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Stationary and traveling solitons via local dissipation in Bose-Einstein
condensates in ring optical lattices
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A model of a Bose-Einstein condensate in a ring optical lattice with atomic dissipations applied at a stationary
or at a moving location on the ring is presented. The localized dissipation is shown to generate and stabilize
both stationary and traveling lattice solitons. Among many localized solutions, we have generated spatially
stationary quasiperiodic lattice solitons and a family of traveling lattice solitons with two intensity peaks per
potential well with no counterpart in the discrete case. Collisions between traveling and stationary lattice solitons
as well as between two traveling lattice solitons display a critical dependence from the lattice depth. Stable
counterpropagating solitons in ring lattices can find applications in gyroscope interferometers with ultracold
gases.
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I. INTRODUCTION

Bose-Einstein condensates (BECs) trapped in an optical
lattice have attracted major scientific interest and can
provide an interesting analog to solid-state systems [1,2].
An advantage here is that there is almost complete control
of the parameters that regulate the lattice. This has led to
studies of solid-state phenomena such as quantum phase
transitions [3], transport [4], Anderson localization [5], and
the macroscopic Zeno effect [6]. In the superfluid phase of the
BEC, a lot of attention has been devoted to discrete breathers
in the discrete nonlinear Schrödinger equation (DNLSE) [7]
and to lattice solitons in the Gross-Pitaevskii equation
(GPE) [8]. The optical lattice allows solitons and discrete
breathers to exist with repulsive BEC where they have been
observed experimentally [9]. Methods for the generation of
discrete breathers include the evolution from Gaussian wave
packets [10,11] and the relaxation from random-phase states
via localized losses [12]. Stabilization of discrete breathers in
the DNLSE via localized losses can be achieved by either the
progressive lowering of the fluctuating background [7,12] or
by producing sudden atomic avalanches [13]. Moving discrete
breathers have also been obtained with these techniques in
accurate numerical simulations. An interesting application
of moving breathers is in atom interferometry [14]. Without
a lattice, methods of soliton interferometry have been
implemented experimentally in [15], while techniques for
generating counterpropagating solitons by using a splitting
potential barrier in a ring trap have been proposed and
discussed in [16–18]. The aim of our work is to demonstrate
that stationary and moving lattice solitons in continuous
models of BECs in ring lattices can be generated and stabilized
via localized losses. In particular we show that higher-order
lattice solitons that have no counterpart in the discrete case can
be effectively stabilized by these techniques. Bright and dark
lattice solitons were generated via dissipation for attractive
BECs in [19]. Here we focus instead on repulsive BECs.

We consider a ring trap [20] with a toroidal optical
lattice as realized, for example, in [21–24] [see Fig. 1(a)].
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Experimentally, a BEC in a ring trap with an azimuthal optical
lattice can be achieved either by using counterpropagating laser
beams in a circular wave guide or by illuminating transversally
a ring trap with two counterrotating orbital angular momentum
laser beams with the optical axis along the center of the ring
trap and perpendicular to the trap.

It is important to outline that the equations used in this
paper for the case of a BEC in an optical lattice also describe
light traveling through arrays of optical waveguides. Since the
theoretical and experimental pioneering work of [25], lattice
solitons, also known as gap solitons, have been predicted and
observed in a variety of purely optical configurations [26].
In nonlinear optics, the ring lattice described above for a
BEC corresponds to a cylindrical array of optical waveguides
[see Fig. 1(b)]. All the results presented here can then be
extended to this purely optical case. Lattice solitons in optical
ring configurations have been investigated in [27], where the
effects of self-interacting soliton tails have been studied in
detail. Here we consider a number of optical waveguides that
is large enough to make these effects negligible.

Another method of supporting solitons in nonlinear media
is that of localized gain (for a review, see [28]). There is
also great interest in parity-time symmetric systems [29], for
which, when applied to a BEC, localized gain and dissipations
are balanced (for recent reviews about nonlinear systems,
see [30]). In our model, we believe that it would be possible
to implement this technique too, with the gain being provided
by an atom laser [31]. Indeed, such a setup is described in [32]
for a ring trap without a lattice. In this paper, however, we
focus on the effects of dissipation alone, where Hermitian or
non-Hermitian Hamiltonians cannot be applied.

