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Experiments on trapped quantum gases can probe challenging regimes of quantum many-body dynamics,
where strong interactions or nonequilibrium states prevent exact solutions. Here we present a different kind of
exact result, which applies even in the absence of actual solutions: a class of space-time mappings of different
experiments onto each other. Since our result is an identity relating second-quantized field operators in the
Heisenberg picture of quantum mechanics, it is extremely general; it applies to arbitrary measurements on any
mixtures of Bose or Fermi gases, in arbitrary initial states. It represents a strong prediction of quantum field
theory which can be tested in current laboratories, and whose practical applications include perfect simulation of
interesting experiments with other experiments which may be easier to perform.
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I. INTRODUCTION

Space-time coordinate transformations have long been used
to map different solvable theoretical problems onto each other.
A transformation introduced in 1890 by Poincaré [1] has, for
example, been used by Kustaanheimo and Stiefel to map the
three-dimensional Kepler problem onto the four-dimensional
harmonic oscillator [2], and thereby improve the numerical
stability of perturbative calculations in celestial mechanics [3].
The same mapping works in quantum mechanics [4,5], along
with many other space-time mappings between analytically
solvable quantum systems [6—10], such as that between the
one-dimensional harmonic oscillator and the free particle
[7-9]. Space-time mappings have also been constructed
between Markov processes [11].

In quantum many-body theory, exactly solvable problems
are rare, but space-time mappings have been used in special
cases to obtain additional evolution solutions by mapping them
onto known ones. For quantum gases with certain special forms
of inter-particle interaction, such as a 1/ r2 potential [12] or a
short-ranged interaction with infinite scattering length [13], or
for systems confined effectively to two spatial dimensions [14],
nontrivial time-dependent many-body wave functions can be
found exactly by taking a simpler known wave function,
and transforming its space and time coordinates in a certain
way. Scaling solutions have been found for general initial
states within the Gross-Pitaevskii mean-field approximation
for the evolution of dilute Bose-Einstein condensates, either
in two dimensions, or in further hydrodynamic approxima-
tion [15,16], or in one dimension with an introduced imaginary
potential [17], or with only three-body interactions [18]. A
space-time transformation closely related to these scaling
solutions has also been used, in mean-field theory in one
dimension, to map evolution in time-dependent harmonic
traps onto evolution with no trap, but with time-dependent
interactions [19,20].

Here, however, we go entirely beyond the traditional use of
space-time mappings for exact solutions in special cases, and
propose a quite different application of them: they can be used
to map two quantum field evolutions onto each other exactly,
thus effectively mapping two different real experiments onto
each other exactly—for any possible measurements, and even
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if neither of the mapped experiments can be theoretically
solved (see Fig. 1). Our mappings apply, moreover, to any
mixtures of Bose or Fermi gases, in any number of dimensions.
No restriction on initial states is required, because the
mappings relate time-dependent operators in the Heisenberg
picture of quantum mechanics, in which all quantum states are
time independent [21].

II. MAPPING IDENTITY

In the Heisenberg picture, the evolution of all observables is
given, for any pure or mixed quantum state, by the equations
of motion for the associated operators [21]. For a quantum
gas, all observables may be expressed in terms of the second-
quantized field operator V/,,(r,t), which destroys a particle of
type n, and of its Hermitian conjugate field operator ¥, (r,),
which correspondingly creates a particle, at position r and
time ¢. Since effectively one- or two-dimensional systems can
be realized with ultracold atomic gases (by applying strong
confining forces in transverse directions), we consider r to be
in D = 1, 2, or 3 dimensions (although the short-distance limit
of interactions which is represented in the effective dynamics
will always remain three dimensional). With the canonical
(anti-)commutation relations

[P (0,0), 0 ()] = 8,8P (x — 1), (1)

where [A,B]: = AB + BA, this description is equally appli-
cable to fermions and bosons. Any experimental measurements
can be expressed in terms of expectation values of N-point
functions:

FamRR 1) = ([0, 4] (), 0] [0, 4, (x,0)])

where n = {ny,....ny} and R ={r,...ry}. (2)
The time dependence of all observables is thus determined
by the time dependence of the quantum fields. For a quantum
gas whose particles may be of several species n with possibly
different masses M,,, with general two-body interactions in D
dimensions, the Heisenberg equation of motion for the field

