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A binary mixture of interacting Bose-Einstein condensates (BEC) in the presence of fragmentation-driving
external lattice potentials forms two interdependent mean-field lattices made of each component. These effective
mean-field lattices, like ordinary optical lattices, can induce additional fragmentation and phase coherence loss
of BECs between lattice sites. In this study, we consider the nonequilibrium dynamics of two hyperfine states

of one-dimensional Bose-Einstein condensates, subjected to state-dependent optical lattices. Our numerical
calculations using the truncated Wigner approximation (TWA) show that phase coherence in a mixture of
two-component BECs can be lost not just by optical lattices, but by mean-field lattices gradually formed by other
components, and we reveal that such an effect of internal mean-field lattices, however, is limited, contrary to

external optical lattices, in regard to phase decoherence.
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I. INTRODUCTION

The properties of ultracold atoms in optical lattices have
been studied intensively as models for various condensed
matter phenomena [1,2]. In many cases, the coherence or
lack of coherence between atoms in adjacent wells plays a
crucial role, especially in the superfluid—Mott insulator phase
transition [3-6]. For example, the work of Orzel er al. [7],
with a one-dimensional (1D) array of “pancake” condensates,
displayed high-visibility interference patterns under condi-
tions of phase coherence between adjacent wells, but dramatic
reduction of the interference contrast, or visibility, when the
wells were deepened. Later work with three-dimensional (3D)
optical lattices by Greiner et al. [5] exhibited the superfluid
to Mott—insulator phase transition through the interference
pattern when the 3D condensates were released.

More recently, diverse aspects along the phase transition are
subject to study, such as phase diagrams [8], strong interaction
[9], and special geometries [ 10]. Among them are experimental
studies of systems in which the Bose condensate consists
of “distinct components” such as different atomic species,
different substrates, or different hyperfine levels. These studies
focus on multicomponent systems [11-15] and it is easy to
imagine further experimental studies probing the rich physics
of multicomponent BECs. For example, experiments have
addressed the question of phase coherence of two-component
Bose-Einstein condensates, and it has been observed [16]
that the presence of *'K atoms reduces the visibility of the
interference pattern of marginally overlapped 8’Rb atoms in a
3D optical lattice. Similarly, in a condensate of miscible 8’Rb
atoms in a state-dependent 3D optical lattice, the presence of
atoms in a second hyperfine level can reduce the superfluid
coherence of atoms in a first hyperfine level [17]. Lasers in
these studies were tuned such that both components experience
peak-matched lattice potentials.

In a theoretical perspective, there have been a number of
studies addressing aspects of Bose condensates with such
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multicomponents. Perhaps most notable have been discussions
of different phase regimes and phase transitions [18-20] and
of the extended Bloch band structure [21]. There have also
been studies of dynamical effects, including those associated
with ramping up the optical lattice [22-24]. Recent studies
show theories about, for example, phase diagram and stability
[25,26], evolution of coherence, or number squeezing during
ramp-up [27-29]. Other works have investigated other equi-
librium or nonequilibrium properties via various stochastic
theories including a truncated Wigner method applied to
single-component BECs [30,31], which will also be interesting
once extended to multicomponent BECs.

In many cases, theoretical studies in deep lattices have
used the Bose-Hubbard model (BHM) [18-20,23,24,32] or
time-evolving Bloch decimation (TEBD) approach [33], both
of which become problematic when there are many atoms
per well, as in the one-component experiments of [7].
Instead, some studies have developed novel analytic methods
[34-37]. On the other hand, for BECs in shallow optical
lattices, theoretical analysis of phase decoherence in 1D has
been extensively performed via an extended Gross-Pitaevskii
equation (GPE) approach [38], or via the truncated Wigner
approximation (TWA) approach [31]. Whereas the application
of the GPE to such systems is limited to shallow lattices and
low temperatures unless used in a full 3D treatment [38],
the TWA, which evolved from quantum optics applications
[39,40], has emerged as the promising method for simulation
of Bose-Einstein condensates in optical lattices. The TWA has
also been used to model dephasing of single-component BECs
in 1D optical lattices [31,41].

In this paper, we study phase decoherence of interpen-
etrating peak-mismatched two-component mixtures that are
slowly loaded into relatively shallow state-dependent lattices,
Vo.a(z,t) = sa(t)Eg cos?(kz) for component A and Vo.g =0
[or V, p(z,t) = sp(t)ER sin?(kz)] for component B (s; is a
scale of lattice height for the component i and Ey is a
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recoil energy) using the TWA. We construct a TWA model
for two-component BEC clouds which are independently
phase coherent in the initial state. We focus on the effects of
both components when there is a single optical lattice acting
on component A (V, 4 « cosz(kz),V(,, g = 0) or alternatively,
when there are two half-period mismatched optical lattices
[Vo.a cos?(kz), Vo.B X sin?(kz)]. This work is restricted to
phenomena at zero temperature (7 = 0) and one dimension
(1D).

We find, as in the experimental studies with 3D con-
densates [16,17], that in the former case (V,p =0), the
second component diminishes the phase coherence of the
first component and also experiences decoherence itself
relative to the initial fully coherent state, due to formation
of atomic mean-field lattices. We also find that in the latter
case [V, p oc sin®(kz)], the effect of an atomic mean-field
lattice is limited in reducing phase coherence of the other
component.