Since the GPE and the DNLSE have been obtained under
the mean-field approximation, which is valid in the limit of
large numbers of atoms, we do not consider here purely
quantum effects arising from atom-atom correlation, such
as the collapse and revival of the matter wave field [33] or
many-particle entanglement [34,35]. A detailed investigation
of these effects is beyond the scope of this paper, although
recent studies concerning localization of a BEC in an optical
lattice in the presence of localized dissipations and beyond
the mean-field approximation can be found in [35–37].
All these simulations confirm that the fundamental result
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FIG. 1. (a) BEC lattice soliton in an optical lattice ring trap.
The arrow identifies the position where localized losses are applied.
(b) An array of optical waveguides in a ring configuration. The dark
cylinder represents an output coupler capable of removing light from
the array.

of self-localization via localized losses, originally obtained
in [12], survives in the quantum regimes beyond the mean-field
approximation.

Model equations for a BEC in a ring optical lattice are
introduced in Sec. II. These are the continuous counterpart
of the DNLSE with the addition of localized dissipations.
In order to differentiate and compare the solutions of the
continuous model of Sec. II with those of the DNLSE, we
refer to continuous soliton solutions in the annular periodic
potential as lattice instead of discrete solitons. Lattice solitons
are also known as “gap solitons” in the literature. In Sec. III
we discuss the generation of symmetric and asymmetric
lattice solitons via the effect of stationary localized losses and
compare them successfully to those found by other numerical
methods in [38]. Traveling lattice solitons (TLSs) in the ring
trap are generated and investigated in Sec. IV. Two kinds
of TLSs are found: with one peak per lattice well and with
two peaks per lattice well. It is important to note that the
double-peak TLS has no counterpart in the DNLSE. Finally,
collisions between traveling and stationary lattice solitons
in a ring trap are investigated in Sec. V, while collisions
between two traveling lattice solitons are studied in Sec. VI.
In the DNLSE, collisions of discrete breathers were studied
in [39], where their dependence on the velocity, amplitude,
and phase difference of the breathers was investigated. Here

we investigate the dependence of the collision of continuous
lattice solitons on potential depth V0. Possible applications to
atom interferometry are discussed in the conclusions.

II. THE MODEL EQUATIONS

We consider the Gross-Pitaevskii equation for a one-
dimensional BEC in an optical lattice given by [38,40]

i�
∂�(x,T )

∂T
=

[
− �

2m

∂2

∂x2
+ E0 sin2

(
πx

L

)
+ g1D|�|2

]
�,

(1)

where � is the reduced Planck’s constant, E0 is the potential
depth (usually measured with respect to the recoil energy), L =
λ/2 is the lattice period, λ is the laser or spatial wavelength
used for the optical lattice, and m is the atomic mass. The
one-dimensional atom-atom interaction parameter is given by
g1D = 2�ω⊥as , where ω⊥ is the transverse trapping frequency
and as is the scattering length of the BEC.

To describe the BEC trapped in the ring we use Eq. (1) with
periodic boundary conditions. For convenience, dimensionless
variables are used. First, we rewrite Eq. (1) by normalizing u =√

L/2N�, t = T/T0, and V0 = E0/Er , where T0 = mL2/4�,
Er = 4�

2/mL2 is the recoil energy, and N is the number of
atoms [38]. The length scale x is then changed into the ring
angle θ = 2πx/ML, ranging from 0 to 2π rad, where M is
the number of potential wells in the ring along the azimuthal
direction. The resulting equation is
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2
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2

)

+β|u|2 − iρ(θ,t)

]
u. (2)

The nonlinear parameter β = Nω⊥asmL/� is positive for
repulsive condensates and negative for attractive ones. In order
to describe localized losses of the atomic population along the
ring at certain times t , we have added the term −iρ(θ,t)u in
Eq. (2). Extremely precise methods for removing atoms in
a particular position of a BEC in optical lattices have been
implemented with the use of narrow electron beams [41]. The
intensity of such electron beams can control the number of
atoms that are removed from one or more potential wells of
the optical lattice. In our examples here, localized losses are
applied at the furthest point in the ring (i.e., at an angular
distance of π rad) from the peak of the stationary or moving
lattice soliton. For example, with the stationary lattice solitons
that are usually generated at θ = π , the dissipation is applied
at θ = 0 = 2π .

