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We theoretically study the superfluid phase of a strongly correlated 173Yb Fermi gas near its orbital Feshbach
resonance by developing a quantitative pair-fluctuation theory within a two-band model. We examine the density
excitation spectrum of the system and determine a stability phase diagram. We find that the 173Yb Fermi gas is
intrinsically metastable and has a peculiar equation of state, due to the small but positive singlet scattering length.
The massive Leggett mode, arising from the fluctuation of the relative phase of two order parameters, is severely
damped. We discuss the parameter space where an undamped Leggett mode may exist.
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I. INTRODUCTION

The realization of magnetic Feshbach resonance (MFR) in
alkali-metal atoms, i.e., tuning the s-wave scattering length of a
two-component atomic Fermi gas using a magnetic field [1,2],
opens a new paradigm for studying strongly correlated
many-body phenomena. The crossover from Bose-Einstein
condensates (BECs) to Bardeen-Cooper-Schrieffer (BCS)
superfluids [3] in both three [4–7] and two dimensions [8–12]
has now been experimentally explored in greater detail, leading
to a number of new concepts such as a unitary fermionic
superfluid and universal equation of state (EoS) [7,13,14]
that bring new insights to better understand other strongly
interacting systems, including high-Tc superconductors [15],
nuclear matter [16], and quark-gluon plasma [17].

For alkali-earth-metal atoms (such as Sr) or alkali-earth-
metal-like atoms (i.e., Yb), however, the MFR mechanism
does not work, due to their vanishing total electron spin [2].
In a recent pioneering work by R. Zhang et al. [18], an
alternative mechanism of orbital Feshbach resonance (OFR)
for 173Yb atoms has been proposed. Because of a shallow
bound state (i.e., a large triplet scattering length) caused
by the interorbital (nuclear) spin-exchange interactions, the
small difference in the nuclear Landé factor between different
orbital states allows the tunablity of scattering length through
a magnetic field [18]. The existence of the predicted OFR
has most recently been confirmed by either an anisotropic
expansion [19] or a cross-thermalization measurement [20],
which determined a resonance field B0 = 41 ± 1 G [19] or
B0 = 55 ± 8 G [20,21], respectively.

It is of great interest to explore the many-body physics
of OFR. Indeed, there are a number of urgent problems to
address. Earlier qualitative mean-field analysis introduced two
order parameters and found that the OFR is associated with
the out-of-phase solution of the two pair potentials [18].
This solution is in fact an excited state (saddle point) in
the landscape of the thermodynamic potential [22,23] and
therefore may suffer from the some instabilities encountered
by the breached pairing or Sarma phase in imbalanced Fermi
gases [24,25]. On the other hand, the existence of two order

parameters in OFR opens the possibility of observing the
long-sought massive Leggett mode [26–29] resulted from the
fluctuation of the relative phase of the two order parameters.
More fascinatingly, OFR is a narrow resonance due to the
significant closed-channel fraction [30]. Would we observe
any peculiar feature of the EoS near the OFR of 173Yb atoms?

In this work, we address those interesting questions on
stability, equation of state, and potential observation of the
massive Leggett mode, and present a quantitative description
of the zero-temperature superfluid state of 173Yb atoms near
OFR. Our main results are briefly summarized as follows
(see also Fig. 1). (1) Our two-body calculation with realistic
Lenard-Jones potentials predicts a resonance field B0 �
39.4 G [Fig. 1(a)], in good agreement with recent experimental
observations [19,20]. (2) There is a dynamical instability
revealed by the density excitation spectrum [Fig. 1(b)].
Fortunately, due to the small singlet scattering length, this
instability occurs at very large momentum and hence is hard to
trigger under current experimental conditions. In other words,
the superfluid state of 173Yb atoms with OFR is intrinsically
metastable. (3) The small singlet scattering length also implies
a peculiar EoS, which is peculiar for a Feshbach resonance with
sizable closed-channel fraction. (4) The massive Leggett mode
in a 173Yb Fermi gas is severely damped. An undamped Leggett
mode may exist only for the case with both large singlet and
triplet scattering lengths near the OFR resonance [Fig. 1(b)].

II. TWO-BODY CALCULATION OF 173Yb OFR

We start by briefly discussing the two-body physics for a
Fermi gas of 173Yb atoms with mass M in different electronic
(orbital) states 1S0 (denoted by |gσ 〉) and 3

P0 (|eσ ′〉), where
σ and σ ′ stand for two nuclear spin states ↑,↓. In the absence
of a magnetic field, a pair of atoms is well described using the
single (−) or triplet (+) basis:

|±〉 = 1
2 (|ge〉 ± |eg〉) ⊗ (|↑↓〉 ∓ |↓↑〉). (1)
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FIG. 1. (a) The scattering length as near the OFR of 173Yb atoms.
The circles are our two-body calculations, and the red solid line is
the fitting curve (see text). The inset shows the effective range near
the same resonance. (b) An illustration of the many-body stability
phase diagram. By tuning the interaction parameter 1/(kFas−) above
a threshold 1/(kFas+), where as− and as+ are the singlet and triplet
scattering lengths, the out-of-phase solution, responsible for the OFR,
develops an anomalous mode in its low-energy (density) excitation
spectrum and is therefore dynamically unstable. In contrast, below
the threshold, the out-of-phase solution is stable and may host an
undamped Leggett mode.