For a qualitative explanation of the fragmentation pro-
cesses described above, we adopt a simple Gaussian vari-
ational ansatz for single-particle Wannier functions. We
find that the model shows a good agreement with the
trend of fragmentation inferred from the above TWA
calculations [31].

In view of the numerous theoretical and experimental
papers on cold atoms in optical lattices, we stress again that
our work extends to two components, the results of [31]
on quantum fluctuations and phase decoherence. Also, we
display explicitly the site-to-site decoherence due to lattice
ramp changes, summarized in general in [23].

The layout of this paper is as follows. In Sec. I, we construct
the TWA model for 1D two-component BECs beginning from
a second-quantized effective Hamiltonian. In Sec. III, the
TWA representation is applied to initial states, where the
Wigner probability distribution for the initial state is found
[42], and we prepare an ensemble of initial states under the
Wigner distribution. We present the main results of the paper
in Sec. IV. Section IV A, introduces a single state-selective
optical lattice and shows the effect of an added component on
phase coherence loss over a range of populational fractions
of each component. We also implement a variational ansatz
calculation to explain the patterns found above. Section IV B
then continues the similar setup but with variable lattice heights
to see the fragmentation induced by lattice height increase.
In Sec. IVC, we find limited fragmentation (nonmonotonic
dependence on lattice heights) as two state-dependent optical
lattices are turned on. Finally, Sec. V is devoted to concluding
remarks.

II. DYNAMICS OF TWO-COMPONENT BECS IN THE TWA

We consider a mixture of two Bose-Einstein condensates
which is confined in a harmonic trap, where the two com-
ponents are two hyperfine states of the same species [43].
The harmonic trap potential is Vyo(X) = m[w?z® + ) (x* +
y?)], with a weak longitudinal trap frequency (w.) and a
stronger transverse trap frequency (w,) (w, < w,), so that the
BECs are cigar shaped.

Assuming effective 1D BECs with negligible transverse
excitations, as explained in Appendix C, the effective 1D two-
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component second-quantized Hamiltonian for the system is

H=Y [dadloLio

i=A,B
- % ,-ZXA:B gii / Az ¥ @YY (2)
+gan / A2yl @V L @Y a@)Ps(), (1)
and the L; is defined as
2v2
L =— 4+ Vii(@) + Voi(z,t) — wi. 2)
2m,-

Here, we label the first species as A and the second one as
B. For each species, m; is the particle mass, p; is the chemical
potential, Vj,;(z) = m;w?z*/2 is the external harmonic trap
potential, and V, ;(z,t) is the time-varying state-dependent
optical lattice potential along the axial direction. For an
effective 1D BEC with a Gaussian profile along the transverse
direction, g;; = 2hw,a;;, where a;; is the scattering length, if
the two masses are equal.

The equation of motion for the component i field, 1/7,- (2), is

d . PR N At oA A
iV = Hipi = Livsi +Zgij1/f;1/fj1/fi- 3)
J

In Appendix A, we construct a TWA method for the above
two-component fields. Then we obtain the corresponding
Fokker-Planck equation. We can translate such a Fokker-
Planck equation into the stochastic differential equation for the
classical Wigner fields, v;(z,¢) [42]. The resulting equation for
a single realization of the Wigner fields that describes a single
trajectory in phase space is

0 i(z,t
iﬁ% = Li+;gi]’(|wj(zvt)|2_dij) Vi(z,1),

4)

where d;; =1 (or 1/2)ifi =j (or i # j).

Since the third-order diffusion process is neglected, the
stochastic fluctuations during the time evolution are absent,
but the initial state still has quantum fluctuations following the
probability distribution given by the Wigner representation
[42]. Therefore, given the initial condition for each realization
following the Wigner function, the classical field, ¥;(z,?),
evolves under the above deterministic trajectory which re-
sembles the Gross-Pitaevskii equation except for the small
depletion terms indicated by the “—d;;” quantities in Eq. (4).

III. STOCHASTIC INITIAL STATES AND PHASE
COHERENCE BETWEEN SITES

The system we discuss is a two-component 1D BEC
confined by the same harmonic trap. In this discussion,
we consider the two hyperfine states of ®’Rb atoms,
|F =1,mp = —1) and |F = 2,mp = —2). Since the differ-
ences between interaction strengths (as4,app,a4p) are small,
we assume that the two atoms share the same intraspecies and
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interspecies interaction strength (a; = aaq = app = aap =
5.5 nm) and they have the same masses (m = m4 = mp).

For BECs with a large number of atoms at sufficiently
low temperatures (7' <« T,), the Bogoliubov quasiparticle
description [44] is a good approximation to the exact many-
body dynamics of the system, provided that the number of
noncondensate particles (N, ) is sufficiently smaller than that
of condensate atoms (N.) (N, < N.) [45]. A more exact
number-conserving theory would be based on an expansion
in powers of 1/4/N [46-48] using the particle-number
conserving formalism (PNC) [49,50].

