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Recent experiments have revealed the formation of stable droplets in dipolar Bose-Einstein condensates. This
surprising result has been explained by the stabilization given by quantum fluctuations. We study in detail the
properties of a Bose-Einstein condensate in the presence of quantum stabilization. The ground-state phase diagram
presents three main regimes: mean-field regime, in which the quantum correction is perturbative; droplet regime,
in which quantum stabilization is crucial; and a multistable regime. In the absence of a multistable region, the
condensate undergoes a crossover from the mean-field to the droplet solution marked by a characteristic growth
of the peak density that may be employed to clearly distinguish quantum stabilization from other stabilization
mechanisms. Interestingly, quantum stabilization allows for three-dimensionally self-bound condensates. We
characterized these self-bound solutions, and discuss their realization in experiments. We conclude with a
discussion of the lowest-lying excitations both for trapped condensates, and for self-bound solutions.
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I. INTRODUCTION

Ultracold dipolar gases, in which magnetic or electric
dipole-dipole interactions (DDIs) play a crucial role, differ
substantially from their nondipolar counterparts. The long-
range anisotropic nature of the DDIs, and the interplay
between DDIs and short-range interactions, leads to rich
new physics [1,2], which is just starting to be unveiled in
experiments on magnetic atoms [3—6], polar molecules [7-10],
and Rydberg-dressed atoms [11]. Since the DDIs are partially
attractive, dipolar gases may undergo instability unless the
DDIs are properly compensated by the contact interaction.
Chromium experiments showed that, as in nondipolar Bose-
Einstein condensates (BECs) with negative s-wave scattering
length, a < 0, an unstable dipolar BEC collapses when the
scattering length is quenched below a critical value [12].

Surprisingly, recent dysprosium experiments [13,14] have
revealed that destabilization of a dipolar BEC does not
generally lead to collapse, as previously assumed. In these
breakthrough experiments destabilization leads to the forma-
tion of stable droplets, that are only destroyed in a long time
scale by three-body losses. Although first studies pointed to
the possibility that large three-body conservative forces could
stabilize the droplets [15,16], recent works have shown that
the most plausible stabilization mechanism is due to quantum
fluctuations [14,17,18], which play a similar role as that of
surface tension in classical ferrofluids [19,20].

The stabilization mechanism, that stems from the cor-
responding Lee-Huang-Yang (LHY) correction of the con-
densate energy, results from the dipolar character of the
condensate [17]. The anisotropic DDIs result in hard (soft)
modes depending on whether the momentum of the excitation
is quasiparallel (perpendicular) to the dipole moment. Whereas
long-wavelength soft modes drive the BEC instability at
sufficiently low a, hard modes dominate the repulsive LHY
correction, resembling the situation recently studied in binary
Bose-Bose mixtures [21]. When the BEC becomes unstable,
the local growth of the density n associated to the modulational
instability is eventually halted, since the repulsive LHY
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correction of the chemical potential scales as n3/?> compared
to the n dependence of the mean-field term. At the mean-field
stability threshold this occurs despite a very small condensate
depletion, due to the quasicompensation of the DDIs and
contact mean-field terms. Quantum stabilization and the
associated droplet nucleation are hence characteristic features
of strongly dipolar BECs, which were absent in chromium
experiments only due to the relatively weak DDIs [17].

This paper analyzes the ground-state properties and excita-
tions of dipolar BECs in the regime where LHY stabilization
becomes relevant, both by means of numerical simulations of
the corresponding generalized nonlinear nonlocal Schrodinger
equation (gNLNLSE), and by a Gaussian ansatz approach.
We first analyze the ground state as a function of a and the
condensate aspect ratio, that, as for the case of three-body
stabilization [22], splits into three regimes: mean-field, droplet,
and multistable, the latter occurring only for sufficiently
pancake traps. We focus then on the regime without a mul-
tistability region, in which the mean-field solution undergoes
for decreasing a a crossover into the droplet regime. This
crossover is marked by a characteristic growth of the peak
density whose functional form differs from that expected for
three-body stabilization. The LHY stabilization results in a
three-dimensional (3D) self-bound (SB) solution, which we
characterize, discussing as well the conditions for its observ-
ability. Finally, we characterize the collective excitations of
the dipolar BEC in the presence of LHY stabilization both for
trapped BECs and in the SB regime.

