mean-field analysis on dipolar fermions placed
onto a single-layer square lattice, with arbitrary orientation and
considering dipoles with fixed orientation, has predicted the
melting among SF and DW phases [24–27] and a variety of DW
phases [28], respectively. Also, an extended model including a
mixture of Fermi molecules with contact interactions, loaded
in a bilayer array, predicted density ordered phases as well as
superfluids phases [19,29–32]. The possibility of supersolid
phases in these dipolar Fermi gases has also been studied
[25,26,33]. On the other side SF, Mott insulating, DW, and
SS phases of He have been investigated within a mean-field
context too [34–36]. In the present study we consider dipolar
Fermi molecules situated in a double array of parallel optical
lattices having dipole orientation perpendicular to the lattice in
the presence of a harmonic trap, to demonstrate that in addition
to SF and DW patterns there is a region of coexistence in
the phase diagram where SS phases emerge. Working within
the Bogoliubov-de Gennes (BdG) approach we show that
depending upon carefully controlled parameters these phases
can be accessed under current experimental conditions.

The paper is organized as follows. In Sec. II we introduce
the model considered in our study and describe the theoretical
approach employed. In Sec. III we illustrate the coexistence
and spatial overlap among superfluid and DW phases for
several values of the temperature. We summarize our findings
in the phase diagram at finite and zero temperature. Finally,
we present our conclusions in Sec. IV.

II. MODEL

We consider Fermi molecules of dipole moment d and mass
m lying in two parallel square lattices of lattice constant a

separated by a distance λ, and a harmonic trap with frequency
ω (see Fig. 1). In the presence of an electric field perpendicular
to the layers, the dipoles align along the same direction.
Fermions in the same layer repel each other always; however,
dipoles in different layers attract each other at short range,
while also repelling each other at large distances. Thus,
interaction between fermions in the same and in different layers
is given, respectively, by

V α,α(�r) = d2 1

r3
,

(1)

V α,β (�r) = d2 r2 − 2λ2

(r2 + λ2)5/2
,
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FIG. 1. Schematic representation of the dipolar Fermi gas. The
molecules affected by a harmonic trap potential lie in the lattice sites
in up and down layers.

where r is the in-plane distance between two fermions. Greek
indices label the layer where the molecule is placed. Thus,
superscripts α,α (α,β) indicate that interaction occurs between
fermions in same (different) layers. For clarity, we denote the
intralayer interaction by V α,α(�r) = V (�r), and the interlayer
interaction by V α,β(�r) = U (�r). The system is described by
the Hubbard model with the Hamiltonian given by Ĥ = Ĥ0 +
V̂ + Û , with

Ĥ0 =
∑

α=A,B

∑
�k

(ε�k − μα)n̂α
�k +

∑
α=A,B

∑
�i

mω2

2
r2(i)n̂α

�i ,

V̂ = 1

2�

∑
α=A,B

∑
�k, �k′,�q

V (�q)ĉ†�k+�q,α
ĉ�k,αĉ

†
�k′−�q,α

ĉ �k′,α,

Û = 1

�

∑
�k, �k′,�q

U (�k − �k′)ĉ†�q/2+�k,A
ĉ
†
�q/2−�k,B

ĉ�q/2−�k′,B ĉ�q/2+�k′,A

(2)

where ĉ
†
�k,α

,ĉ�k,α are the standard creation and annihilation

operators and n̂�k,α = c
†
�k,α

c�k,α are the number operator. ε�k =
−2t(cos kxa + cos kya) is the in-plane energy dispersion of the
ideal Fermi gas within the tight-binding approximation, t being
the hopping among nearest neighbors. V (�q) and U (�k − �k′) are
the Fourier transforms of V (�r − �r ′) and U (�r), respectively, and
� is the number of sites. The terms containing the harmonic
confinement are written in the Fock basis of sites, where the
vector position in the lattice is denoted by �r(i) = a(ix,iy),
and ω is the frequency of the harmonic trap that confines the
molecules. In what follows, all the energies will be scaled
with respect to t . We also introduce two relevant physical
quantities: the dipolar interaction strength ad = meffd