In the Bogoliubov theory, the matter-wave field operator,
in addition to the condensate field operator, includes small
quasiparticle amplitudes,

Ui(2) = Yio@&io + Y _[iu(D)&), — viu(2)&1,  (5)

n>0

where &;o is the annihilation operator for the component i
condensate mode, whereas &/, is the quasiparticle annihilation
operator for the collective mode w. These operators satisfy
the bosonic commutation relation, [&M,&i] = 8., etc. The
normalization conditions for the single-particle condensate

J
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amplitudes and for the Bogoliubov quasiparticle mode ampli-
tudes are

/dZWZo(Z)l/on(Z) = /dZWZo(ZWBo(Z)= L ()

/ A2l (@i an(2) + 0, (i)

— V3, (DVau(2) — Vg, (DU (D] = 8. (7)

The expectation values of the number operator correspond
to the populations in the condensate mode for each component
and in the collective modes:

(@l @io) = Nio, (8)

1
o exp(€,/kpT)— 1’

where the Bogoliubov quasiparticles are in thermal equilib-
rium at 7.

The quasiparticle mode amplitudes, u;,,v;, satisfy the
coupled Bogoliubov—de Gennes equation for a two-component
BEC:

€))

(@hdy) =n,

Hp + haalyal? hap¥avy —haay} —hagWatrs » -
hap¥ ¥ Hg + hgg|yp|? —hap¥ays —hppYra um | _ [ s "
—haa(¥})? —hap¥)¥p Hy + haaltal? hag¥ivs Vap —€va, |
—hap¥i¥g —hpp(Yh)? hap¥avy Hp + hpplvsl? VBy —€,VBy

where ]’l,‘j = gijw/NiNj-

In Appendix A, we generate classical stochastic fields for
the initial state in the Wigner representation. Having prepared
such initial stochastic fields and their time evolution, we are
especially interested in the short-range nonlocal coherence of
subcondensates between neighboring sites at each time. We
define a subcondensate projection operator for each site / as in
[51]:

ay(t) = / dz¥Gr(z,)¥i(z,1), (11)
[thsite

where @;; is the annihilation operator for component i in
the /th well and gp the solution of the GPE, normalized
to one within each well. The site positions are different for
the two components as explained below. This operator is
defined as a stochastic field operator whose amplitudes are
projected over the ground state of each condensate mode. The
projection method allows us to avoid complicated calculations
of symmetrically ordered multimode fields [45].

In this study, a state-dependent optical lattice for the com-
ponent i is a sinusoidal function, V,, 4(z,t) = s4(t) Eg cos?(kz)
[and V, p(z,t) = sp(t)Eg sin’(kz) if it exists], where s; is
the scale of lattice height for the component i, and Ex =
h*k?/2m is the recoil energy with m =m, = mp. ¥, and
Yp are localized at the odd sites z = £(2n + 1)d/2, at the
evensitesz = £2nd /2 (n = 0,1,2,...), respectively. Repulsive
interspecies interactions repel component B atoms from the
localization sites of the component A.

We now consider moments of the Wigner function of
interest. First, the occupation number of component i in the
Ith site is

ni = (ahau) = @ha)w — 5, (12)
where (- --)w means an expected value in the Wigner repre-
sentation.

The equal-time first-order coherence is the phase coherence
of component i between two sites at the time ¢:

(a3 (Dai ()]
(@} ®an0) (@l Oa ()2
.
_ l@haw)| 13
iy
where in the last equation the notation is simplified via Eq. (12).

For brevity, we now omit the time dependence from the
expectation values of the condensate mode operators.

g,m =Cir() =

IV. PHASE DECOHERENCE AND FRAGMENTATION
OF TWO-COMPONENT BECS

A. A single lattice (A) with varying fractions of a mixture

We now examine the phase decoherence patterns of two-
component BECs at T = 0, driven by a single state-dependent
optical lattice. Both components are trapped by the same
anisotropic harmonic potential. In this section, component A
is placed in an optical lattice, whereas no external lattice is
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FIG. 1. Phase coherence of component A (left) and component
B (right) for various populational fractions (0 < fp < 1), for N =
5 x 10, tgy = 250/wg = 11 ms for 87Rb. The numerical simulation
shows the results from when lattice loading begins. The fractions of
component B, f, and the line colors are as follows (in the large ¢
limit, top to bottom on the left; bottom to top on the right): 0, black
(for left side only); 0.1, red; 0.2, green; 0.4, blue; and 0.6, pink.

applied to component B. We fix the total atom number and the
ramp-up time, and vary the number ratio of A to B atoms.

Having prepared the initial state of superfluid BECs placed
in the harmonic trap, we linearly turn on the optical lattice up to
a final height of sy,0x, 4 = 10 in ramp-up time of wgTry = 250
(wg is a recoil frequency as defined in Appendix C), then
maintain the height until the end of simulations:

V, a(z,t) = s4(t)Eg cos*(kz),
Vo.8(z,t) =0, (14)

where s4(f) = Smax.al/Tru, 0 <t < tpy. We fix the total
number of atoms, Ny = 5 x 103, and vary the fractions of
components A and B, f4 and fg = 1 — f4, in order to see the
effects of interspecies interaction and imbalanced populations
on phase decoherence.

First, we remind ourselves of phase decoherence of single-
component BECs in optical lattices. From previous experimen-
tal and theoretical work [7,31], we expect component A in the
absence of B atoms to exhibit phase decoherence under certain
conditions. As the periodic lattice rises into the BEC cloud,
the regions occupied by the lattice peaks are locally avoided
by the ground-state component A and the wave functions are
eventually fragmented to some degree. The tunneling rate of
the wave functions between the adjacent sites is reduced so that
the fluctuation in each subcondensate breaks the long-range
phase coherence.