The paper is structured as follows. Section II introduces
both the gNLNLSE and the variational Gaussian ansatz.
Section III is devoted to the analysis of the ground-state
properties, including the ground-state regimes, and the evo-
lution of the peak density in the crossover regime between
mean-field and droplet regimes. In Sec. IV we analyze
the properties and conditions for observability of 3D SB
condensates. Section V discusses the lowest-lying excitations
of both trapped BECs and SB condensates. Finally Sec. VI
summarizes our conclusions.
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II. MODEL

A. Generalized nonlocal nonlinear Schrodinger equation

We consider a harmonically trapped BEC of N magnetic
dipoles of mass m and dipole moment p oriented along the
z direction by an external magnetic field (equivalent results
can be found for electric dipoles). In order to describe dipolar
BECs including the effect of quantum fluctuations, we recently
introduced the gNLNLSE [17]:

9 n?
ih—y(r,t) = | — =—V?+ V(r) + gn(r,1)
ot 2m
+ / d*r'Vaa(r — ¥)n(r' 1)

+gLHYn(r,t>3/2}w<r,z>, (1)

where 1 denotes the condensate wave function [with
[&@riy@nl =11, V(r) = §(wix® + 0ly® + 077%) is the
trapping potential with w, , . the trapping frequencies, and
n(r,t) = [y (r,1)>. The contact interaction strength is given

by g = # where a is the scattering length. The dipolar
potential takes the form Vyq(r) = N 5= %, where g is

the vacuum permeability and ¢ the angle between r and u.

Whereas the first two lines of Eq. (1) correspond to
the NLNLSE thoroughly employed for the study of dipolar
condensates [1], the last line stems from the LHY correction
to the equation of state, which is obtained using the local
density approximation (LDA) from the knowledge of the LHY
correction in homogeneous 3D space [23,24]. The strength of
the LHY correction is given by grgy = % gV Na3F(eq),
where F(ega) = 5 [ dOi sin® f(€aa. %)/ and f(€aa, %) =
1 + eqa(3cos? ¥ — 1) with egq = N“g—f.

The validity of Eq. (1), and in particular of the LDA
treatment of the LHY term, demands in principle that the
system remains in the Thomas-Fermi (TF) regime in all spatial
directions. This is approximately the case for the relatively big
droplets discussed in this paper. However, the equation remains
valid even for smaller droplets, as long as the main contribution
to the LHY term is provided by short-wavelength excitations
(see the discussion in Ref. [17]). In particular, recent numerical
results based on path integral Monte Carlo techniques have
confirmed the validity of Eq. (1) for the description of the
small droplets created in recent quench experiments [18].

Finally, we note that the use of Eq. (1) is just valid for
cigar-shape traps (along z) or moderately pancake ones, in
which (in absence of LHY stabilization) the BEC would be
destabilized at €4q close to 1 (egqq¢ = 1 marks the instability
threshold for a 3D homogeneous dipolar BEC). For traps
with larger aspect ratio, A = w;/w, y, the trap geometry
significantly stabilizes the BEC. As a result, the stability
threshold occurs for much lower (or even negative) scattering
lengths [12], departing significantly from €49 = 1. In that case
the use of known results for homogeneous 3D BECs becomes
unjustified. Due to this reason in all calculations below we
restrict our analysis to aspect ratios A < 3.
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B. Gaussian ansatz

Although the droplets discussed below are in the TF regime,
a qualitative, and to some extent quantitative, insight in the
droplet physics may be gained from a simplified Gaussian
ansatz [25]:

1
T34 (ww,w.)! /2

Y(x,y,z) = l_[ e~ P/WDHITBO ()
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where the variational parameters are the widths w, in the n =
x,y,z direction, and B,, which determines the phase curvature
along n. The Lagrangian density reads
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We insert the ansatz (2) into (3), obtain the Lagrangian
L = [ d°rL, and establish the corresponding Euler-Lagrange
equations:
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In the latter equation, we have employed dimensionless units
T =at, wy, =1, [ = h/md, with® = ([] a)n)m, and we
have introduced the effective potential:
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(7)
and the dimensionless constants P = \/g ¥ and Q =

&“‘?)‘/N % characterize, respectively, the strength of the
25571 !
contact interaction and the LHY correction.

The equilibrium widths v;( are calculated by minimizing
the potential U. In addition, the low-lying excitations around
the equilibrium are determined by evaluating the Hessian

: _ U
matrix M, = Ty,

simplicity a cylindrical trap, w, = w, = w,/A. In that case,

at the minimum. We consider below for
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the lowest excitation frequencies are
2
w; = M. — Mxy’ (¥

1
0);3 = E(Mxx + Mxy + MZZ),

1
£ (Mo + Moy = MY +8M2. )

The corresponding eigenvectors (7,,1,,%;) characterize the
mode geometry. In particular, a mode with sgn(ny ,.) =+
has a 3D monopole character; sgn(n, ,) = & and sgn(n,) = F

a 3D quadrupolar character. The mode (1/+/2, — 1/+/2,0) is
a two-dimensional (2D) quadrupolar mode on the xy plane.

III. GROUND STATE

A. Droplet versus mean-field solution

We discuss in this section the ground-state properties of
the dipolar BEC in the presence of LHY stabilization. We
consider a trap with @/2x = 70 Hz, a similar value as that
of recent Dy experiments [13]. For a given aspect ratio A we
obtain the ground state by imaginary time evolution (ITE) of
Eq. (1), using the split operator technique, treating the DDI
using convolution theorem and fast-Fourier transformation,
and cutting-off of the DDI to reduce spurious boundary
effects [26]. In absence of LHY stabilization, there is a critical
aqr(X), such that for a < ac, the dipolar BEC becomes unstable
against collapse, i.e., no stable (or metastable) ground state
exists. In contrast, due to the LHY term, Eq. (1) presents for
any value of @ and A a ground-state solution. This solution
crucially depends, however, on N, a, and A.

We depict in Fig. 1 (solid curve) the energy per particle
as a function of N for a = 70ap and a spherical trap, A = 1.
In absence of LHY stabilization, and similar to the case of
nondipolar gases with a < 0, small condensates are stabilized
by zero-point oscillations, rather than by the LHY term. This is
still the case in Fig. 1 for N < 1000. In contrast, for N > 1000
the LHY term is crucial to stabilize the cloud, the condensate

E/h®

N (103 atoms)

FIG. 1. Energy per particle for a Dy BEC witha = 70ag in a trap
with @/2m = 70 Hz for A = 1 (solid), and for the droplet (dashed)
and mean-field (dotted) solutions for A = 3.
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becomes elongated along the dipole direction, and the BEC
energy decreases to markedly negative values. Henceforth we
call this elongated solution the droplet solution. Whereas for
A = 1 there is just one possible solution in the ITE of Eq. (1),
the situation is clearly different for A = 3. For N > 1000 the
minimal energy solution (dashed curve) is provided by an
elongated solution of negative energy, similar to that found
for A = 1. There is, however, a continuum of metastable states
with different number of droplets with variable number of
particles. More relevantly, there is a metastable state (dotted
curve) that connects smoothly with the solution for N < 1000.
This solution has a pancake geometry, being wider on the xy
plane than along z, as one would expect for a stable BEC in
absence of LHY correction. The metastable pancake solution
exists up to N >~ 4000. In the following, and in order to discern
it from the droplet solution, we call this solution the mean-
field solution (although the LHY term may already play a
non-negligible role in its properties).