©2016 American Physical Society


http://dx.doi.org/10.1103/PhysRevA.94.043628

ETIENNE WAMBA, AXEL PELSTER, AND JAMES R. ANGLIN

{H) A spacetime mapping between
+ two different experiments
for all observables
in any state

Experiment A

phase
factor

spatial
dilatation

Experiment B

0 ta ta

FIG. 1. Space-time mapping between expectation values of an
arbitrary observable O in different experiments. The mapping
consists of a time-dependent dilatation of space and multiplication of
field operators by a Gaussian phase factor, and it relates observables
at different times in the two experiments, which may be very different
procedures. A might for example be free expansion after turning off
the trap, while B is ramping to a Feshbach resonance. Observables are
the same in the two experiments initially, because the gas is prepared
in the same (arbitrary) state.
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where V, (r,t) is the external potential felt by the particles of
type n, and Uy, (1,1, 1) is the general two-particle interaction,
which may possibly mix different particle species (such as
by including spin flips) but cannot change particle masses
(.e., Ugymn = 0 except for k,l,m,n such that M; = M; and
M,, = M,). It is to be noted that controllably time-dependent
interactions [22], including ramping to very strong repulsion or
attraction [23], are routinely achieved in current quantum gas
laboratories, for example by imposing time-dependent external
magnetic fields to exploit Feshbach scattering resonances
[23-26], or by changing the strength of transverse confinement
in order to alter the actual three-dimensional density profiles
of effectively one- or two-dimensional samples [27]. Exper-
iments with time-dependent interactions are of high current
interest as a means of investigating nonequilibrium many-body
evolution [28].

The space-time mapping identity is as follows. Suppose that
some particular set of time-dependent field operators ¥, (r,1)
satisfies Eq. (3), for some particular V and U. We then define
a second set of field operators:

iMp

B, (r.0) = e~ 17 AP, (Ar, (1) )
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where A = A(1), A(1) = dx/dt,and (importantly) dt/dt = A%
The canonical (anti-)commutation relations (1) for v/, @J then
imply that the W, \il,;[ satisfy the same relations and are just as
canonical.

Using the fact that ,(r,r) obeys Eq. (3), it is then
straightforward to show (see Appendix A) that ‘ifn(r,t) also
satisfies Eq. (3), but with V,, — V,and U — U, for

M, r? 3<1 d)2
AMll—=— 1) A
2 22 dt
Uitmn (X ,1) = MO Upginn LT, MY, T(1)). 5

The time-dependent rescaling of the spatial argument in U
may not always be experimentally straightforward, but in fact
for most of the physical U that have been proven accurate
in experiments U is a homogeneous function of its spatial
arguments: Uy (A0, AY 1) = A7 Upgpun (r, 1, 1), for some real
number s, for any real factor A. For a so-called contact
interaction (Fermi-Huang pseudopotential), s = D; for an
electric or magnetic dipole-dipole interaction, s = 3 (since
experiments do not confine the electromagnetic fields into
lower dimensions). Hence in most physical cases U will
have the same spatial form as U, with only a time-dependent
pre-factor whose control is indeed feasible [22-28].

Vo (r,t) = A2V, (r,T(1)) +

III. MAPPING BETWEEN TWO EXPERIMENTS

This formal identity gains a concrete physical meaning
when we further stipulate that A(0) = 1, A(0) = 0, and 7(0)=0,
so that W,(r,0) = ¥, (r,0). At time ¢ = 0, therefore, the
expectation values of any combination of ¥, and &, operators,
in any pure or mixed quantum state, will be identical to the
expectation values, in the same quantum state, of the same
combination of v, and 1}; operators. The time-dependent
W, and v, operators therefore represent two different time
evolutions of a quantum gas from the same initial conditions
att =0.

By comparing the two different Heisenberg equations
which they obey, we can see that v/, represents the gas evolving
with V, and U, while W, represents the gas evolving with V,
and U. The two evolutions which the mapping relates thus
represent the same gas evolving under different experimental
procedures. Each of these two evolutions of an interacting
quantum gas may be very complicated—perhaps impossible
to compute theoretically—especially if the initial state is far
from equilibrium; and the mapping is valid for any initial state.