The interaction potentials are diagonal in this basis and are
given by Lenard-Jones potentials,

V±(r) = −C6

r6

(
1 − α6

±
r6

)
, (2)

where C6 = 2561 a.u. for 173Yb [31] and α± are the short-range
parameters that are tuned to reproduce the singlet scattering
length as− � 200a0 and the triplet scattering length as+ �
1900a0 with a0 being the Bohr radius [20]. In the presence of
magnetic field, due to the slightly different Landé g factor
in two orbital states (i.e., gg 	= ge), it is more convenient
to introduce a two-channel description, with the open- and
closed-channel states given by

|o〉 = 1√
2

(|−〉 + |+〉), |c〉 = 1√
2

(|−〉 − |+〉). (3)

One advantage of this new basis is that the Zeeman energy now
becomes diagonal, and their difference in the two channels is
δ(B) = δμB, where δμ = (ge − gg)(m↑ − m↓)μB = 2π� ×
112�m Hz/G with the Bohr magneton μB and �m = 5 [19,20].
The key advantage, however, is the brilliant idea [18] that the
scattering length in the open channel could be tuned by varying
the detuning δ(B), exactly analogous to a MFR, provided that
the bound-state energy in the closed channel is comparable to
δ(B). This condition is generally impossible to satisfy, since

δ(B) for nuclear spins is typically several order smaller in
magnitude than that in a MFR. Luckily, for 173Yb atoms, the
shallow bound state due to the large triplet scattering length
as+ has the desired energy scale ∼δ(B).

The existence of such an OFR has been theoretically
examined by using the pseudo-potential approach and the
finite-range potential model [18]. In Ref. [20], by using a
low-energy expansion of the singlet and triplet scattering
phase shifts, where the effective ranges based on realistic
potentials were included, the resonance field was predicted to
be B0 � 42 G. Here we present a more realistic calculation by
using the Lenard-Jones potential Eq. (2) and standard R-matrix
propagation method [32], as shown in Fig. 1(a). We find that the
scattering observable in the open channel such as the scattering
length as is not sensitive to α± as long as as± are reproduced.
The calculated scattering length in the open channel is well
fitted by a simple expression,

as = abg − āĒsres

δμ(B − B0)
, (4)

with the parameters

abg � 29.96a0, sres � 0.154. (5)

The resonance field B0 is predicted to be

B0 � 39.4 G. (6)

Here ā ≡ [4π/�(1/4)2]lvdW and Ē = 1/(Mā2) is the length
and energy related to the van der Waals length lvdW ≡
(1/2)(MC6)1/4 � 84.8a0 and we set � = 1. We find that the
predicted resonance field B0 � 39.4 G agrees well with the
experimental measurements [19,20]. We note that the small
sres implies that the OFR of 173Yb atoms is a closed-channel
dominated scattering [2].

III. EFFECTIVE FIELD THEORY OF OFR

The minimal model Hamiltonian for OFR can be given by
H = H0 + HI , where

H0 =
∑

ni

∫
drψ†

ni(r)

(
− ∇2

2M
+ εni

)
ψni(r), (7)

HI =
∑
nm

∫
dr dr′ϕ†

n(r)Vnm(|r − r′|)ϕm(r′). (8)

Here ϕn(r) = ψn2(r)ψn1(r), and the subscript n = o,c denotes
the open or closed channel. The two internal degrees of
freedom in each channel are indicated by i = 1,2. Without
loss of generality, the threshold energies εni can be chosen as

εo1 = εo2 = 0, εc1 = εc2 = 1
2δ(B). (9)

The interaction potentials Vnm(r) following the basis transfor-
mation of Eq. (2) read

Voo(r) = Vcc(r) = 1
2 [V−(r) + V+(r)],

Voc(r) = Vco(r) = 1
2 [V−(r) − V+(r)]. (10)

The realistic form of the microscopic potential Vnm(r) is
rather hard for both the scattering problem and the many-
body problem. The effective ranges r± of the microscopic
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potentials V±(r) introduce an energy scale εr ∼ 1/(Mr2
±).