Equation (2) is normalized so that at t = 0, before any
atoms are lost due to dissipation,∫

u(t = 0) dθ = 1. (3)

In this paper, we use only repulsive BECs (i.e., β > 0) and
investigate the generation of bright lattice solitons via localized
dissipations. We note that in [19] both bright and dark solitons
have been generated via dissipation for attractive BECs and
at moderate lattice depths. We have not observed generation
of dark solitons in our simulations, but that does not exclude
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them from being stabilized after a transient application of the
dissipation.

III. STATIONARY LOCALIZED DISSIPATIONS

Stationary and moving breathers can be formed in the
DNLSE starting from initial Gaussian wave packets [7,10,11].
For our continuous-variable model, we use the general form

u(t = 0) = M2

γ 1/2π9/4
exp

(
− (θ − θc)2

2γ 2

)
, (4)

with θc being the position of the center of the wave packet and γ

being the width. With the nonlinear coefficient fixed at β = 1,
the initial width was changed, and several localized solutions
were found in the case of zero losses (i.e., the conservative
case).

Typically, the Gaussian wave packet would reshape into
a solitonic profile. The atomic mass expelled from the
wave packet, however, forms a noisy background. The peak
fluctuates in height as it keeps interacting with the background.
As the width of the initial wave packet is increased, the back-
ground becomes noisier, and sometimes, smaller-amplitude
peaks appear close to the main one. The small-amplitude
peaks, however, do not survive in the long term. When the
width of the initial Gaussian condition is too large, no peak is
formed, and the condensate disperses into the background.
Similarly, if the width is too small (smaller than a single
potential well), there is no self-localization either.

When dissipation is applied to the above configuration, we
obtain less noisy backgrounds since the mass expelled from
the initial wave packet escapes at the location of the losses. In
all the examples in this section, the dissipation acts on around
four potential wells, with the maximum loss of 0.5 at θ = 0 =
2π . For Gaussians of different widths we routinely recover
stable lattice soliton solutions via localized dissipation (see,
for example, Fig. 2). These solutions are very close to those
shown in [38] and are obtained with very different numerical
methods.

The effect of dissipation on the soliton and background
can be seen clearly in Fig. 3, which shows the decay of the

FIG. 2. Stationary lattice soliton formed from applying dissipa-
tion to an initial Gaussian wave packet (4) with γ = 2. The shape
of the lattice soliton is very similar to those presented in [38]. The
dotted line is the lattice V (see the scale on the right), with V0 = 10.

FIG. 3. Intensity distribution of stationary lattice solitons ob-
tained from initial Gaussian wave packets with localized dissipation
in a lattice of (a) 20 potential wells and (b) 160 potential wells. In
(a), the curves correspond to t = 0 (black upper line), t = 20 000
(red middle line), and t = 100 000 (blue lower line), with time t = 0
corresponding to the moment dissipation is turned on. In (b), we also
show t = 0 (black upper line) andt = 100 000 (blue lower line), along
with the intensity distribution after increasing the number of potential
wells where the dissipation acts on from ∼4 to ∼150 at t = 100 000
and then running the simulation for another 100 000 time units (green
lower line).

noisy background, leading to exponential tails associated with
lattice solitons. In the larger lattice, this effect is less obvious
due to the distance from the lattice soliton to the place where
the dissipation is applied [Fig. 3(b)]. Making the dissipation
broader so that it acts on most of the potential wells in the
lattice (in this case ∼150 out of 160) can help to reveal the
tails faster [see green lower line in Fig. 3(b)].

We find that the final shape and frequency of the lattice
soliton is affected by changing the initial width of the Gaussian
γ : the wider the Gaussian is, the more atoms are lost due to
dissipation and the lower the final peak amplitude of the lattice
soliton is. The frequency of the oscillations of the real and
imaginary parts of the solitons, along with the gradient of the
exponential tails of the soliton, is larger if the number of atoms
(i.e., the peak amplitude) is larger. This can be seen in Table I,
where the peak intensity, gradient, and frequency of the final
lattice soliton are displayed versus the Gaussian width.