A. Example

To show what this means, we focus on a concrete
example, in which U satisfying U(Ar,Ar") = A*U(r,r’) is
time independent and V, = 0, but we achieve a constant,
isotropic, harmonic potential V, = M,w?r?/2, having the
same frequency w for all species n, by choosing t(t) =
o~ tan(wt) and A(r) = sec(wt) [29]. This indeed satisfies
=22 7(0)=0, A(0)=1, and A(0) =0, but it provides
7(5;) = 0o. Hence an infinitely long time evolution of the
¥, (for which V, = 0) is mapped onto the evolution of ¥,
over only one quarter of a period of the harmonic trap with
frequency w.
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Furthermore, the time-independent U has been mapped
onto

0klmn(r»r/»t) = [COS(a)t)]372Uklmn(l',l'/). (6)

This is experimentally achievable, even though (depending
on the sign of s —2) [cos(w?)]*~2 may approach either co
or zero as wt — /2. For a contact interaction (s = D), for
example, this can be achieved experimentally with a time-
dependent magnetic field which approaches either a Feshbach
resonance [23,24] (for D = 1) or a point of zero scattering
length between two Feshbach resonances [24] (for D = 3).
The result then is that we have mapped the evolution of a
gas with time-independent interactions, and no trap, onto the
evolution of a gas in a time-independent harmonic trap, with
a certain time-dependent interaction.

The mapping is valid for any initial state, and how this state
is prepared is of no theoretical consequence; for experimental
convenience we can consider that the two experiments prepare
their gases initially in the same isotropic harmonic trap,
having the same frequency w for all species, and with time-
independent interactions U. In the first experiment (A), one
simply turns off the trap at t = 0, allowing the gas to expand
until some final time 75. One then measures some N-point
function [as in Eq. (2)]:

FmRR) = ([T 5] () [T i, (r7.20) ).

In the second experiment (B), the trap is left on, butat = 0
one begins ramping a control parameter in such a way that
U — [cos(wt)]’2U = U. One continues ramping until the
final time 5 = w ™! tan~!(wts) < m/(2w). One then measures
the N-point function, as in the A experiment. Since U, (r,1) is
the solution to the Heisenberg equations of motion under the
B experimental conditions, the N-point function at rg will be

FymRR) = ([T, 9] )] [T B, (. 15)]).

Applying Eq. (4), however, and using the fact that 15 was
defined by tan(wtg) = wta, we find the identity

io tan(wig) N 2 2
= Xyt (M =My )

B ’ e
Fan® R = [cos(wtp) NP
A < R R )
n.m ; )

cos(wtg) cos(wtg)

The identity (7) is an example of how our general space-time
mapping (4) implies concrete consequences: Eq. (7) explicitly
relates arbitrary measurements on interacting quantum gases
which evolve under significantly different experimental con-
ditions, after being prepared in the same arbitrary initial state.
The usefulness of this result is admittedly limited by the fact
that the B experiment, with the time-dependent interaction in
the constant trap, can only run for the maximum duration of a
quarter trap period. A lot can happen during this time, however,
especially if the initial state is far from equilibrium—and
the mapping is valid for arbitrary states. It is also valid for
arbitrary mixtures of Bose and/or Fermi gases, in arbitrarily
many effective dimensions, having any two-particle interaction
which is a homogeneous function of its spatial arguments
(and which can be given the required time dependence in
the B experiment). In the case of a contact interaction in
one dimension (s = 1), the interaction strength approaches
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FIG. 2. Numerical results for Gross-Pitaevski mean-field evo-
lution showing densities |y (x,7)|? (A) and |W¥(x,t)|> (B), evolving
under Eq. (3) with the operator fields replaced by complex classical
fields, and a repulsive contact interaction whose initial strength is
U(x,x',0) = g(0)8(x — x") for g(0) = 50hway where w is the initial
trap frequency and ay = +/h/(Mw) is the corresponding ground-state
width. The integrated densities are normalized to 1; time and space are
shown in units of 1/w and ay, respectively. Note the different ranges
of space and time covered by the two plots A and B, corresponding to
Experiments A [expansion with V,, = 0, g(t) = g(0)] and B [ramped
interaction with constant trap, g(¢t) = g(0) sec(wt)], as described in
the text. The space-time transformation maps the two plots onto
each other. Even when mean-field theory is not valid, the quantum
field mapping remains exact; this figure illustrates how it can relate
nontrivial experiments. Here the initial state contains a dark soliton,
which moves and changes in width while the whole cloud expands,
and demonstrates how adiabaticity can break down at different times
on different length scales. The dashed white curves in the B plot show
the adiabatic Thomas-Fermi radius R(t) = R(0)[cos(wt)]~'/3.