B. Multistability

The presence of metastable states marks a clear difference
between cigarlike and pancakelike traps, which is best illus-
trated by the dependence of the BEC physics on a and A.
Figure 2 summarizes our results for N = 20000 Dy atoms.
For large a, the condensate does not require LHY stabilization,
being mean-field stable. Only the mean-field solution exists.
For A < A (Aer =~ 1.8 in Fig. 2), there is just one ITE solution
that smoothly connects for decreasing a the mean-field and
the droplet solution. As shown below, this smooth crossover
results in a characteristic growth of the peak density.

For A > X thereis aregion of a values where multistability
occurs, that separates the mean-field and droplet regions.
Within the multistable region the color code in Fig. 2 depicts

the relative difference |n(PD) — nE,,M)I/ (n(PD) + ng,M)), between
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mean-field region 0.9
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FIG. 2. Ground-state phase diagram for N = 20000 Dy atoms in
a cylindrically harmonic trap with @/2m = 70 Hz, as a function of
the scattering length @ and the trap aspect ratio A. In the multistability
region we depict the relative difference between the peak densities of
the droplet and the mean-field solutions, |2\>) — %" |/(n'?” + n'}").
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the peak densities of the droplet solution, nng), and the mean-

field solution, n p(M). The lowest border of this region marks
the end of the metastability of the mean-field solution. The
upper border marks a first order phase transition, characterized
by a kink in the chemical potential of the ground-state solution,
at which the droplet solution becomes the global energy
minimum. We note at this point that three-body stabilization
leads to a similar ground-state diagram with mean-field,
droplet, and multistable regions [22].

C. Crossover from the mean-field to the droplet solution

Asmentioned above, for A < A, there is a smooth crossover
for decreasing a between the mean-field and the droplet
solution marked by a characteristic growth of the peak density.
This growth may be employed to discern between LHY
stabilization and stabilization based on strong conservative
three-body forces [27]. The latter would involve a term of the
form % | (r,t)|* in Eq. (1) instead of the LHY term [15,16].

Figure 3 shows our results based on ITE of Eq. (1)
for the peak density as a function of a for N =20000
Dy atoms in a spherical trap, A = 1. The peak density np
increases dramatically when a decreases and the BEC enters
the droplet region. The dependence on a of the peak density is
markedly different for the LHY and three-body stabilization
mechanisms. This difference is more evident when comparing
the functional form of (npa®)!/2. As shown in Fig. 3, for the
LHY stabilization (npa®)'/? follows in the droplet region a
characteristic dependence A(1 —a/a.) + B(l —a /ac)z, with
A, B, and a, fitting parameters [28]. This functional form fits
well the peak density for all A and particle numbers within the
droplet regime. We note as well that the qualitative behavior
of the peak-density scaling is also in good agreement with the
results obtained from the Gaussian ansatz discussed above.
This dependence is clearly lost in the case of three-body
stabilization, irrespective of the value of g3 (inset of Fig. 3).

0.018 T T T T
0.020
0.016 0018 | A
2 0016
0.014 & 0.014 J
g £ o012 /\
=
‘s 0.012 0.010/\/ ]
n 0.008
\=) 80 90 100 110 120 130
0.010 | a/ag
0.008
0.006 ]
80 90 100 110 120 130

alag

FIG. 3. (npa®)"/? foraDy BEC of N = 20000 in a spherical trap
with @/2r =70 Hz as a function of the scattering length a. The
curve follows in the droplet region the dependence A(1 —a/a.) +
B(1 —a/a.)* with A =0.082, B=—0.097 and a, = 116.48a,
(dotted curve). In the inset we depict the results obtained for
three-body stabilization with (from bottom to top) gz = 2, 1, and
0.5 x 10733 m%/s.
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Hence the analysis of (n pa®)!/? as a function of a in the
crossover regime (A < A,) provides a clear way to discern
between the two stabilization mechanisms.