Localized dissipations allow one to generate a broad variety
of lattice solitons from Eq. (2). For example, for γ = 1.3
and γ = 1.8, the result is that of asymmetric lattice solitons
with two high peaks next to each other (see Fig. 4). The
oscillation of this asymmetric solution is quasiperiodic. The
values of peak intensity, frequency, and gradient of the tails
of the quasiperiodic solutions (QSs) in Table I are those

TABLE I. Values of parameters used in the simulations.

γ Peak intensity Gradient of tails Frequency Nature of solution

0.5 1.258 0.420 4.05 SLS
0.7 1.167 0.410 3.97 SLS
0.9 1.012 0.398 3.89 SLS
1.0 0.923 0.392 3.83 SLS
1.2 0.765 0.367 3.72 SLS
1.3 0.651 0.355 3.62 QS
1.6 0.539 0.332 3.55 SLS
1.8 0.377 0.289 3.46 QS
2.0 0.362 0.287 3.43 SLS
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FIG. 4. (a) Quasiperiodic solution generated by applying dissipa-
tion to an initial Gaussian with width γ = 1.3. (b) Variation in time
of intensity of peak of larger amplitude (black upper line) and smaller
amplitude (red lower line).

associated with the highest peak in each case. Note that there
are quasiperiodic discrete breather counterparts in the DNLSE
(see [42]).

Another type of solution, shown in Fig. 5, is symmetric
with two main peaks (as in [40]). The two peaks are in phase
with each other and oscillate at the same frequency, as opposed
to the previous quasiperiodic example in Fig. 4. This lattice
soliton has been found by using localized dissipations and
by shifting the initial wave packet by L/2 (half a potential
well). The same effect can be obtained with a potential of
V = V0 cos2(Mθ/2) rather than V = V0 sin2(Mθ/2), so that
the initial Gaussian wave packet is centered between two
potential wells. The nonlinearity is set to the value of β = 10,
corresponding to a higher number of initial atoms or a larger
scattering length. With β = 1, the double peak relaxes to the
single-peak solution quickly.

For completeness we show that localized structures can
also be obtained via localized dissipations by starting from a
homogeneous distribution of atoms across the optical lattice
with random phases in analogy with what has been done in the
DNLSE [7,12]. In the example here, we first run a transient
without dissipation for 1000 time steps. After this, dissipation
is turned on, as shown in Fig. 6. There is a first localization to
two peaks [see Fig. 7(a)]. The amplitudes of the peaks fluctuate
and, eventually, at long time scales (around t = 35 000), the
peaks move closer to each other, so that only one potential
well separates them [see Fig. 7(b)]. To observe this behavior
the nonlinearity has been increased to β = 50.

FIG. 5. A higher-order stationary soliton solution with two peaks
formed from applying dissipation to an initial Gaussian wave
packet (4) centered between two potential wells.

FIG. 6. Space-time evolution of atomic density u(x,t) with β =
50 in the presence of localized dissipations. The initial condition is
that of a “flat” equal amplitude wave function with random phases.

IV. TRAVELING LOCALIZED DISSIPATIONS

By using an initial Gaussian wave packet with an addi-
tional momentum, traveling breathers can be formed in the
DNLSE [7,10,11]. In order to simulate this procedure in the
continuous case and stabilize a TLS, we have used an initial
distribution made of a “Gaussian of Gaussians” [see Fig. 8(a)].
In the DNLSE where each potential well corresponds to
a single lattice point, our distribution reduces to a normal
Gaussian shape [see dashed line in Fig. 8(a)]. With the addition
of an initial momentum p [here set to cos(p) = −0.95], a
traveling peak is formed in the continuous model. We then
apply dissipation in the angular position opposite this peak
in a way similar to what is described in [7] for the DNLSE.
Since the atomic density peak is traveling, the point at which
dissipation is applied also moves.