2/�
2,

with meff = �
2/2ta2 the effective mass, and the dimensionless

parameters � = λ/a and χ = ad/a.
The proposed model can be mapped into a system of

fermions in two different hyperfine spin states ↑,↓ (A →
↑,B → ↓) confined in a two-dimensional lattice. The terms
V and U describe repulsive and attractive interactions among
fermions in the same and different hyperfine states, respec-
tively. We should stress that U is an interaction that is attractive
at short distances while becoming repulsive at long distances
U . Thus, by controlling the separation between the layers λ,
the proposed model represents a promising candidate to study
the quantum phases from competing short- and long-range
interactions as well as attractive versus repulsive interactions.
The inclusion of the harmonic potential plays also a crucial
role since, as it is well known, the global thermodynamics of
the phase transition is qualitatively different from that of the
homogeneous case [37]. A remarkable signature of this fact is
that the magnitude of the coherence length can be as large as
the typical confinement distance.

To investigate the physics of the model described above, we
use mean-field theory including the usual BCS pairing terms
and the Hartree contributions [38]. We expect this approxi-
mation to be reasonably accurate in the weakly interacting

FIG. 2. Density order profile (top) and superfluid order parameter (bottom) as a function of the temperature. From left to right kBT /t =
0.0,0.10,0.25 and 0.45. For � = 0.80 and χ = 0.3
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FIG. 3. Density order profile (top) and superfluid order parameter (bottom) as a function of the temperature. From left to right kBT /t =
0.0,0.10,0.25, and 0.45. For � = 0.85 and χ = 0.3.

regime. The mean-field Hamiltonian is self-consistently diag-
onalized by solving the BdG obtained from the Bogoliubov
transformation for the local quasiparticle amplitudes. Such a
procedure allows us to capture the essence of the BCS pairing
and the density order phase in an inhomogeneous environment
[25,26,39]. This mean-field approach is commonly used for
studying competing magnetic and superconducting phases in
the context of high Tc superconductivity [16,40] and in the
context of ultracold fermions [41]. It also has been recently
employed for describing strongly correlated systems, like
effective p-wave interaction and topological superfluids in
quantum gases in lower-dimensional systems (one and two
dimensions) [11]. The Bogoliubov-de Gennes equations to be
solved are

∑
i

(
H 0

ij,α 
i,j


i,j −H 0
ij,ᾱ

)(
un

j,α

vn
j,ᾱ

)
= En

(
un

j,α

vn
j,ᾱ

)
, (3)

where the matrix elements H 0
ij,α incorporate the terms

of the single-particle operators of Eq. (2) and the inter-
site interaction on the Hartree level that is expected to
dominate [38]. This term is given explicitly by H 0

ij,α =

−tδ〈i,j〉 + (
∑

l 	=i Vli〈nl,α〉 + εi − μ)δi,j , tδ〈i,j〉 being the tun-
neling among nearest neighbors with δ〈i,j〉 the Kronecker
delta for nearest neighbors. The effect of the harmonic
confinement is included through εi = mω2

2 r2(i). The superfluid
parameter is incorporated self-consistently by substituting

i,j = Ui,j 〈ci,Acj,B〉, being the eigenvalues En associated
to the excitation energy for the nth quasiparticle. Those
eigenvalues are self-consistently obtained through the usual
relations ni,A = ∑

n |ui,A|2f (En) and ni,B = ∑
n |vi,B |2[1 −

f (En)] with (un
iα,vn

i,ᾱ) the local Bogoliubov quasiparticle
amplitudes, f (En) being the Fermi distribution and ni,α the
expectation value of n̂i,α . For simplicity we shall assume that
both layers are equally populated.