IV. SELF-BOUND CONDENSATES

The interplay of LHY and mean-field terms allows for 3D
SB condensates for a sufficiently small a. Figure 4(a) shows
the boundary between SB and trap-bound solutions. The curve
marked by x symbols is obtained as the point in which ITE
of Eq. (1) with V(r) =0 results in an unbound solution.
The curve marked with 4+ symbols is evaluated from the
simplified Gaussian ansatz as the point at which the minimum
of the effective potential U disappears. Both curves are in
excellent agreement. Note that for larger number of particles,
the boundary is basically vertical, marking a critical scattering
length agp, such that for a > asg no self-bound solution is
possible (for Dy, asg >~ 120ag).

It is important to stress that, within the SB regime, and for
a sufficiently large number of particles, the SB droplets are
approximately in the TF regime, but obviously they do not
present the typical inverted-paraboloid density profile due to
the modified equation of state and the absence of harmonic
confinement [Figs. 4(b) and 4(c)]. This constitutes a clear
difference between these SB BECs and bright BEC solitons.
The latter are also SB solutions, which however just exist
in 1D (or in 2D for dipolar BECs [29]), resulting from the
compensation of quantum pressure and attractive mean-field

NRE) |
12 f 1
%\ 10 ]
3 Self-bound BEC
= 81 J
Z o4l Trap- |
- bound |
s BEC
0 Koo .
80 85 90 95 100 105 110 115 120
a/ag
R N A
) | \ ) [
S ‘\ S [
ST | Sh /o
=N - NN
20 -10 0 10 20 2 -1 0 1 2
z(um) X(1m)

FIG. 4. (a) Self-bound and trapped-bound regions for a Dy BEC
as a function of the number of particles N and the scattering length
a. The figure shows the boundary as calculated from ITE of Eq. (1)
(x) and from the Gaussian variational Ansatz (+4). The lower figures
show the density profile along z for x = y = 0 (b) and along x for
y =2=0(c), for a Dy BEC with N = 20000 and a = 80ag, well
within the SB regime.
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FIG. 5. (a) v, (solid) and v, (dashed) for a SB solution with
a = 80ap as a function of N; (b) same but for a fixed N = 5000
as a function of a. The curves depict the results obtained from
the variational Gaussian ansatz. In (a) we show as well the results
obtained from the direct simulation of Eq. (1) for \/2(z?) (circles)

and /2(x?) (squares)

interactions. Hence by definition they cannot exist in the TF
regime. Here, in contrast, the droplet remains SB in 3D by the
compensation of LHY and mean-field terms, and hence TF SB
droplets are allowed, being in fact the general case.

Figure 4 shows that there are two nonequivalent ways of
entering the SB regime, either increasing N or decreasing a.
Figure 5 depicts the widths UEE of the SB BECs. Decreasing a
at constant N leads to a smaller vfﬁ [Fig. 5(b)], although both
vSB/v3® and np increase significantly. In contrast, increasing
N for constant a results in a rapid increase of vZSB [Fig. 5(a)],
whereas va remains almost constant, and »n p increases [note
that the variational results and those obtained from the direct
simulation of Eq. (1) are in good agreement, despite the clearly
non-Gaussian nature of the BEC deep inside the SB regime].
This dependence is relevant for the convergence of the trapped
BEC to the SB solution, since as discussed in the following,
the convergence of the trapped solution to the SB solution is
eased if v5® is small. The realization of three-dimensional SB
BEC is hence significantly simpler when working at small a
and low N.