In the example shown in Figs. 8 and 9, we consider β = 1.0,
V0 = 10, and cos(p) = −0.95 with dissipations given by
ρ = 0.5 over four lattice wells. At the beginning of the
simulation, a certain number of atoms remain stationary after
the traveling peak is formed. This can be seen in Fig. 8(b), with
the high-amplitude stationary part of the wave function visible
until t ≈ 100, when these atoms are removed from the lattice
by the moving dissipation beam. At long time scales, the peak
shapes into a TLS that travels at a constant speed [shown in
Fig. 9(a)]. It is important to note that without dissipation, the
atoms that do not travel with the moving peak eventually spread
across the lattice, giving rise to a large background noise. As

FIG. 7. Intensity distribution of localized solution obtained from
applying dissipation to an initially flat wave function at (a) t = 10 000
and (b) t = 100 000.
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FIG. 8. (a) Initial condition for the formation of a TLS. Note that
this distribution would be an ordinary Gaussian shape in the DNLSE
(blue dashed line). (b) Space-time evolution of atomic density u(x,t)
of the TLS with � = 1 and dissipations ρ = 0.5.

the moving peak travels and interacts with the background, its
amplitude reduces since it loses atoms to the background. By
t ≈ 1600, the height has decreased by half, and by t ≈ 3000
the conservative traveling peak has disappeared. In contrast
in the presence of the moving dissipation, the TLS survives
on much longer time scales, maintaining the same height
after t ≈ 40 000. The fact that dissipation helps instead of
hinders the formation of a TLS is even more surprising since,
different from the stationary lattice solitons, TLSs require the
presence of a background in order to overcome the unavoidable
Peierls–Nabarro barriers [7,43]. The presence of the localized
dissipation is then twofold: on one side it removes enough
stationary background noise to help with the localization of the
TLS, and on the other it moves with the traveling background,
thus keeping it at the level necessary for the motion and
stability of the TLS.

It is important to note that the TLS of Fig. 9(a) formed
via the localized dissipation is a higher-order TLS with two
atomic density peaks per potential well [see Fig. 9(b)]. Due to
its shape, this TLS has no counterpart in the DNLSE. We have
determined an approximate form of the amplitude of the TLS
displayed in Fig. 9 that can be used as the initial condition at
time t = 0, given by

u(θ ) = −7.66A exp

[
i
pM(θ − π )

2π

]

× sin[M(θ − π )]sech[AM(θ − π )], (5)

where A is a parameter that depends on the width of the TLS.
For A = 1/(7.5π ) and p = −0.4 we obtain a fit of the TLS

FIG. 9. (a) Intensity distribution of a TLS at t = 10 150 (black
left line), t = 10 220 (blue middle line), and t = 10 290 (green right
line). (b) Close-up of intensity distribution at t = 10 150 (black thin
line) with the periodic potential (red thick line), showing the two
peaks per potential well.

FIG. 10. Temporal evolution of the intensity distribution of the
TLS initiated via (5) for the case (a) with localized dissipations (ρ =
−0.4) and (b) without localized dissipations (ρ = 0). Note that TLS
is traveling along the ring, but each distribution has been shifted to
have the TLS maximum at the same angular location.

in Fig. 9 as accurate as a few percent. Having determined the
approximate TLS shape in Eq. (5), one can use it as an initial
condition for the formation of the double-peak TLS in the
presence or absence of dissipation. With dissipation ρ = 0.5,
we have verified that the TLS of Fig. 9 forms much faster
when using the wave packet (5) as the initial condition instead
of the Gaussian wave packet. Figure 10(a) shows that this TLS
survives for extremely long time scales with an extremely
small loss of atomic density or energy. The steady loss due
to dissipation is so small that after 1 million time units, the
atomic density only decreases by 0.21%. This is similar to
what happens to the stationary lattice solitons in Sec. III when
boundary losses approach irrelevance at the tails of the lattice
soliton.

Without localized dissipation, a traveling peak starting
from (5) survives for a long time [see Fig. 10(b)]. However, in
the absence of dissipation, the background noise eventually
grows and absorbs the peak, as shown in the last stages
of Fig. 10(b). These features demonstrate that localized
dissipation is necessary for both the formation and the stability
of the double-peak TLS when starting from wave-packet
distributions of atoms in the lattice with a given momentum.