Figure 1 shows the change in phase coherence between the
center and nearest-neighbor well, C;.o;, for component A (left)
and B (right) from the time the lattice begins to ramp up, to
a large time limit. The coherence changes for other distant
wells (C;.02,Ci.03,Ci:04, €tc.) exhibit a similar pattern but with
more coherence loss at a given time. The first-order correlation
functions between sites are closely related to the visibilities of
the interference pattern [5,52]. For one-component BEC cases,
a complete loss of phase coherence would imply a transition
to the Mott insulator state. In these calculations, the maximum
lattice height does not reach the Mott insulator regime, as
indicated by the observation that in Fig. 1, C4.9; remains very
close to unity if f4 = 1. However, as fp increases, component
A exhibits decoherence.
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FIG. 2. The profile of combined potentials for component
A, V. 4(2) = Vya(2) + V,.a(z) (black solid line on top left) and
Vea(2) = Via(@) + Vo,a(2) + gapl¥s(2)|* (red dashed line on top
left) with Spmax. 4 = 10, and for component B, V. p(z) = V), p(z) +
gaz|¥a(z)|* (on bottom). The figure on the top right is the same plot
on the top left, but enlarged near the center of the trap. The potentials
V.:(z) are in units of Eg. The populations are N, =4 x 103,
Ng =1 x 10%.

A new feature in this two-component case is the reduction
of phase coherence of component B, which is induced as for
component A but with the role of the optical lattice replaced
by the atomic mean-field potential formed by component A’s
periodic localization. In the GPE for component B,

l.ha%s'(z,l)

o = [Lp + gppl¥s(z.0)

+ gaslVa(z. O 1Ys(z,0), (15)

such spatial variation of potential is expressed by the term
gaBlVa (x,t)|2. In Fig. 2, we show the optical lattice with the
harmonic trap, which directly affects the coherence properties
of component A, and the mean-field lattice of A with the
same harmonic trap, acting on component B, for the case
N =5 x 10°, Ny = 4 x 10%. The distortion by the harmonic
trap potential is almost negligible around the center. We denote
the atomic mean-field lattice made by component A as

Lu,a(@) = gapl¥a@)? (16)

Then the depth of the optical lattice and the interaction strength
of the mean-field lattice are comparable [(Z 4(2)|max —
Lo, 4D min)/ (Vo,a(Z8) I max — Vo,A(ZvI)|min) =~ 0.6] for
fB/fa = 1/4, as can be seen by Fig. 2.

Due to the presence of the mean-field lattice, the tunneling
amplitude between the localization sites for component B is
reduced, resulting in coherence loss, as shown on the right of
Fig. 1.

The phase decoherence of component A is greater in
the presence of component B than without component B
and increases as fp increases. Note also that the mean-field
potential from B atoms acting on A atoms is in phase with
the optical lattice, and thus effectively raises the periodic
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FIG. 3. The on-site interaction energies U;; (solid line) and
the widths of single-particle wave functions o; (dashed line) for
component A (left) and for component B (right), showing opposite
changes as the impurity component B populates increasingly. Here
Smax.4=10, Nt = 5 x 10°.

potential that A atoms see, therefore contributing to the loss
of coherence of the A atoms. However, comparing with the
degree of coherence for A atoms alone as a function of lattice
height shown in the next section, elevation of the effective
lattice acting on A atoms does not explain fully the decrease of
coherence shown in Fig. 1 (left side). Evidently the stochastic
nature of the atom distributions also plays a role.

The experiment in [17] has shown a similar dependency
on populational fractions but with two peak-matched state-
dependent optical lattices in order to place two components at
the same lattice site.

To gain another perspective on these processes, we expand
the wave functions in an array of Wannier-like orbitals, w;(z),

Ji2) =Y aywi(z — Ra), (17)
1

where the single-particle wave function w;(z — R;;) is centered
at Ry = (21 £ 1)d /2, Rp; = 2ld /2 for each component. We
can approximate the Wannier functions as Gaussian functions
and calculate on-site interaction energies and widths of on-site
single-particle wave functions.

In Fig. 3, we show on-site interaction energies for compo-
nent A and B as a function of the fraction of component B
(fp) using the same parameters as in the TWA simulations,
Smax.4 = 10 and Ny =5 % 10°. Higher on-site energies Uj;
correspond to greater localization, (smaller o;, where o; is
the width of the wave function in the ith well) and reduced
nonlocal coherence, C; o;.

We now analyze the phase coherence of component B.
We begin with a bosonic mixture with a low population of
component B, fp >~ 0, which can be approximated by the
foreground component A with a B impurity. The average
strength of interspecies interaction per B field (~gap faN)
over its spatial variation is greater when fp ~ 0 than when
fB =~ 1. The interaction strength varies over space because
of the component A’s modulational variance. This periodic
mean field acts similarly to an optical lattice for component B,
decreasing its phase coherence. On the other hand, the mixture
with a high population of component B, fz >~ 1 (¢ < 1),
has weakened phase decoherence, which we can qualitatively
interpret by the decreased strength of the mean-field lattice
formed by the component A.