At low scattering energy E = k2/M � εr, the shape of the
microscopic interaction potentials V±(r) is not important. For
many-body physics, this means that all kinds of short-ranged
potentials V±(r) with the same scattering lengths as± lead to
the same prediction in the dilute limit. One way to simplify
the calculation is to use the pseudo-potentials [18]

V±(r) � 4πas±
M

δ(r)
∂

∂r
(r·), (11)

or equivalently

Voo(r) = Vcc(r) � 4πas0

M
δ(r)

∂

∂r
(r·),

Voc(r) = Vco(r) � 4πas1

M
δ(r)

∂

∂r
(r·). (12)

Here the scattering lengths as0 and as1 are defined as

as0 = 1
2 (as− + as+), as1 = 1

2 (as− − as+). (13)

However, for the purpose of making use of the field
theoretical approaches for the many-body problem, it is more
convenient to employ the leading-order low-energy effective
theory, i.e., the contact interaction potential. Therefore, we
write

Vnm(|r − r′|) = Vnmδ(r − r′). (14)

Here the contact couplings Voo = Vcc and Voc = Vco are bare
quantities and should be renormalized by using the physical
scattering lengths as± or as0,1. By making use of the contact
potentials, the Lippmann-Schwinger equation of the scattering
T matrix becomes a simple algebra equation,

(
Too(E) Toc(E)

Tco(E) Tcc(E)

)−1

=
(

Voo Voc

Vco Vcc

)−1

−
(
Bo(E) 0

0 Bc(E)

)
, (15)

where the two-particle bubble functions are given by

Bo(E) =
∑

p

1

E + iε − 2εp
,

Bc(E) =
∑

p

1

E + iε − δ(B) − 2εp
. (16)

Here ε = 0+ and εp = p2/(2M). The cost of the contact
interaction is that the integral over the fermion momentum p
becomes divergent. We introduce a cutoff  for |p| and obtain

Bo(E) = −η() + �o(E), Bc(E) = −η() + �c(E),

(17)

where the divergent pieces read

η() =
∑

p

1

2εp
= M

2π2
. (18)

The finite pieces are given by

�o(E) = M

4π

√
−M(E + iε),

�c(E) = M

4π

√
−M(E + iε − δ). (19)

Physically, the UV cutoff  corresponds to the momentum
scale of order of O(1/r±) and should be sent to infinity if we
set r± → 0.

A. Renormalization

The UV divergence can be completely removed by renor-
malization of the bare contact coupling matrix V . The
renormalized coupling matrix U is related to the bare coupling
matrix through [33](

Uoo Uoc

Uco Ucc

)−1

=
(

Voo Voc

Vco Vcc

)−1

+ η()I2×2. (20)

Therefore, we have

Uoo = Ucc ≡ U0, Uoc = Uco ≡ U1. (21)

Then the Lippmann-Schwinger equation becomes cutoff inde-
pendent: (

Too(E) Toc(E)

Tco(E) Tcc(E)

)−1

=
(

U0 U1

U1 U0

)−1

−
(

�o(E) 0

0 �c(E)

)
. (22)

Solving the Lippmann-Schwinger equation, we obtain the T

matrix for the open channel,

T −1
oo (E) =

[
U0 + U 2

1 �c(E)

1 − U0�c(E)

]−1

− �o(E). (23)

To complete the contact potential description of the orbital
Feshbach resonance, we finally need to relate the elements of
the renormalized coupling matrix U to the physical quantities.
To this end, we calculate the open-channel scattering amplitude

fo(k) = − M

4π
Too

(
E = k2

M

)
. (24)

It can be expressed as

fo(k) = 1

k cot δs(k) − ik
, (25)

where the effective s-wave scattering phase shift δs(k) is given
by

k cot δs(k) = − 1 − MU0
4π

√
Mδ − k2

MU0
4π

− [(
MU0
4π

)2 − (
MU1
4π

)2]√
Mδ − k2

.

(26)

Matching this result to the known result from quantum
mechanical calculation [18], we obtain

U0 = 4πas0

M
, U1 = 4πas1

M
. (27)
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The effective s-wave scattering length of the open channel can
be given by as = −fo(k = 0). We obtain [18]

as = as0 − (
a2

s0 − a2
s1

)√
Mδ

1 − as0

√
Mδ

. (28)

Therefore, there exists a scattering resonance at δ = 1/(Ma2
s0)

if as0 > 0 [18].