The trap may significantly alter the properties of the SB
solution. Due to the marked elongation of the SB droplets along
z, the z confinement is particularly crucial. If the corresponding
oscillator length I, < vZSB, the BEC may depart significantly
from the SB solution. This is true not only for the z width of
the cloud, but also for the radial one, despite the fact that the
condensate is much narrower radially. Figure 6 shows our
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FIG. 6. Widths v, (solid) and v, (dashed) (obtained using the
variational Gaussian ansatz) for a Dy condensate in a spherical
trap (A = 1) with N = 5000 atoms, and a = 80ap. The results are
normalized to the corresponding widths v5® and vS® of the SB solution
for those parameters, and plotted as a function of the ratio [, / UZSB, with
I, the oscillator length of the z confinement. Inset: lowest excitation
mode for the same parameters. For these parameters v58 = 0.3 um
and v3® =3.3 pum.

Gaussian ansatz results for v,/v3® and v,/v$® for A =1,
N = 5000 Dy atoms, and a = 80ap, as a function of the
ratio I, /v3®. Convergence demands I./v®® > 1, which for
this case would demand a rather low w,/2m < 5.6 Hz. For
typical experimental values of @/2m = 70 Hz, v,/ va ~ 0.8,
vx/v)fB ~ 1.05, and I’lp/l’l?;B 2~ 1.12, and hence the deviation
from the SB solution is relatively small. As discussed above,
the realization of the SB solution is much more involved
for larger N and a. For example, for N = 20000 and a =
100ap, for a spherical trap with @/2m = 70 Hz, vz/vfB o~
0.6, v, /vSE ~ 1.2, and I’lp/l’l%B =~ 1.06. Typical experiments
would hence produce BECs that albeit stabilized by the LHY
term may be well away from the 3D SB regime. As a result,
abruptly switching the trap is typically not expected to result
in a complete cancellation of the time-of-flight expansion, as
one would expect from the 3D SB character [30].

V. EXCITATIONS

Once established the ground-state properties of the dipolar
BEC in the presence of the LHY stabilization, we focus on the
lowest eigenmodes of the condensates. We evaluate the lowest-
lying excitations from the condensate response to an abrupt
small change of the trap frequencies wy . = (1 + €)w, y .,
with € = 0.01. The subsequent dynamics is evaluated by
real-time evolution of Eq. (1). We monitor, in particular, the
variances of the BEC along each of the three spatial directions.
The Fourier analysis of these variances reveals the underlying
frequencies depicted in Fig. 7 for the case of a spherically
trapped Dy BEC with N = 20000 atoms. The curves in Fig. 7
depict the results obtained from Egs. (8) and (9), which are in
very good agreement with the numerical results.
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FIG. 7. Lowest excitation frequencies of a spherically trapped
Dy BEC with N = 20000 atoms and &/27 = 70 Hz. The numerical
results for the three lowest modes are marked in order of growing
energy by squares, circles, and triangles. These results are obtained by
monitoring the condensate after a slight trapping quench [¢ = 0.01,
Wxy,; = (1 + €)w, 1. The corresponding frequencies evaluated
from the Gaussian ansatz are depicted by, respectively, solid, dashed,
and dotted lines.

Deep in the mean-field regime (a = 130ap in Fig. 7)
the lowest excitation is given by a radial quadrupole mode,
(1//2, — 1/+/2,0), where we employ the eigenvector notation
introduced in Sec. II. The energetically second lowest mode is
a 3D quadrupolar mode, (—0.53, — 0.53,0.66), and the third
one is a monopolelike mode, (0.5,0.5,1/ ﬁ). The character
of these modes changes when the BEC crosses over into the
droplet regime, a < 90ag in Fig. 7. Due to the marked elon-
gation of the droplet along the dipole direction, axial (along z)
and radial (on the xy plane) modes approximately decouple.
The 3D quadrupolelike mode becomes the lowest lying one,
but it becomes almost completely an axial mode along z,
(—0.05,-0.05,0.99). The radial quadrupole mode does not
change its character, whereas the 3D monopolelike mode
becomes approximately a 2D monopole mode (0.7,0.7,0.07).
Due to the large aspect ratio of the droplet, the quasiradial
modes become much more energetic than the quasiaxial mode.
As a consequence, in the droplet regime, a slight quench of the
trap frequencies just excites the lowest mode.