We now analyze phase coherence of component A. For
a bosonic mixture with a low population of component B,
fB = 0, the optical lattice alone does not substantially induce
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FIG. 4. The effect of final optical lattice heights on the phase
coherence of component A (left) and component B (right). The final
lattice height (smax.4) for each curve is following (top to bottom) the
black line (3), the red line (6.5), the green line (10), the blue line
(13.5), and the pink line (17).

loss of phase coherence of component A. As fp increases,
however, component A loses more phase coherence. The
larger phase decoherence of component A as f4 — 0 can be
understood by the broadening of component B distribution
enhanced by the narrowing of the A distribution. Due to
the repulsive nature of interspecies interaction, the minimum
energy is found in the balance between reducing the spatial
overlap of the two components’ amplitudes and weakening
the intraspecies interaction energies of each component.

B. A single lattice (A) with varying heights

In this section, we show how the phase coherence changes
as a function of time, depending on the final lattice height for
component A, in order to see the effect of mean-field lattice
height. As in Sec. IVA, V, 5(z,t) =0, but now the atom
numbers are fixed at Ny = 4.0 x 103,N5 = 1.0 x 10°. As
before, the optical lattice for component A linearly increases
up to the indicated value of sp,x 4: the ramping-up time is
wrTry = 100 in this case.

The changes in phase coherence, C;;, are shown in
Fig. 4 for components A and B, and in Fig. 5, the on-site
interaction energies are displayed for both components. As
the lattice becomes deeper, the phase coherence of component
A decreases as expected, since it is fragmented by the
external lattice height increase even without consideration of
interspecies effect. Decoherence of component B is enhanced

<4 0.75 <4 0.75

uf ~ —
© ) 5
b k] N G
o £ ©° 2
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£3 0505 £ 3 0505
=] —_ =} —_
= e = =
o I T
\-:(( ) \-é o
= 10.25 > 10.25

10 12 16 20 10 12 16 20
smax‘A Smax.A

FIG. 5. The on-site interaction energies U; (solid line) and
the widths of single-particle wave functions o; (dashed line) for
component A (Uss on the left) and for component B (Upp on the
right) for Ny = 5 % 10°. Both components become more fragmented
as the state-dependent optical lattice for only component A has been
amplified more.
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as well because of the growth of the mean-field lattice from
component A.

In light of interaction energies, an increase in the energy
implies a smaller o, similarly as seen in Fig. 3, and hence
a tighter localization within the effective well. Thus Fig. 5
indicates, as expected, that the degree of localization is higher
for deeper lattice heights. Comparing results between the two
components in Fig. 5, the localization of component A is
evidently stronger than component B for sp.x 4 > 10, which
explains the greater phase decoherence in component A than
in component B in Fig. 4.

As is evident from comparing Figs. 5 and 3, when the A
lattice height rises, the exchange of spatial occupation between
the two components that has been observed in Sec. IV A does
not occur. Component B’s localization is strengthened as well
as component A’s. The loss in first-order spatial correlation
between wells can be induced by increasing the height of
barriers [53], which for B atoms are provided by atomic mean-
field lattices in this case.

C. Two peak-mismatched lattices (A, B)

Up to this point, component B has not been subjected
directly to an optical lattice but is localized simply by
interaction with the mean field resulting from component A
and the interspecies interaction. Additional insight into the
localization process can come from applying to component B
an optical lattice so as to strengthen the localization effect on
B atoms on top of the former mean field. In other words, this
section examines the dependence of phase decoherence of one
component on the fragmentation of the other component in the
presence of two peak-mismatch optical lattices as in [54,55].
Intuitively, the addition of an optical lattice would additionally
increase phase decoherence without limit. We will show in this
section that it is not always the case.

To the BEC mixture with the asymmetric population ratio
(Na = 1.0 x 10°, Np =4.0 x 10°), we gradually apply two
state-dependent optical lattices:

V,.a(z,t) = sa(t) Eg cos*(kz),
V,.5(z,t) = sg(t)Eg sin*(kz), (18)

1.00

— 1.0~
CA;01(t) CB;m(t) |
0.75 0.8 MWW
Uy
0.50 K 0.6/ WMMMWV

i
0.25 0.4
0 5 10 15 20 25 0 5 10 15 20 25

o t/110° gt /10

FIG. 6. The effect of localization induced by B on phase coher-
ence on component A (left) and component B (right). The line colors
and the final lattice heights for B (sy,x . ) are the following (explained
below in parentheses for the left figure; top to bottom on the right):
the red line, 3 (top); the green line, 6.5 (second to top); the blue line,
10 (one of the two bottom curves); the pink line, 13.5 (the other one
of the two bottom curves); the yellow line, 17 (between the bottom
and the second to top).
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FIG. 7. The on-site interaction energies U; (solid line) and
the widths of single-particle wave functions o; (dashed line) for
component A (Uss on left) and for component B (Ugp on right)
as a function of the lattice height for B (syax.5)-

where s;(t) = Smax it/ Tru- The final lattice height for compo-
nent A is Smax .4 = 10 and the final lattice height for component
B is a variable parameter in different simulations ranging from
Smax,B = 3 10 Smax. 3 = 17, and all other conditions are the
same as in the previous section.