B. Bound states

The bound states or molecule states can be obtained by solv-
ing the poles of the off-shell T matrix T (Z) with the on-shell
scattering energy E replaced with the off-shell variable Z =
ω − q2/(4M). Here ω and q represents the energy and mo-
mentum of the two-body states, respectively. The bound states
corresponds to the Z < 0 poles of the following equation:

det

(
Too(Z) Toc(Z)

Tco(Z) Tcc(Z)

)−1

= 0, (29)

or explicitly,

1

a2
s0 − a2

s1

− as0

a2
s0 − a2

s1

[
√−MZ +

√
−M(Z − δ)]

+√−MZ
√

−M(Z − δ) = 0. (30)

Since the OFR exists only if as0 > 0, we set as0 > 0, and
hence the resonance point is δres = 1/(Ma2

s0). By making use
of δres, we can express the pole equation as

1 − √−x − √−x + d

1 − t2
+

√
−x(−x + d) = 0. (31)

Here the dimensionless variables are defined as x = Z/δres and
d = δ/δres. It is clear that the energy spectrum of the bound
states depends solely on the ratio

t = as1

as0
= as− − as+

as− + as+
. (32)

Since as0 > 0 we can set as+ > 0 without loss of generality.
We have as−/as+ > −1 and therefore −∞ < t < 1. We
therefore find two cases for the bound state spectrum:

(1) If as− > 0 and hence −1 < t < 1 or t2 < 1, there exist
two molecule states: One is the Feshbach molecule state, which
exists at the BEC side of the resonance 0 < δ < δres, and the
other is a bound state below the Feshbach molecule state,
which exists for all values of δ. A special case is t = 0, which
means the two channels decouple. We have two solutions:
Z = −δres, which exists for all δ, and Z = δ − δres, which
exists for 0 < δ < δres.

(2) If as− < 0 and hence t < −1 or t2 > 1, the pole
equation gives only one solution at the BEC side 0 < δ < δres,
corresponding to the Feshbach molecule state.

To understand the above results (and also for the under-
standing of the many-body case), it is intuitive to take a look
at the case δ = 0. In this case, Eq. (31) can be simplified as

(1 ± |t |)√−x = 1. (33)

Therefore, for |t | < 1 or as− > 0, there exist two solutions

Z±(0) = −
(

1

1 ± |t |
)2

δres. (34)

FIG. 2. Energy spectrum of the bound states across the OFR in
137Yb atoms. The two energy levels, the Feshbach molecule state
(Z+) and the deep bound state (Z−), are determined by Eq. (31).

For |t | → 1, we have |Z−(0)| � |Z+(0)|, and hence the two
bound state levels are well separated. In this case, the solution
Z−, which is almost a constant for all values of the detuning
δ, corresponds to a deep bound state and may decouple from
the BCS-BEC crossover physics. For 173Yb atoms, we have
as+ � 1900a0 and as− � 200a0 and hence t � −0.81. In this
case, the two solutions are given by

Z±(0) = − 1

Ma2
s±

. (35)

Therefore, for 173Yb atoms we have

|Z−(0)|
|Z+(0)| � 90. (36)

A full energy spectrum in the range 0 < δ/δres < 2 is shown
in Fig. 2. It is clear that a Feshbach molecule state (Z+) exists
in the BEC regime (0 < δ < δres). Another deep bound state
Z− exists for all values of δ.

IV. MANY-BODY THEORY OF FERMI GASES
ACROSS AN OFR

The two-band model (7) that uses the singlet and triplet
scattering lengths as± as the input provides a minimal
model to describe the many-body aspect of OFR [23,33].
In the dilute limit, it agrees reasonably with the two-body
calculation [18,30], and within the mean-field approximation it
captures the qualitative physics of superfluid pairings [18,23].
Here we consider strong pair fluctuations on top of the
mean-field solution, which must be accounted for near OFR.
The grand canonical Hamiltonian of the two-band model is
given by

H − μN =
∑

ni

∫
drψ†

ni(r)

(
− ∇2

2M
− μn

)
ψni(r)

+
∑
nm

Vnm

∫
drϕ†

n(r)ϕm(r). (37)

Here μ is the chemical potential conjugated to the total particle
number N = ∑

ni

∫
drψ†

ni(r)ψni(r). The effective chemical
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potentials of the two channels are defined as

μo = μ, μc = μ − 1
2δ(B). (38)

We solve the two-band model Hamiltonian by using
a functional path-integral approach [33–38]. The partition
function of the many-body system can be expressed as

Z =
∫

[dψ][dψ†] exp (−S), (39)

where the action S reads

S =
∫

dx
∑

ni

ψ
†
ni(x)∂τψni(x) +

∫ β

0
dτ (H − μN ). (40)

Here x = (τ,r) and
∫

dx = ∫ β

0 dτ
∫

d3r, with τ being the
imaginary time, and β = 1/T , with T being the temperature of
the system and the Boltzmann constant kB = 1. Following the
standard field theoretical treatment, we introduce the auxiliary
pairing fields

�(x) =
(

�o(x)

�c(x)

)
=

(
Voo Voc

Vco Vcc

)(
ϕo(x)

ϕc(x)

)
, (41)

apply the Hubbard-Stratonovich transformation, and integrate
out the fermion fields. The partition function of the system can
be expressed as

Z =
∫

[d�][d�†] exp (−Seff). (42)

The effective action Seff reads

Seff = −
∫

dx �†(x)V −1�(x) −
∑

n=o,c

Tr ln G−1
n [�n(x)],

(43)

where the inverse fermion Green’s functions are given by

G−1
n =

(
−∂τ + ∇2

2M
+ μn �n(x)

�∗
n(x) −∂τ − ∇2

2M
− μn

)
δ(x − x ′).