We have also applied localized traveling dissipation to
TLSs with one peak per potential well by using the analytical
approximation of [44],

u(θ ) = 8.11A exp

[
i
pM(θ − π )

2π

]

× cos

[
M(θ − π )

2

]
sech[AM(θ − π )], (6)

FIG. 11. TLS with one peak stabilized by localized dissipations.
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FIG. 12. A TLS colliding with a SLS of amplitude ≈0.45 (a) and
≈0.95 (b).

with A and p being the amplitude and the momentum
of the TLS, respectively. In Figs. 11(a) and 11(b) we set
A = 0.3/(2π ) and p = −0.5 and show the amplitude of the
initial condition (6) and its temporal evolution in the ring,
respectively. It is important to note that with or without
dissipation, the initial condition (6) quickly develops a noisy
background on which the TLS travels while remaining well
approximated by (6) in the potential wells where atomic
localization takes place. The dissipation clears up stationary
noise but does not destroy the TLS with one peak per potential
well. The atomic density is only slightly affected by the
dissipation, which decreases by ∼0.12% after 1 million time
units, even slower than the higher-order TLS.

V. COLLISION OF TRAVELING AND STATIONARY
LATTICE SOLITONS

In this section we investigate the collision of the TLS with
two peaks per potential well (previously stabilized by the
localized dissipations) and a stationary lattice soliton (SLS)
generated with the same method as discussed in Sec. III. The
height of the stationary soliton is varied by changing the width
of the initial Gaussian wave packet via a modification of the γ

parameter.
In Fig. 12 the temporal evolution of the atomic density

of both lattice solitons at successive collisions in the ring
is displayed for zero dissipation. The TLS and the SLS are
initially as far apart in the ring from each other as possible. The

amount of atomic density that passes through the stationary
lattice soliton at each collision is determined by its height. The
higher the stationary lattice soliton is, the less atomic density
passes through, as shown in the examples in Fig. 12. For
example, when the amplitude of the SLS is low [see Fig. 12(a)],
the majority of the atomic density in the TLS passes through
the stationary one at the point of collision, with only a small
amount being reflected. After each collision, the atomic density
that has been reflected interferes with and scatters the atomic
density of the TLS that has been transmitted by the SLS. This
makes the TLS weaker and weaker as time goes on.

When the amplitude of the SLS is high [≈0.95 in
Fig. 12(b)], the majority of the atoms in the TLS reflects off of
the stationary one, while only a small number manage to tunnel
through. The small amount of atomic density that tunnels
through appears to have no major effect on the reflected TLS,
which manages to survive longer than in the previous example.

VI. COLLISIONS OF TWO TRAVELING
LATTICE SOLITONS

For completeness, we examine the collisions of two TLSs
circling in the ring. In the first example, in Fig. 13, we use the
TLS with two peaks per potential well, as described in Sec. IV,
with β = 1 and V0 = 10. We first position two identical TLSs
at opposite sides of the ring (≈π rad apart), make them travel
in opposite directions (p = 0.5 and p = −0.5, respectively),
and then make them collide. Since dissipation would interfere
with the process of collisions, we set ρ = 0 for both TLSs.
As demonstrated in Fig. 10(b), the TLS with no dissipations
survives for a long time, during which more than a hundred
collisions can take place. We focus here on the first couple
of collisions to establish the nature of the interaction of the
TLSs at short distances and for interferometric properties. The
collision of the two TLSs results in two seemingly identical
TLSs at the output [see Fig. 13(a)]. We have verified that
neither atomic density nor energy has changed in either of the
output TLSs with respect to the input.

In order to find out if the TLSs have gone through
one another or have reflected each other, we have split the
wave function in two by substituting u = u1 + u2, where u1

represents the atoms of one TLS and u2 represents that atoms

FIG. 13. Collision of two TLSs with two peaks per potential well. The total atomic density profile of the collisions is shown in (a), while
the atomic density profile from each initial TLS is plotted in (b) and (c).
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TABLE II. Percentage of atomic density reflected and transmitted
in collisions between two higher-order TLSs.