In Fig. 6, we show the change of phase coherence while
varying the lattice height for component B. The drop in
phase coherence of component B reflects the expectation that
higher optical lattices induce more coherence loss between
two neighboring sites. And also as expected, a higher lattice
for component B leads to more localization for component B.

A new phenomenon here is the dependence of phase coher-
ence of component A on optical lattice heights for component
B. As can be seen from Fig. 6 (left side), the phase coherence
of component A at the maximum time shown is diminished as
Smax,p increases from 3 to 10 but then rises again for sy, 5
increases beyond 10. This nonmonotonic dependence on the
other component’s lattice height can also be seen in the on-site
energy plotted in the left panel of Fig. 7, which shows a
maximum of Uy 4 at spax g & 15 and then a small decrease. In
addition to the expected fragmentation due to the optical lattice
applied directly to component A, the deepening mean-field
potential from component B acting on component A further
reduces the tunneling of component A between adjacent sites
until the tunneling of component A, suppressed by increased
mean-field lattice height of component B, becomes gradually
freed by the decreased wall width of the mean-field lattice
(o).

V. CONCLUSION

In summary, we have investigated nonlocal intraspecies
phase decoherence of two-component BECs under the gradual
loading of state-dependent optical lattices. We have used the
TWA and the Gaussian variational wave functions for Wannier
orbitals to model the dynamical behavior and fragmentation of
two species of atoms, in particular, to calculate the reduction
of phase coherence between wells.

First, when a single optical lattice acts on component A
[Vo.a cosz(kz),Vo, g = 0], the B atoms are fragmented by
the effective barriers produced by the interspecies repulsive
interactions with A atoms. Thus, both species are fragmented
into localized wells whose sites differ by a half-period between
the two components. With varying fractions of a mixture, we
have observed that when the fraction of B atoms increases, then
in the long-time limit, the fragmentation of A atoms increases
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but the fragmentation of B atoms decreases, consistent with
experimental observations in [16,17]. The increasing fragmen-
tation of A atoms is associated with higher effective barriers
produced by accumulation of B atoms spatially in phase with
the A’s optical lattice. The decreasing fragmentation of B atoms
is due to lower effective barriers produced by the reduced A
mean-field lattice. With varying heights of the lattice, we have
seen increasing fragmentation of both A and B atoms with
higher lattice heights for A. We confirm that deep lattices
for only a single component can play a key role for both
components in reducing phase coherence.

Finally, when optical lattices are applied to both com-
ponents with the condition that their well sites differ by
a half-period [V, 4 « cosz(kz),Vo,B o sin?(kz)], then as the
height of one of the lattices increases, phase decoherence of A
atoms is limited and nonmonotonic fragmentation occurs; the
A atom on-site interaction energies reach a maximum and then
decrease while the other atoms (B) become more localized.
This shows in a dramatic way how the effect of fragmentation
(or equivalently, phase decoherence) of one species due to
another component’s mean field can actually saturate.

All the calculations pertain to a situation in which the
two species are different hyperfine states of the same atomic
species, with equal masses and equal inter- and intraspecies
scattering lengths. Since this work is exploratory in nature,
we have not attempted an extensive survey of parameter space
by varying atom numbers, masses, and scattering lengths. We
suggest that effects similar to what we obtain could occur if the
two species were actually different types of atoms (Rb and K,
for example), such as has been obtained in recent experiments.
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APPENDIX A: INITIAL STATES AND TWA
FOR TWO-COMPONENT BECS

First, we generate a set of classical stochastic fields for the
initial state sampled from the corresponding Wigner distribu-
tion function [31,42] and obtain the dynamics of the system by
averaging the statistical ensemble over individual trajectories
in phase space. The expectation values of symmetrically
ordered operators are calculated from the weighted average
of the corresponding classical fields () with the Wigner
distribution function, W (¥w,¥y;,), without extra modification
terms.

The classical stochastic fields, a49,p0,,, are obtained
by randomly generating c-numbers that follow a given dis-
tribution, corresponding to quantum operators &9, &po, and
&,. Since the condensate mode operators and quasiparticle
mode operators commute and the component A and B con-
densate operators also commute, we independently sample the
c-numbers. For the condensate mode, the initial two-

PHYSICAL REVIEW A 94, 043631 (2016)

component superfluid state is approximated as a coexisting
mixture of independent Glauber coherent states, where each
coherent state preserves its own phase coherence. The Wigner
function for the initial state is

W(at,a*) = Wao(atao,oso) Waolaepo, ) Wea(e,a®), (A1)

where o = (oon,aBo,au)T and W g, Wgo, W are the Wigner
distribution for the component A, component B, and the
Bogoliubov modes. The condensate mode Wigner distribu-
tions are given by (i = A, B)

2
‘%Mamﬂ%)==;emﬂ—ZWm-—JNmVL (A2)

where the ensemble averages are (aio)w = +/Nio and
(afyio)w = Nio + %, and W denotes the ensemble average in
the Wigner distribution. The distribution function of coherent
states has a Gaussian profile in the complex phase space with
a variance of 1/2. For a large number of atoms (N > 1),
quantum fluctuations around the mean classical field are
relatively small, since AN /(N) = 1//(N). Thus we can think
of the initial state as a classical field with a small fluctuation
in phase space.