infinity in the B experiment as t5 — 7/(2w), so it is possible
to probe quite nontrivial many-body dynamics within our
example scheme.

B. Mean-field illustration

We illustrate our mapping for that one-dimensional case in
Fig. 2. We cannot plot a quantum field, but it is straightforward
to show that the space-time transformation (4) also serves to
map between the classical field equations that are obtained
by replacing the operator fields with complex c-number
fields. These classical field theories are only mean-field
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approximations to quantum many-body dynamics, but they
obey the same space-time mapping identity, and thus serve to
illustrate it.

Figure 2 shows |y(x,t)|> and |W¥(x,t)|* corresponding
to the Gross-Pitaevskii mean-field approximation to the gas
density in experiments A and B, respectively, for a quasi-
one-dimensional single-component Bose-Einstein condensate
with a repulsive contact interaction U (x,x’,t) = g()d(x — x’)
whose initial state features a single dark soliton, slightly
displaced from the center of the trap. Experiment A is
the familiar scenario of free expansion with g(#) = g(0). In
experiment B, however, we see nonequilibrium response of
the trapped gas to a temporally nonlinear ramping of the
interaction strength g(¢) = g(0) sec(wt). As the dashed lines
in Fig. 2(b) show, the gas cloud at first expands adiabatically to
follow the instantaneous Thomas-Fermi ground state, but when
the equilibrium Thomas-Fermi radius increases too rapidly, the
actual expansion of the gas fails to keep up. With increasingly
strong nonlinearity, the soliton also narrows, but eventually it
fails to shrink fast enough to maintain an equilibrium shape.
We show in Appendix B that the soliton width tracks its
equilibrium value for a longer time than the Thomas-Fermi
radius follows its equilibrium value, indicating that the gas
loses equilibrium globally before losing it locally.

Even just in mean-field theory, therefore, experiment B
is nontrivial; and yet it is related exactly to free expansion
by the space-time mapping (4). Of course, the mean-field
initial state is only accurate for a gas whose thermal excitation
and quantum depletion are both negligible, and mean-field
theory will eventually break down in any case, in both
experiments, as the one-dimensional density becomes low (in
A) or the interaction becomes strong (in B). The validity of
our mapping for the quantum field operators, however, means
that whatever the actual quantum evolution of the gas may be
the observations in A and B scenarios will still be related by

Eq. (7).

IV. CONCLUSION

Time-dependent potentials and interactions are well-
established experimental tools in today’s quantum gas labs,
and the mapping between an isotropic harmonic trap and no
trap was just one special case of V, and A(z). Since our exact
space-time mapping is so general, allowing arbitrary A(¢) and
applying to arbitrary measurements on arbitrary mixtures of

J

2

0 .
ih—r,(Ar,T) =
! 8IW( rT) |: 2M,

+ 3 [@26r) UG 0030 i 005, ),

klm

where the Laplacian with respect to Ar is simply
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multicomponent Bose and Fermi gases with many realistically
possible interactions, prepared in any initial states, it is a strong
prediction from quantum field theory which can be tested in
a wide range of real quantum gas systems. If the mapping
is experimentally confirmed, it can become a tool to expand
experimental technique, by allowing time-dependent traps to
mimic time-dependent interactions, or vice versa; or it may be
used to test for experimental errors. The mapping identity may
also be a useful benchmark for theoretical approximations:
failure to fulfill it will mark limits of validity.
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APPENDIX A: DERIVATION OF THE MAPPING IDENTITY

In this Appendix we derive the quantum field mapping
identity (5) from our main text. The derivation requires only
basic calculus with ¢ numbers.