To include the effects of the harmonic trap, in addition
to the usual order parameters that globally describe the
system, we introduce local order parameters. The global
density order parameter is given by ρ �Q,α = 1

Nα

∑
�k c

†
�k+ �Q,α

c�k,α ,

where the vector �Q identifies either a checkerboard pattern
�Q = (π/a,π/a) or a stripe density order �Q = (π/a,0), or

(0,π/a). The local-density order parameter is given by φi =∑
ji

(−1)jx+jy nj , where the index ji denotes that the sum

FIG. 4. Local order parameters. We plot a cross section of the local density φ(x,0) and the local gap 
(x,0) through the center of the trap
for kBT /t = 0.0,0.10, and 0.25. For � = 0.85 and χ = 0.3.
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FIG. 5. Density order profile (top) and superfluid order parameter (bottom) as a function of the temperature. From left to right kBT /t =
0.0,0.10,0.25, and 0.45. For � = 0.90 and χ = 0.3.

runs over the first- and second-nearest neighbors. This local
order parameter describes a checkerboard density pattern in
a 3 × 3 sublattice centered at site i. The superfluid local
order parameter is given by 
i = ∑

ji

i,j , being the average

superfluid behavior studied through 
 = ∑
i 
i/NA.

III. SUPERSOLID: COEXISTENCE OF SUPERFLUID
AND DENSITY ORDERED PHASES

To determine the density profile and the behavior of the
gap across the lattice, we solve BdG equations for lattices of
size � = 2 × 37 × 37, maintaining fixed the value of chemical
potential μ/t = 1.5 [42]. This restriction causes the total
number of fermions to be increased with temperature, that is, at
zero temperature the number of fermions is NA + NB = 320
while for kBT /t = 0.5 this value is increased to 335. We
also keep fixed the values of the interaction strength and
the harmonic frequency at χ = 0.3 and 1

2m(ωa)2/t = 0.025,
respectively.

To illustrate the competition among different phases we
have selected the cases � = 0.8,0.85,0.9, and 1.0. We plot
the density profile and the gap parameter profile for several

values of the temperature. In particular, we chose kBT /t =
0.0,0.10,0.25, and 0.45.

First we start considering � = 0.8. From Fig. 2 we observe
a homogeneous distribution at the center of the trap at zero
temperature for both density and gap profiles. However,
at finite temperature, the distribution of the density profile
remains homogeneous at the center of the trap, while the
gap structure shows a decreasing behavior as temperature is
increased until they vanish at a temperature of kBT /t = 0.28.
Previous studies [20,21] reported a BCS superfluid phase in the
weakly interacting regime while formation of dimers occurs
in the strong interaction regime, leading those dimers to a
Bose superfluid. In the present work we focus on the BCS
superfluid to DW-supersolid phase transition. Therefore, the
values of the parameters are restricted to those in which the
weakly interacting regime is ensured.

When the interlayer spacing is increased, the competition
between attractive and repulsive dipole interactions becomes
evident. As plotted in Fig. 3, for � = 0.85 at low temperatures,
there is a large region in the center of the trap having a
superfluid order parameter coexisting with a checkerboard
density order. This is the signature of a supersolid phase.

FIG. 6. Local order parameters. We plot a cross section of the local density φ(x,0) and the local gap 
(x,0) through the center for
kBT /t = 0.0,0.10, and 0.25. For � = 0.90 and χ = 0.3.
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FIG. 7. Density order profile (top) and superfluid order parameter (bottom) as a function of the temperature. From left to right kBT /t =
0.0,0.10,0.25, and 0.45. For � = 1.0 and χ = 0.3.

When the temperature is increased, the radius of the superfluid
order parameter shrinks and completely vanishes at a critical
temperature of kBT /t = 0.13, while the checkerboard phase
melts at a temperature of kBT /t = 0.26. That is, the supersolid
phase exists, in this system, for certain temperatures, as further
shown below in the corresponding phase diagram. Cross
sections of the local order parameters are shown in Fig. 4,
where the presence of a supersolid phase at the center of the
trap can be appreciated, as the spatial overlap of both superfluid
and DW.