While the condensate modes have nonzero expectation
values for the atom number of components «;g, the noncon-
densate modes «,, have zero expected populations, for which
the Wigner distribution is the product of uncorrelated Wigner
functions for each mode [45]:

Wae(a,a®) = ]_[ Wulay,a),

i

N 2 €,
Wulay,o) = P tanh kT
€
—2la, P tanh [ —= ) |, (A3
xexp|: |, |~ tan <k3T>} (A3)

where Wgg(a,o*), Wy (v, a) is the Wigner function for the
total Bogoliubov modes and for each quasiparticle mode,
respectively. The ensemble averages of quasiparticle modes
satisfy the condition that they have zero mean values and Gaus-
sian variances, which broaden as the temperature increases:

(@ )w = (o )w =0, (A4)

(o) w =8 [ny + 5] (AS5)

Then we construct a TWA method for the dynamics of
two-component BECs under the nonequilibrium ramp-up of
state-dependent optical lattices. We begin by projecting the
above two-component state onto its phase space within the
Wigner representation. We thereby obtain a quasiprobability
distribution function over the phase space, which is formulated
to be analogous to the density matrix in quantum mechanics
[51,56]. Even though a positive-P representation is sometimes
used for simulations of a quantum system, it is subject to
instabilities, for example, in highly populated modes [51].
Instead, we approximate the dynamics of one-dimensional
trapped multimode BECs by considering the Fokker-Planck
equation in the truncated Wigner representation [51].
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The Fokker-Planck equation for the Wigner quasiprobability distribution yields the time evolution equation

WY [ i S e (o —d gy S8 8
—8t —/dzhi’j;:ﬁ |:8wi(1){Ll +glj(|w](z)| dl])}I//z(Z)

where x} =
(or i # j).
The exact Fokker-Plank equation with the presence of the
third-order term within the Wigner representation is difficult
to solve both analytically and numerically in stochastic sim-
ulations [46]. Therefore, the truncation in the TWA neglects
the third-order derivative terms in Eq. (A6), which are smaller
than the Gross-Pitaevskii first-order term in the total number
N. The second-order diffusion process term of usual stochastic
processes, which can have a prominent role in enhancing
fluctuations, is absent in the TWA. Also, in the TWA, the
expectation values of those classical fields, [T, ; ¥/ (z)¥;(z;)
in the Wigner representation, correspond to the expectation
values of quantum operators that are symmetrically ordered.
The Wigner quasiprobability distribution function W(w w )
is a classical projection function corresponding to the density
operator for the field operators in quantum mechanics:

<1_[ Kw(zi)&j(zj)> =
w

ij

(Wa,¥p)’, and dj; =1 (or 1/2) if i=j

f YW [ i @)
i,j

(AT)

APPENDIX B: THE GAUSSIAN ANSATZ
FOR WANNIER FUNCTIONS

We expand the wave functions in an array of Wannier-like
orbitals w;(z),

Ji2) =Y aywi(z — Ra), (B1)
1

where the single-particle wave function w;(z — R;;) is centered
at Ry = (21 £ 1)d /2, Rp; = 21d /2 for each component, and
the operators a;; satisfy the bosonic commutation relation

[air, a y1 =8;;8;y. The variationally minimum solution of
orbltal wave functions implicitly depends on the occupation
per site. Putting this set of orbitals into the Hamiltonian in
Eq. (1), we obtain

_ At A At A At At A A
H= - E Jiar(a;,air + a;p ;) + E Uiia;,a;,a;0i
IRI4 il
Uoat alaoa At B2
+ ABA dp,dadp + €14;,4;, (B2)
1 il

where

J,';][f = —/dZwi(Z — Rip)

i

h2
X [_E V2 +Vii(2) + Va,i(ZJ)i| w;(z — Riy),

Uij = gij f dzwi(z — Ri)wi(z — Rjy). (B3)

i W H
4 8vi(2) 89(2) 8Y73(z )I/I(Z)i| (W) +He.,

(A6)

In the tight-binding limit, the Wannier functions can be writ-
ten as Gaussian functions [57]. When the tight-binding lim-
its [Vo,a(z,8)max — Vo,4(z2,0)|min] > Er and (a1, A(2)|max —
141 4(2)|min] > Eg are achieved, the high vibrational modes
for each component are not occupied, especially at the initial
temperature 7 = 0, so that the profile of each component can
be well described by the ground state, the Gaussian wave
function. Starting from the initial trial state of infinite 1D BECs
in the periodic state-dependent optical lattice, we employ
the Gaussian variational ansatz for a single-particle orbital
placed on each site, w;(z— Ry) = (1/mo?)"/*exp[—(z —
Ri1)?/207], with the density of atoms per site equal to the
average density of the center site calculated from the GPE
(n;; = n(GPE)) Here, the widths of Gaussian wave functions
are variational parameters, as in [58-61].

Within the Gaussian approximation, we obtain the mini-
mized Gross-Pitaevskii energy functional, where the interac-
tion energies and the tunneling amplitudes can be calculated
from variational parameters. The local single-band Gaussian
state is known to be accurate for the calculation of on-site
interaction energies even for shallow lattices (~3 Eg), with the
overlap between the true Wannier function and the Gaussian
wave function nearly equal to 1.0 [62]. Since the Gaussian
ansatz can be quite imprecise for the calculation of tunneling
amplitudes because of the tail of Gaussian functions [62,63],
we concentrate on calculating on-site interaction energies.