(44)

In the superfluid phase, the pairing fields have nonzero
expectation values. We write

�n(x) = �n + φn(x), (45)

where the uniform parts �o and �c serve as the order
parameters of superfluidity. The effective action Seff can then
be expanded about its mean-field solution, or in powers of the
quantum fluctuations φo(x) and φc(x), leading to [33–36]

Seff[�,�∗] = SMF + SGF[φ,φ∗] + · · · . (46)

Here SMF is the mean-field part, and SGF[φ,φ∗] denotes the
Gaussian fluctuation part, which is quadratic in φ and φ∗. In
the Gaussian pair fluctuation (GPF) theory, all the fluctuation
contributions beyond Gaussian are neglected.

The mean-field contribution to the thermodynamic poten-
tial, �MF = SMF/(βV ), is given by

�MF = −�†
(

Voo Voc

Vco Vcc

)−1

� +
∑
nk

(ξnk − Enk), (47)

where � ≡ (�o,�c)T and the dispersions in each channel are

defined as ξnk = εk − μn and Enk =
√

ξ 2
nk + |�n|2. By using

the renormalized coupling matrix U , we find that the UV
divergence is completely removed. We obtain

�MF = −�†
(

λ0 λ1

λ1 λ0

)
� +

∑
nk

(
ξnk − Enk + �2

n

2εk

)
, (48)

where

λ0 = M

4π

as0

a2
s0 − a2

s1

, λ1 = − M

4π

as1

a2
s0 − a2

s1

. (49)

In the GPF theory, the order parameters �o and �c as functions
of the chemical potential μ should be determined by the
stationary condition ∂�MF/∂�n = 0, which gives rise to the
so-called gap equation,[

Fo(�o) −λ1

−λ1 Fc(�c)

](
�o

�c

)
= 0, (50)

where

Fn(�n) ≡ −λ0 +
∑

k

(
1

2εk
− 1

2Enk

)
. (51)

Note that �o and �c are complex quantities. Without loss of
generality, we set �o to be real and positive. From the gap
equation (50), we find that �c is also real. However, there
may exist two kinds of solutions: an in-phase solution with
�c > 0 and an out-of-phase solution with �c < 0. It is easy
to show that for 173Yb atoms, the out-of-phase solution is
responsible for the BCS-BEC crossover, while the in-phase
solution corresponds to the deep bound state. To show this,
we take a look at δ = 0 where the two channels become
degenerate. In this case, we have |�o| = |�c| ≡ �. For the
out-of-phase solution, the gap equation becomes∑

k

[
1

2εk
− 1

2
√

(εk − μ)2 + �2

]
= M

4πas+
, (52)

while for the in-phase solution, we obtain∑
k

[
1

2εk
− 1

2
√

(εk − μ)2 + �2

]
= M

4πas−
. (53)

Comparing with the two-body result (35), we find that the
in-phase solution corresponds to the deep bound state. For
this solution, the chemical potential μ is large and negative
for all values of the magnetic detuning δ. Therefore, even
though the in-phase solution may be the true ground state of
the Hamiltonian, it is a trivial solution which has nothing to
do with the BCS-BEC crossover associated with the OFR.

The contribution from the Gaussian fluctuations to the
thermodynamic potential can be worked out by completing
the path integral over the fluctuations φ and φ∗. It can be
expressed as

�GF = 1

2β

∑
Q

ln det[−�−1(Q)], (54)

where Q ≡ (q,iνl) and iνl is the bosonic Matsubara frequen-
cies, and the inverse vertex function (i.e., the Green function
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of collective modes) is

−�−1(Q) =

⎡
⎢⎢⎢⎣

Mo
11 Mo

12 −λ1 0

Mo
21 Mo

22 0 −λ1

−λ1 0 Mc
11 Mc

12

0 −λ1 Mc
21 Mc

22

⎤
⎥⎥⎥⎦, (55)

with the matrix elements at zero temperature (n = o,c),

Mn
11,C(Q) =

∑
k

(
u2

n+u2
n−

iνl − En+ − En−
+ 1

2εk

)
− λ0,

Mn
11(Q) = Mn

11,C(Q) −
∑

k

v2
n+v2

n−
iνl + En+ + En−

, (56)