For � = 0.9 the repulsive intralayer interaction starts to
dominate at the center of the trap. From Fig. 5 one can see
that there is a wide region at the center of the trap exhibiting a
checkerboard DW pattern. Such patterns persist below temper-
atures of kBT /t = 0.26. We also observe that the superfluid
order parameter appears to surround the checkerboard pattern
and that such a superfluid disk completely vanishes when
the temperature reaches a value of kBT /t = 0.06. The cross
sections shown in Fig. 6 exhibit a small region where both
phases spatially overlap. Other studies [43,44] with different
systems in the presence of a harmonic trap have shown
coexistence of phases without spatial overlapping, for instance,

in the extended Bose-Hubbard model the Mott insulator
and superfluid phases tend to form rings and disks. In two
dimensions those studies agree quantitatively with quantum
Monte Carlo calculations and more sophisticated methods.

Finally, when the interlayer spacing is large enough, the
intralayer repulsive interaction dominates over the interlayer
attraction and the superfluid order parameter almost vanishes.
This behavior is found for � = 1.0, where pairing is inhibited.
For larger values of � no pairs can be formed but a DW
checkerboard pattern still persists at the center of the trap
(see Fig. 7). This value of � signals the limit from which
each layer can be studied separately. The single layer model
has been studied previously considering arbitrary dipole
moment orientations [25,26]. We found that our predictions
are in good agreement with those results, that is, at a given
critical temperature that depends on the interaction strength,
checkerboard phases for perpendicular orientation of the
dipole moment emerge.

In Fig. 8 we plot the two global order parameters 


and ρ as a function of the temperature for values of �

in the region of coexistence. As can be appreciated from
this figure, Bogoliubov-de Gennes diagonalization predicts

FIG. 8. Order parameters obtained from BdG diagonalization. A second-order continuous phase transition is shown.
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FIG. 9. Phase diagram for lattices of size 2 × 37 × 37, as a
function of the dimensionless interlayer separation � = λ/a. The
interaction strength is χ = 0.3.

continuous phase transitions for the considered model. One can
observe that, for a given value of �, the critical temperature
at which the superfluid phase emerges coincides with that
at which the derivative of the DW order parameter shows a
discontinuity. Numerical calculations performed for lattices
of larger size (� = 2 × 57 × 57) lead us to observe how
the discontinuity of the derivative in ρ and 
 at the critical
temperature becomes more evident as a function of �. Namely,
the global order parameters 
 and ρ change more abruptly at
the critical temperature as the lattice size is increased. It is
also important to stress that the referred discontinuity in the
derivative becomes less evident when the interlayer spacing is
increased.

In Fig. 9 we present the phase diagram of this model,
obtained from Bogoliubov-de Gennes equations for finite
temperatures. In the inset we show the phase diagram at zero
temperature. The region of coexistence between superfluid
and DW phases in both diagrams is the supersolid phase of
our system. As expected, in the attractive interaction regime
the superfluid phase destroys any density order pattern. When
the interlayer spacing λ becomes comparable with the lattice
constant a, the superfluid phase and DW start to compete.
For � < 0.83 there is no formation of density order pattern,
while the critical temperature of the BCS superfluid phase
decreases monotonously. Close to � ≈ 0.83 a density order
pattern is formed, then the critical temperature of this phase
jumps quickly to a constant value. For values of � larger than
0.83 the critical temperature of the DW phase becomes almost
independent of the interlayer spacing. On the other hand, the
superfluid parameter 
 suddenly decreases at � ≈ 0.83 and
then again starts to decrease monotonously. In contrast with

the predictions obtained for the single layer system where the
critical temperatures may be calculated using the value of the
parameters at the center of the trap, this may not be completely
true for the system here studied due the possible formation of
disks and rings.