Due to similar reasons, in a SB BEC the lowest mode
remains quasiaxial. Deep in the SB regime, this mode retains
a slight 3D quadrupole character, as for the case of trapped
BECs. However, close to the instability the mode becomes 3D
monopolelike. The softening of this mode marks the unbinding
of the dipolar BEC. Figure 8 shows that whereas the lowest
eigenenergy of the SB solution grows monotonously with
decreasing a (inset of Fig. 8), it does present a maximal value
as a function of N, decreasing at large N. At this maximum
the mode changes, for decreasing N, from quadrupole to
monopole character. Note that the Gaussian ansatz describes
well the qualitative dependence of the excitation energy,
although the quantitative value may significantly differ due
to the clearly non-Gaussian nature of the BEC deep inside the
SB regime [see Figs. 4(b) and 4(c)].
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FIG. 8. Lowest eigenenergy of the SB solution for a Dy BEC
as a function of N for a = 80ap; inset: same as a function of
a for N =5000. The dashed lines mark the point at which the
lowest mode changes from a quadrupole to a monopole character
before becoming unstable. The curves have been obtained using the
variational Gaussian ansatz, whereas the circles are obtained directly
from the numerical simulation of Eq. (1).

Finally, let us note that the frequency of the lowest-lying
mode of the trapped droplet departs significantly from that of
the SB solution if lz/vfB < 1 (inset of Fig. 6). For N = 5000
Dy atoms in a spherical trap with /2w = 70 and a = 80as,
w1 /@B >~ 1.85 (we recall that for this case, v;, v,, and np
presented a relatively small departure from the SB values).

VI. CONCLUSIONS

In this paper we have analyzed in detail the ground-state
properties and lowest-lying excitations of a dipolar BEC in the
presence of LHY stabilization. For a trap aspect ratio A > A
the BEC presents three marked regions: a mean-field region,
in which the LHY term is perturbative, a droplet region, and an
intermediate multistable region. The mean-field to multistable
boundary is characterized by a first order transition, at which
the droplet solution becomes the global ground state. For
A < A there is a crossover between the mean-field solution
and the droplet one, marked by a characteristic functional
dependence with a of the peak density and of the lowest-lying
excitation. Although we have focused in this paper on the par-
ticular case of dysprosium, similar results characterize other
strongly dipolar gases, in particular recent erbium experiments
[31].

A major consequence of the quantum stabilization is the
possibility to create three-dimensionally self-bound conden-
sates, which would be hence characterized by a vanishing time-
of-flight expansion velocity. We have shown, however, that,
due to the elongation of the BEC along the dipole direction,
the convergence of the trapped solution to the self-bound one
demands under typical conditions a rather weak confinement.
If the confinement is not weak enough, the properties of the
trapped BEC may significantly differ from the self-bound
case, especially in what concerns the lowest-lying mode. As
a result, an abrupt switch off of the trap in time-of-flight
experiments would create rather an excited solution, resulting

043618-6



GROUND-STATE PROPERTIES AND ELEMENTARY ...

in a finite time-of-flight expansion [31]. The observability of
the 3D self-bound solution as a nonexpanding condensate in
time-of-flight experiments would hence demand BECs with
small N and a, and possibly a quasiadiabatic opening of the
trap prior to the time-of-flight (TOF) measurements.

Note added. Recently, we became aware of a preprint [32],
where the ground-state phase diagram of a dipolar BEC with
LHY stabilization is discussed, with similar conclusions con-

PHYSICAL REVIEW A 94, 043618 (2016)

cerning the three regions (mean-field, droplet, and multistable)
discussed in Sec. III.
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