Mn
12(Q) =

∑
k

�2
n

2

1/En+ + 1/En−
(En+ + En−)2 − (iνl)2

,

and Mn
21(Q) = Mn

12(Q), Mn
22(Q) = Mn

11(−Q), and Mn
22,C

(Q) = Mn
11,C(−Q) Here we use the short notations

En± ≡ Enk±q/2, u2
n± = (1 + ξn±/En±)/2, and v2

n± = (1 −
ξn±/En±)/2. The summation over the Matsubara frequencies
iνl in Eq. (54) is generally divergent. Following the work by
Diener et al. [36], we cure the divergence by subtracting a
vanishing regular term (kBT /2)

∑
Q ln det[−�−1

C (Q)], where

�−1
C (Q) is obtained by replacing Mn

11(Q) with Mn
11,C(Q)

and Mn
22(Q) with Mn

22,C(Q), and by setting Mn
12(Q) = 0 in

�−1(Q). Finally, the convergent result can be expressed as

�GF = 1

2β

∑
Q

ln

{
det[−�−1(Q)]

det[−�−1
C (Q)]

}
. (57)

In the absence of the interchannel coupling parameter, i.e.,
U1 = 0 or λ1 = 0, our GPF equations reduce to describe two
separate BEC-BCS crossover Fermi gases in the open and
closed channels. In the unitary limit (λ0 = 0), it is known
that for each channel the GPF theory predicts an accurate
zero-temperature equation of state within a few percent
relative error [35,36], compared with the latest experimental
measurements [5,7]. At nonzero λ1, similarly, the GPF theory
would be quantitatively reliable. To solve the EoS at a given
detuning δ(B), we adjust the chemical potential μ to satisfy
the number equation [35–38]

n = −∂(�MF + �GF)

∂μ
, (58)

and then calculate the pressure P = −(�MF + �GF), com-
pressibility κ = (1/n2)(∂n/∂μ), and the speed of sound
cs = √

n/[m∂n/∂μ]. Throughout this paper, we take n = 5 ×
1013 cm−3, the typical peak density for 173Yb atoms [19,20],
and kF = (3π2n)1/3 � 1.14 × 105 cm−1, unless otherwise
specified. We focus on the out-of-phase solution, which is
responsible for the BCS-BEC crossover associated with the
OFR [18,23].

The solution of 173Yb atoms from the mean-field theory
(MF) or Gaussian-pair-fluctuation theory (GPF) is shown in
Fig. 3 as a function of the detuning δ(B) in units of δres =
1/(Ma2

s0) [18]. The quantitative improvement of our GPF
theory over mean-field is evident and should be observable in
future experiments. Near OFR, the closed-channel fraction is

FIG. 3. The chemical potential and two gap parameters as func-
tions of δ(B) at T = 0. For comparison, the mean-field predictions
are shown by the thin lines. The inset shows the detuning dependence
of the closed-channel fraction fc = nc/n.

always significant (see the inset), indicating that the resonantly
interacting superfluid may differ largely from a unitary Fermi
gas near a broad MFR [5–7].

A. Stability of 173Yb superfluid near OFR

The first nontrivial issue we encounter is that the out-of-
phase solution is not a local minimum of the mean-field grand
potential �MF(�o,�c). In Fig. 4 we show two contour plots
of the grand potential (at δ = 0 and at δ = δres). It is clear
that the out-of-phase solution corresponds to a saddle point
of the grand potential. The true ground state corresponds
to the deep bound state with energy Z−. In this state, the
chemical potential is large and negative, μ � Z−/2, and hence
both two channels are in the deep BEC state. The BCS-BEC
crossover state, which is an exited state, may suffer from some
mechanical instabilities, such as negative compressibility.
We have calculated the compressibility for 173Yb system.
Fortunately, the compressibility is always positive for the
out-of-phase solution.

Next, we check whether the system suffers from any
dynamical instability. Using the vertex function �(Q), it is
convenient to calculate the density excitation spectrum. The
dispersions ω(q) are determined by the pole of �(q,iνl →
ω + i0+) after analytic continuation. Below the two-particle
continuum, there are typically two modes corresponding
to the in-phase and out-of-phase fluctuations of the phase
of the two order parameters. The in-phase mode is the
well-known gapless Bogoliubov-Anderson-Goldstone phonon
mode, while the out-of-phase mode, predicted by Leggett long
ago, acquires a finite mass [26]. The observation of a long-lived
Leggett mode remains elusive [27–29].