The maximum value of the critical temperature for the
supersolid phase predicted by our model, considering the
parameters of the current experimental systems, is kBT /t ≈
0.23. Although such temperature is one order of magnitude
smaller than those measured recently in experiments with
fermonic KRb [23] and NaK [22], current efforts in controlling
and lowering the temperature of molecules are promising to
reach such critical temperatures in the near future.

IV. CONCLUSIONS

We have studied the thermodynamic phases that exhibited
dipolar Fermi molecules placed at the sites of a bilayer array
of square optical lattices in two dimensions in the presence
of a harmonic confinement. Due to the nature of the dipolar
interaction, where attractive and repulsive interactions are
present, several phases are shown to form. While attractive
interaction between molecules in different layers leads to
predict superfluid phases, density order phases like checker-
board patterns result from the repulsive interaction. The
competition between these phases gives rise to the formation
of supersolid phases where both SF and DW phases coexist
and spatially overlap. An exhaustive exploration of the space
of parameters is summarized in the phase diagrams at zero and
finite temperatures (see Fig. 9). Our predictions allowed us to
identify clearly the influence of the harmonic potential in the
occurrence of the transitions with respect to thermodynamics
in the homogeneous case reported in previous literature. The
system here studied in combination with the capability of
trapping Fermi molecules in optical lattices as well as the
recently reported production of rovibrational and hyperfine
ground states of 23Na 40K molecules constitutes a promising
candidate to study the competition between BEC and BCS
superfluid phases in coexistence with an ordered structure and
thus offering the opportunity to quantum simulate a supersolid
phase in ultracold experiments.
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[5] M. Mendoza-López and V. Romero-Rochı́n, Rev. Mex. Fis. 62,
586 (2016).

[6] M. Boninsegni and N. V. Prokof’ev, Rev. Mod. Phys. 84, 759
(2012).

[7] W. Hofstetter, J. I. Cirac, P. Zoller, E. Demler,
and M. D. Lukin, Phys. Rev. Lett. 89, 220407
(2002).

043638-6

https://doi.org/10.1038/nature08913
https://doi.org/10.1038/nature08913
https://doi.org/10.1038/nature08913
https://doi.org/10.1038/nature08913
https://doi.org/10.1038/nature02220
https://doi.org/10.1038/nature02220
https://doi.org/10.1038/nature02220
https://doi.org/10.1038/nature02220
https://doi.org/10.1038/nphys1630
https://doi.org/10.1038/nphys1630
https://doi.org/10.1038/nphys1630
https://doi.org/10.1038/nphys1630
https://doi.org/10.1103/PhysRevLett.100.235301
https://doi.org/10.1103/PhysRevLett.100.235301
https://doi.org/10.1103/PhysRevLett.100.235301
https://doi.org/10.1103/PhysRevLett.100.235301
https://doi.org/10.1080/00018730601183025
https://doi.org/10.1080/00018730601183025
https://doi.org/10.1080/00018730601183025
https://doi.org/10.1080/00018730601183025
https://doi.org/10.1103/RevModPhys.84.759
https://doi.org/10.1103/RevModPhys.84.759
https://doi.org/10.1103/RevModPhys.84.759
https://doi.org/10.1103/RevModPhys.84.759
https://doi.org/10.1103/PhysRevLett.89.220407
https://doi.org/10.1103/PhysRevLett.89.220407
https://doi.org/10.1103/PhysRevLett.89.220407
https://doi.org/10.1103/PhysRevLett.89.220407


SUPERSOLID PHASES OF DIPOLAR FERMIONS IN A . . . PHYSICAL REVIEW A 94, 043638 (2016)

[8] C.-K. Chan, C. Wu, W.-C. Lee, and S. Das Sarma, Phys. Rev. A
81, 023602 (2010).

[9] B. Liu, X. Li, B. Wu, and W. V. Liu, Nat. Comm. 5, 5064 (2014).
[10] A. Bühler, N. Lang, C. V. Kraus, G. Möller, S.D. Huber, and
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