The canonical (anti-)commutation relations (1) for v, and
1/7; imply that the ¥, and \ill satisfy precisely the same
relations:

[ (0,0), U, D)) = 8,02 787 Our = 1) = 8,,8” (x — 1),
(A1)

To spow that ¥, also satisfy Eq. (3), but with V,,, — V, and
U — U, we first differentiate Eq. (4) with respect to ¢t and find

9 . Dy Mt [/) A2
i (rr) = e~ i g2l L e (2
ot 2A 2 \n a2

s AT 3,
—i—zhxr v+ zhgg]l/fn(kr,r(t)), (A2)

where the partial differentiation with respect to 7 implies
treating A as a constant—the differentiation of A(f)r with
respect to 7, in the argument of 1/, is the preceding r - V term.
Using the Heisenberg equation (3) for 8,1, (Ar,T),

—— V2 + V,(ur, r):| Un(Ar,7)

(A3)

(A4)
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this becomes

9 . ity 3 2 D
ih—W,(r,t) = e 2 " AP in—=
thap ¥ =e o T3

iMy i dt
+ e\ [E V,(Ar,7) +

_iMy i

+e 2ni
dt
kim

Mnr2
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! dr 1 12
+ih—r-V

: ____Vz An)\ 5
Py i 22 2M, }[’(”)

M,r? x 2i2 I/A/ Gr7)
— |- —2= 2(Ar,T
2 A A2

d at A n
CAPREEAD S (a8 UG 0BG 20 00, ), (AS)

where on the right-hand side 7 denotes 7(¢) everywhere. Then using the definition dt/dt = A? this yields

J . iMy D
ihg\lln(r,t) — ¢~ TAr\P2 [ih— +

Mnr2
2A 2

2 .

A A
- ih—r-V —
A) +1 kr

2

S, VQ} U (Ar,T)

iM i 2 M, I‘2 1 d 2 A~

AP A2V, (Ar, 3 =—) A ¥,
+e [ () + =33 (5 ) & e
+e” R0 S dPr U o2 P O 00 1) (r, 7) (A6)

klm
hz iMy )2 ~ M, }"2 1 d 2 ~
=— V23[e™ 2m 3 AL, (ar, T (¢t AV, (Ar,T( 3 == ) APt

3, [e Y (Ar,T(1)] + (Ar,T(®)) + > 2 (r,1)

#37Y [P UG )] 0B 1) (A7)

klm

where in the last line we have used the mass conservation
property of nonrelativistic interactions (U, = 0 except for
k,l,m,n such that M;, = M; and M,, = M,) to replace 1% —
v ; by inserting additional phase factors which all cancel each
other.

Recognizing the first term in square brackets on the right-
hand side of Eq. (A7) as U, (r,1), we confirm the statements
(5) in our main text.

APPENDIX B: MEAN-FIELD SOLITON EXAMPLE

In this Appendix we provide further detail concerning
the specific example experiments that are represented in
Fig. 2, where we used mean-field evolution to illustrate our
quantum field mapping. This illustration was chosen because
the same mapping also applies to Gross-Pitaevskii nonlinear
Schrodinger equations, and so the mean-field alternative
accurately represents what the quantum mapping does. It is
also convenient to show the time evolution of a mean-field
density in one spatial dimension, with a two-dimensional
density plot. To avoid creating any impression that our exact
and general quantum field mapping is only restricted to
mean-field approximations or lower dimensions, we have
deliberately given only a brief discussion of the mean-field
example in our main text. The example is quite interesting in
its own right, however, and so we say more about it here.

1. Mapped version of Fig. 2

Our first point is just to confirm that our transformation
really does map the two experiments onto one another. We
show the results of the mapping only for the particular

(

observable of gas density, which was plotted in Fig. 2.
Gas density is the most commonly measured quantity in
experiments, and the mapping onto each other of the very
different density evolutions shown in Figs. 2(a) and 2(b)
confirms the potentially dramatic nature of the mapping.
Because the mapping really is exact, however, the confirmation
appears quite undramatic: the eye can barely see that the two
images have not simply been switched.