V0 Reflection Transmission

7.0 11.8 88.4
7.5 12.6 87.4
8.0 13.7 86.3
8.5 15.1 85.0
9.0 16.8 83.2
9.5 18.6 81.5
10.0 20.4 79.6

in the other, into Eq. (2) to get

i
∂u1(θ,t)

∂t
=

[
− π2

2M2

∂2

∂θ2
+V0sin

2

(
Mθ

2

)
+β|u1 + u2|2

]
u1,

i
∂u2(θ,t)

∂t
=

[
− π2

2M2

∂2

∂θ2
+V0sin

2

(
Mθ

2

)
+β|u1 + u2|2

]
u2.

(7)

We find that, when the TLSs collide, some of the atomic
density from each TLS passes through the other while the
remaining part is reflected. When this happens, the reflected
atomic density of one TLS merges with the transmitted part of
the other one. This happens in such a way that the two TLSs
that result from the collision have approximately the same
shape as the original ones, despite containing a mixture of
the atomic densities from both of them. We have verified that
the results of the numerical simulations of Eqs. (7) reproduce
exactly those of the simulations of Eq. (2) when considering
u = u1 + u2. In this particular example, ∼79.6% of the atomic
density of each TLS passes through the other one at each
collision. The evolution of the atomic density distributions of
each initial TLS is plotted in Figs. 13(b) and 13(c), showing
how each TLS splits at each collision. The transmitted and
reflected fractions of atomic density of the two TLSs in the
collisions do not change when starting the collision process
from a different initial location of the TLS. However, we have
measured that these fractions change with the depth of the
lattice potential, as reported in Table II.

Similar results of collisions occur with the TLSs with just
one peak per potential well. In Fig. 14, we show collisions
of these TLSs for V0 = 10 and β = 0.041. Again, the TLSs
“swap” atomic density at each collision, with the shape of
the resulting TLSs largely unchanged. Here ∼77.0% of the
atomic density in each TLS stays with the original one at
each collision, while the remainder joins the other one. In
Table III we show the dependence of the transmitted and
reflected fractions of atomic density in the collisions of TLSs
with a single peak per potential well when changing the depth
of the optical lattice.

VII. CONCLUSIONS

We have analyzed the effect of local dissipation on BEC in
a ring lattice. We found that the dissipation can both generate
and stabilize stationary and traveling lattice solitons. A TLS
with two intensity peaks per potential well was introduced
that does not have a counterpart in the DNLSE. This can be
generated via an initial Gaussian wave packet (as in the discrete
model) with dissipation. This does not survive without losses
in the long term. We then investigated the collisions of this
TLS with different SLSs and found that the interaction and
survival of the TLS depends on the amplitude of the SLS.
We also analyzed the collisions of two TLSs in the ring. We
found that some of the atoms in each TLS merge with the
colliding one, while some are reflected in such a way that
the shape of the resulting TLS’s intensities stays the same.
This collisional property depends on the potential depth of the
lattice. The number of atoms that are transmitted (reflected)
during the collision is smaller (larger) in deeper lattices and
larger (smaller) in shallower lattices.

A possible application of the TLS in a ring lattice is
interferometry. The TLS can collide with extra potential
barriers added to the lattice. This has been proposed for
attractive BECs without a lattice in [16–18]. With an optical
lattice, there is the possibility for the interferometric features,
such as Sagnac effects, to work with a repulsive BEC and with
higher-order TLSs.

The SLS and TLS solutions obtained via localized dissipa-
tions are robust deterministic features to small fluctuations. It

FIG. 14. Collision of two TLSs with a single peak per potential well. The total atomic density profile of the collisions is shown in (a), while
the atomic density profile from each initial TLS is plotted in (b) and (c).
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TABLE III. Percentage of atomic density reflected and transmit-
ted in collisions between two TLSs.

V0 Reflection Transmission

9.0 14.7 85.3
9.5 18.3 81.7
10.0 23.0 77.0
10.5 29.5 70.5
11.0 38.2 61.8

should also be noted that although the model and equations of
this paper have been used to describe the situation of BECs in
a ring lattice, they can also be generalized to light propagating
in cylindrical arrays of waveguides.
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