Figure 5 reports the in-gap density excitation spectrum of
173Yb atoms. The phonon mode, which behaves like csq at
small momentum, is clearly seen. However, we are unable
to identify a well-defined gapped Leggett mode. Instead, an
anomalous mode is observed at large momentum qA � 16.4kF.
It touches zero and causes an instability with respect to the
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FIG. 4. Contour plots of the mean-field grand potential
�MF(�o,�c) (in units of nεF) near the out-of-phase solution (�o > 0
and �c < 0) for δ = 0 (a) and δ = δres (b). The black dots indicate
the saddle-point positions.

density perturbation at the length scale l ∼ q−1
A � 5.3 nm. The

existence of such an anomalous mode is easy to understand.
The out-of-phase solution of current interest is a saddle
point solution and hence is intrinsically unstable. We have
checked by varying parameters that the anomalous mode
indeed appears as long as the out-of-phase solution is an
excited state [see Fig. 1(b)]. For the 173Yb case, fortunately,
we do not need to worry about this dynamical instability,
since the nanoscale of the density perturbation is too small

FIG. 5. In-gap density excitation spectrum of a 173Yb Fermi gas
at the resonance, which touches zero at a large momentum q � kF

(the big blue dot). The dashed line plots the linear behavior csq as
q → 0 characteristic of a sound wave. The colored area indicates the
two-particle continuum.

to trigger experimentally. Theoretically, the instability also
does not show up in our numerical calculations, as the
pair fluctuation contribution decays exponentially fast with
increasing momentum q. Therefore, we conclude that the
BCS-BEC crossover in 173Yb atoms with OFR is intrinsically
metastable and can be realized in future experiments.

B. EoS of 173Yb superfluid at OFR

We now explore in greater detail a peculiar feature of the
strongly interacting 173Yb Fermi superfluid, a peculiar EoS,
as a result of the key component of OFR, the large triplet
scattering length as+. Near the resonance, the grand canonical
equation of state, the pressure P as a function of the chemical
potential μ at T = 0 can be expressed as

P (μ)

P0(μ)
= fμ

[
μ

δres
;

δ

δres
,
as−
as+

,{xi}
]
. (59)

Here P0(μ) = (2Mμ)5/2/(15π2M) and {xi} denotes collec-
tively the other small interaction lengths such as the effective
ranges rs±/as+. For 173Yb atoms, since the triplet scattering
length as+ is large, we may expect that the dependence on
the small parameters as−/as+ and xi is rather weak. Hence at
the resonance, the grand canonical EoS depends only on the
reduced chemical potential μ/δres,

P (μ)

P0(μ)
≈ fμ

(
μ

δres

)
. (60)

On the other hand, we expect that in the low-density limit
n → 0, or explicitly εF/δres → 0, we recover the universal
EoS of the two-component unitary Fermi gas, which has been
realized by using the broad MFR [5–7]. We therefore consider
the canonical EoS. The pressure can be expressed as

P (n)

P0(n)
= fn

[
μ(n)

εF(n)
;

δ

δres
,
as−
as+

,{xi}
]
. (61)

For 173Yb atoms, the dependence on the small parameters
as−/as+ and xi is rather weak. At the OFR we have

P (n)

P0(n)
≈ fn

[
μ(n)

εF(n)

]
, (62)

where P0 = (2/5)nεF. Therefore, the pressure depends only on
a single parameter, the reduced chemical potential μ(n)/εF(n).
This peculiar EoS can be easily measured experimentally. In
harmonic traps, all the thermodynamic functions, in particular,
the pressure and compressibility, can be directly determined
from measuring the local density [7,39]. Away from the trap
center, with decreasing density, the closed-channel fraction
decreases to zero, due to the enlarged effective detuning,
and the reduced chemical potential μ(n)/εF(n) then increases
to reach the universal Bertsch parameter ξ in the broad
MFR limit (ξ � 0.59 in mean-field theory and ξ � 0.40 in
GPF theory [35,36]), as shown in Fig. 6(a). By varying
slightly as−/as+ and keeping δres invariant [i.e., the data
labeled GPF-X in Figs. 6(b) and 6(c)], we have examined
theoretically that both P/P0 and κ/κ0, where κ0 = 3/(2nεF),
indeed collapse onto a single curve. We note that, in the
dilute limit (n → 0), we recover the universal EoS of the
two-component unitary Fermi gas. This universal EoS may be
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FIG. 6. (a) The chemical potential of a 173Yb Fermi gas at the
resonance, as a function of the open-channel fraction with decreasing
density (see the inset for an experimental illustration in traps). In
the low-density limit, where the population of the closed channel
vanishes, the chemical potential approaches the prediction for broad
Feshbach resonances (indicated by stars). Equation of state, pressure
versus chemical potential (b) and compressibility versus pressure (c),
of the resonantly interacting 173Yb Fermi gas. The circles are the
result for 173Yb atoms. The blue line (GPF-X) shows the result for a
different set of interaction parameters. The stars show the MIT result
for a unitary 6Li Fermi gas (UFG) at broad Feshbach resonances [7].
The highest density in our calculations is about n ∼ 5 × 1014 cm−3.

understood from the fact that in the dilute limit, the Zeeman
splitting δ between the two channels becomes much larger
than the Fermi energy εF. In this case, one can generally
show that the closed-channel population becomes vanishingly
small [33]. The strong coupling between the two channels
ensures that we recover the universal EoS for the broad MFR
case. However, this universal EoS may hardly be extended to
the high-density regime where n ∼ 1014 cm−3.