Figure 3 shows [y(x,t)|> and |W(x,t)|*> obtained by
mapping the Gross-Pitaevskii mean fields from the evolutions
shown in Fig. 2. The grids of numbers shown in each plot
have been transformed according to Eq. (4) and its inverse,
but it is very difficult to tell that the two plots of Fig. 2
have not just been exchanged for each other. The mapping
is perfect: free expansion over about 15/(2s) trap periods and
160 trap widths corresponds exactly to interaction ramping
[with the particular 1/ cos(wt) time dependence specified in
the main text] over about 1.5/(2m) trap periods and ten trap
widths. Remember, however, that the mapping is not trivial:
the spatial dilatation factor A is time dependent, and the time
transformation t — t(¢) is nonlinear.

2. Adiabaticity on different length scales in Experiment B

Here we expand on our main text’s brief remarks about
adiabaticity on different length scales in Experiment B of our
mean-field soliton example.

Figure 2(b) has shown the mean-field approximation to
the time-dependent condensate density during Experiment B,
in which the strength of the repulsive contact interaction is
ramped towards infinity. The white dashed curves superim-
posed on the density plot in Fig. 2(b) show the adiabatic
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FIG. 3. Space-time evolution of the densities |y (x,t)|> and
|W(x,1)|?, respectively, plotted by mapping the densities obtained
in experiments A (above) and B (below), according to Eq. (4) and
its inverse. Since the mapping is exact, the barely visible differences
between these plots, and those of Fig. 2 in our main text, are due to
large rescalings of numerical solutions with finite resolution.

Thomas-Fermi radius, which would mark the approximate
edge of the condensate cloud, if the ramping of the interaction
strength were infinitely slow. As observed in the main text,
the condensate does expand when the repulsive interaction in-
creases; but as the interaction increases more and more rapidly,
the increasing pressure which it supplies cannot expand the
gas fast enough to maintain the even more rapidly increasing
equilibrium size. The actual condensate size therefore falls
below the instantaneous equilibrium Thomas-Fermi radius (at
least within Gross-Pitaevskii mean-field theory).

We can quantify this breakdown in adiabaticity of the
condensate cloud size by fitting the actual (mean-field)
condensate density profile to a Thomas-Fermi-like parabola,

Mw?
2gTr(t)

tuning R(¢) and grr(¢) independently at each instant . These
fits are quite good—the actual density envelope remains quite
parabolic, even though the width of the parabola lags behind
the adiabatic Thomas-Fermi value. From this time-dependent
parabolic fit, we obtain the fitted instantaneous interaction
strength grg(¢) for which that parabolic density profile would
be the Thomas-Fermi ground state. The resulting grp(?) is
shown as the dotted curve in Fig. 4, along with the actual in-
teraction strength g(r) = g(0) sec(wt), shown as a solid curve.

[R*(1) — x71, (B1)

W (x,0)* —
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FIG. 4. Time dependence in trap units hway of the actual contact
interaction strength g(¢) = g(0) sec(wt) (solid curve) and of two
effective interaction strengths g, (¢) (dash-dotted curve) and grg(?)
(dotted curve), obtained by fitting small- and large-scale features of
the density profile, respectively, as explained in the Appendix text.
The effective interaction grg(¢) represents the constant interaction
strength for which the instantaneous parabolic envelope of the density
profile would be a Thomas-Fermi ground state of the form of Eq. (B1).
The effective interaction g, (¢) represents the constant interaction
strength for which the part of W(x,r) near the soliton would be a
gray soliton solution to the integrable nonlinear Schrodinger equation
obtained by approximating the harmonic potential as constant. The
fact that g, (¢) follows g(¢) more closely than grr(7) shows that the
condensate remains locally adiabatic on short length scales for longer
than it remains adiabatic globally.

Since the initial state has been well relaxed (by imaginary time
evolution with fixed normalization), at an initial interaction
g(0) large enough for the Thomas-Fermi approximation to
Gross-Pitaevskii density envelope to be quite accurate, the
initial fit value grp(0) coincides closely with the actual
interaction strength g(0). As the time-dependent condensate
fails to sustain the rapidly increasing Thomas-Fermi radius of
instantaneous equilibrium, the Thomas-Fermi-fitted effective
interaction strength grg(?) fails to rise as fast as the actual g(¢):
the dashed curve falls away from the solid curve significantly
from about halfway through the plotted time interval.