APPENDIX C: NUMERICAL METHOD

In this section, we explain the numerical methods imple-
mented in this work. The condensation of cigar-shaped 1D
atomic clouds is achieved in an anisotropic harmonic trap with
the tight confinement along the transverse direction (w, =
2m x 130 Hz,w, = 2w x 2.71 kHz) and the aspect ratio is
21. In this work, the number of atoms ranges from 0.5 x 103
to 5 x 10°. The optical lattices are generated by red-detuned
off-resonant lasers with a wavelength A = 785 nm, so that the
period is d = A/2 = 392.5 nm, and the recoil frequency is
wr = (h/2m)(2m /1)* = 2w x 3.73 kHz.

With Ny = 5 x 10° and the trap and lattice properties
given above, we obtain as many as 75 atoms in the central
well of the quasi-1D lattice. Experimentally, working also
with 8Rb, Campbell er al. [64] were able to put at most
five atoms per site in their 3D optical lattice. Because of
the tighter transverse confinement in [64], 75 atoms per well
in our simulations would actually correspond to about eight
atoms per well in [64] for the same density at the peak. In
actual experiments, the total number of atoms would need to
be reduced over the value used here. This would lead to a
reduction of the demonstrated coherence loss effects.

The one dimensionality of cigar-shaped BECs in the
harmonic trap at 7 =0 is achieved when [, > & >, or
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w3p < hw, [65], where I, =(h/mw.)"* and Iy =(h/mcup)1/2
are the longitudinal and the transverse zero-point oscilla-
tion lengths, respectively, £ = (1/4mnspay)'/? is the healing
length, and usp = hz/Zm(ISNas/lZlf;) is the chemical po-
tential corresponding to the interaction energy. Furthermore,
at T > 0, [, is required to be smaller than the de Broglie
wavelength A7 (I, < A7), where Ay = (2 h?/mT)"/? [66].
For the 8’Rb atoms in a trap with frequencies given above, the
ratios [, /& <2 and ps3p/hw, S 3.

Each BEC component lies in the Thomas-Fermi regime
between the full 3D dynamics and the true 1D dynamics
with transverse excitations almost frozen out. Even though the
BEC is in the crossover between 3D and 1D, the low-energy
excitation modes in 3D are effectively 1D provided that the
temperature is sufficiently below the energy of the transverse
oscillator (T < hw,) [67], which is the case here (T = 0). The
Thomas-Fermi radius ranges from 5 to 12/;.

The dimensionless coupling strength of interaction energies
in this work is y = mgp/h*n;p < 2 x 1073 and the reduced
temperatureis T = 2mkpT /h?n?,, = 0[68]. Therefore, the 1D
Bose gas can be effectively described by the Gross-Pitaevskii
equation in the regime (t?> <y < 1), far from the Tonks-
Girardeau regime (y 2, 1). The nonlinearity g1p N /hw.l [31]
ranges from 120 to 1200.

The numerical preparation of initial states requires ground-
state wave functions, the Bogoliubov quasiparticle excited
modes, and their stochastic distributions governed by the
Wigner functions. We find the ground-state wave functions
by numerically integrating the GPE in imaginary time
with a time step of wgdét = 0.005 with 3072 spatial grid
points along the axial direction. We utilize the second-
order split-operator method to integrate the time evolution
of wave functions, in nonlinear as well as linear regimes.
Using the ground-state solutions of the GPE, we obtain
quasiparticle wave functions wu 4, (z),up,(2),v4.(2),vB,(2)
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for energy, €, by the diagonalization of the Bogoliubov—de
Gennes equation [Eq. (10)].

We calculate the ensemble average of stochastic fields along
the trajectory and find their coherence. Stochastic quantum
fluctuations are appended to the initial mean-field state for
generation of the ensemble of Wigner-distributed initial states,
in which step we perform the Gaussian random variable
generation of order parameters (c;o,c,,). For the condensate
mode, the mean of a;q is «/N;o and its width of deviation is
/172, whereas for the Bogoliubov quasiparticle mode, the
mean of «,, is zero and the width is 4/1/2 for T = 0. A single
sample of stochastic fields ¥y (x) is obtained by configuring
the wave-function profiles with the generated stochastic order
parameters.

The condition for numerical validity of the TWA method
in the Bogoliubov theory is that the condensate mode must be
highly populated compared to the noncondensate mode so that
the quantum fluctuation is small, being dominated by the con-
densate field. In other words, the TWA in the mean-field theory
is valid with a relatively small number of excited Bogoliubov
quasiparticles compared to the number of condensate particles
in the system, N > M /2, where N is the total number of
atoms, and M is the number of Bogoliubov quasi-particles.
This is a regime different from other exact numerical methods,
for example, the time evolving block decimation (TEBD)
method or the density matrix renormalization group (DMRG)
with the Bose-Hubbard model, in which cases each site is
limited to a low filling factor since the Hilbert space increases
exponentially with the number of atoms and the number of
sites.

We perform the simulation with an ensemble of states
consisting of 500 samples for the TWA distribution function
to achieve sufficient convergence. The time evolution of
ensembles has the typical time step given by wgdt = 0.005,
ie. 8t = 0.2 us.
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