C. Leggett mode

We turn to consider the condition for the observation of
the massive Leggett mode, by allowing a variable singlet
scattering length as−. It turns out that the out-of-phase solution
of the two pairing parameters becomes the ground state once
1/(kFas−) is smaller than a threshold 1/(kFas−)c = 1/(kFas+)
[see Fig. 1(b)]. It is easy to understand this threshold. Because
as+ = as− at this threshold, the two channels decouple,
and hence the out-of-phase and in-phase solutions become
degenerate.

We find that an undamped Leggett mode exists below the
two-particle continuum when |as−| is sufficiently large. In
this case, we have two well-behaved condensates that satisfy
Leggett’s original picture for the appearance of the massive

FIG. 7. (a) In-gap spectral function of Cooper pairs (in arbitrary
units) at the resonance with the scattering lengths as+ = 1900a0

and as− = 2as+. From bottom to top, the momentum q increases
from 0.1kF to 1.1kF. The curves are vertically shifted for better
illustration. A finite line width is included to broaden the δ-peak.
(b) The corresponding in-gap density excitation spectrum. (c) The
detuning dependence of the zero-momentum Leggett mode frequency
ωL(q = 0). The colored area shows the two-particle continuum at
δ = 2δres.

Leggett mode [26]. Figure 7(a) shows a typical spectral
function of the Green’s function of the collective modes for
as− = 2as+ and at δ = δres, where the Leggett mode is clearly
visible. Its dispersion at small q can be well approximated by
ω2

L(q) � ω2
L(0) + c2

Lq2 [Fig. 7(b)]. With increasing detuning
[Fig. 7(c)] or decreasing 1/(kFas−), the Leggett mode is pushed
upwards and finally merges into the two-particle continuum.
Experimentally, it is unclear whether we can find a realistic
OFR system with both large singlet and triplet scattering
lengths, which demonstrates the existence of the long-sought
Leggett mode. If such a system can be found, the Leggett mode
can be probed by measuring the dynamic density structure
factor via the Bragg spectroscopy [40].

V. SUMMARY

In summary, we calculated the OFR with realistic Lenard-
Jones potentials and presented a low-energy effective theory
for OFR which is useful for field theoretical study of the many-
body system. We presented a strong-coupling pair fluctuation
theory for the BCS-BEC crossover in 173Yb atoms across its
OFR. The stability of the BCS-BEC crossover, the equation
of state at the OFR, and the collective modes (in particular
the massive Leggett mode) are investigated by using the pair
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fluctuation theory. Since the BCS-BEC crossover in 173Yb
atoms corresponds to an excited state, there exists a dynamical
instability with respect to an inhomogeneous density perturba-
tion. Fortunately, due to the small singlet scattering length, this
instability occurs at very large momentum and hence is hard
to trigger under current experimental conditions. Hence the
BCS-BEC crossover in 173Yb atoms with OFR is intrinsically
metastable and can be realized in future experiments. The
small singlet scattering length in 173Yb atoms also leads to a
peculiar EoS, which is peculiar for a Feshbach resonance with
sizable closed-channel fraction. The massive Leggett mode in
the superfluid state of 173Yb atoms is severely damped. We
find that an undamped Leggett mode exists only for the case
with both large singlet and triplet scattering lengths.

Our quantitative predictions could be experimentally exam-
ined in the near future in cold-atom laboratories [19,20]. They
also might be relevant to other two-band fermionic superfluids
and superconductors in diverse fields of physics, such as MgB2
and LaFeAsO0.89F0.11 in solid-state physics [41,42].
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[16] D. Lee and T. Schfäer, Cold dilute neutron matter on the lattice.
I. Lattice virial coefficients and large scattering lengths, Phys.
Rev. C 73, 015201 (2006).

[17] P. F. Kolb and U. Heinz, in Quark-Gluon Plasma 3, edited by
R. C. Hwa and X.-N. Wang (World Scientific, River Edge, NJ,
2004), p. 634.

[18] R. Zhang, Y. Cheng, H. Zhai, and P. Zhang, Orbital Feshbach
Resonance in Alkali-Earth Atoms, Phys. Rev. Lett. 115, 135301
(2015).

[19] G. Pagano, M. Mancini, G. Cappellini, L. Livi, C. Sias, J. Catani,
M. Inguscio, and L. Fallani, Strongly Interacting Gas of Two-
Electron Fermions at an Orbital Feshbach Resonance, Phys. Rev.
Lett. 115, 265301 (2015).
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