The initial state used for both A and B plots was prepared
by relaxation (Gross-Pitaevskii evolution in imaginary time)
while maintaining f dx |¥|*> = 1, with interaction g(0) =
50Away. By including a zero in the trial wave function before
relaxation, however, and stopping relaxation before the zero
filled in, the initial state was prepared with a dark soliton
at x = 2. In the subsequent real-time evolution shown in
the plots, this soliton moves and changes width, while the
whole cloud expands; in Experiment B, the soliton narrows as
the repulsive interaction strengthens. Such a narrowing would
be expected adiabatically, if the interaction were increased very
slowly; when the interaction strengthens too quickly, however,
the soliton may not have time to become as narrow as it would
in the adiabatic limit.
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The adiabatic soliton width is determined by three factors:
the “grayness” of the soliton (which increases when the
soliton moves); the local gas density near the soliton, which is
well described by the instantaneous Thomas-Fermi envelope
described above; and the interaction strength g. To quantify
how closely the soliton narrowing adapts to the changing
interaction strength, independently of the soliton grayness and
ambient density, we can approximate the harmonic potential
as constant over the width of the soliton, and then approximate
the Gross-Pitaevskii evolution of W(x,¢) near the soliton with
the integrable nonlinear Schrodinger equation

- h? - -
iho,W(x,1) = <_Waxx + Vo + gs01|‘1‘|2>‘1’(x,t) (B2)

where the effective trap potential at the soliton Vj, and the
effective interaction gy, which is “felt” by the soliton, are
considered as constants. Moving gray soliton solutions to

Eq. (B2) are given by the ansatz
v gsolM< A/ 8sol ):H
——\x—x0— B—=t
v M

P(x,t) = {i,B+/<tanh |:/< N
X exp <—%[V0 + gl (B7 + K2>1r> (B3)
for any constants 8, k, and x.

For each time ¢, then, we fit the actual density profile
|W(x,1)|? to the ansatz |¥(x,7)|> near the soliton, by tuning
K, B, xo, and gso1. The fits remain good, near the soliton, at all
times. The resulting fitted go(¢) then represents the effective
interaction strength felt by the soliton at time ¢: it is the constant
interaction strength for which the instantaneous W(x,7) would
be a gray soliton solution locally, given the instantaneous
grayness parameter 8 and local envelope density x> + 2. This
fitted gsoi(#) is shown as the dash-dotted curve in Fig. 4. Like
the analogous effective interaction strength grr(#) implied by
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the overall condensate radius, the effective interaction strength
gs01(t) implied by the instantaneous soliton width also lags
behind the actual interaction strength g(¢) as it increases. (It
seems to follow a power law: gi(¢)/g(0) = [g(1)/g(0)]°%.)
We can note, however, that gy, (¢) follows the actual g(¢) much
more closely than grg(?) does (which does not appear to obey
any comparable power law). The soliton width behaves more
adiabatically, for longer, than the overall condensate cloud
size.

This differential adiabaticity, depending on length scale, is
physically intuitive. The dynamical time scale for large-scale
changes of the overall density profile is that of low-frequency
collective modes of the condensate: it is on the order of the
harmonic trap period. The soliton, however, is a structure on the
scale of the local healing length; the characteristic time scale
for evolution on this shorter length scale is correspondingly
shorter. We therefore expect that the more rapidly responding
soliton width will be better able to follow the changing
g(t) than the more slowly reacting Thomas-Fermi radius.
Adiabaticity breaks down on large scales (globally) before
it breaks down on small scales (locally).

The evolution in Experiment B is therefore quite interesting,
because for initial conditions which feature structures on
different length scales it can reveal how adiabaticity and
equilibration occur at different rates on those different length
scales, so that a quantum gas may be both in and out of
equilibrium, in different respects, at the same time. The failure
of mean-field theory at stronger interactions, or even initially
because of quantum or thermal depletion, will invalidate our
plotted mean-field evolution; but it will only make the real Ex-
periment B even more interesting. This nontrivial experiment
may nonetheless be simulated exactly in every respect, with all
possible quantum and thermal and nonequilibrium corrections
fully included, by the standard expansion of Experiment
A—when the exact space-time mapping is applied.
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