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Density-functional theory for resonantly interacting fermions with effective
range and neutron matter
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A density-functional theory is proposed for strongly interacting fermions with arbitrary large negative scattering
length. The functional has only two parameters that are directly fixed to reproduce the universal properties of
unitary gas: the so-called Bertsch parameter ξ0 and a parameter ηe related to the possible influence of the effective
range re at infinite scattering length a. Using most recent quantum Monte Carlo (QMC) estimates of these two
parameters, it is shown that the functional properly reproduces the experimental measurements of interacting
Fermi systems not only at unitarity but also away from this limit over a wide range of (akF )−1 values. The
functional is applied to obtain an expression of Tan’s contact parameter including the effect of re. Application is
finally made to neutron matter. It is shown that most recent QMC results are well reproduced.
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During the last ten years, important progress has been made
to manipulate Fermi gas by tuning the interaction between
particles [1,2]. Special attention has been paid close to the
unitarity regime when the s-wave scattering length becomes
infinite in dilute systems. In this case, the interacting system
properties become universal. The energy of the system is
directly proportional to the free Fermi gas energy, and the ratio
between these two energies is a universal parameter ξ0 � 0.37
[3–6], the so-called Bertsch parameter [7]. The experimental
advances in atomic Fermi systems have motivated tremendous
theoretical efforts to understand systems at unitarity as well
as the transition from BCS to Bose-Einstein condensate
(BEC) regimes (see, for instance, the collection of review
articles in Ref. [8]). Due to the universal behavior of the
energy for unitary gases, it was shown that simple local
density functionals directly adjusted on QMC approaches can
accurately describe various static or dynamical properties of
these systems [9–12]. These functionals, however, strictly
apply to |a| → ±∞ in the low-density regime and cannot
describe unitary gases with a possibly nonzero effective range
re. The description of Fermi gas with nonzero effective range
and anomalously large a is motivated by (i) the possibility to
uncover new effects in a wider class of unitary systems and
(ii) neutron systems that enter into such a class of interacting
fermions.

A first step to including effective range influence is made
in Refs. [13,14] showing nontrivial effects due to re. In that
work, a minimal generalization of the previously proposed
density-functional theory (DFT) is made by allowing explicitly
the parameters of the functional to vary with re. Alternatively,
finite-range effects can be investigated at low density using
effective field theory (EFT) and systematic expansion in the
Fermi momentum (see, for instance, [15,16]). One success
of EFT is the improvement of the universal Lee-Yang (LY)
formula [17,18], including re effects for low-density Fermi
systems. The EFT approach, however, cannot be directly
applied to unitary gases unless specific resummations of
infinite-order in-medium loops are made. This has led to the
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description of systems at or close to unitary with varying
success [19–21]. Here, inspired by the EFT approach with
resummation, a DFT for Fermi systems is proposed that
is optimized at unitarity and smoothly behaves away from
unitarity.

I consider here spin-degenerated Fermionic systems with
an s-wave interaction characterized by a negative scattering
length a and an effective range re. These two quantities are
defined as usual as the leading and next-to-leading order of
the expansion of the s-wave phase-shift δ in terms of relative
momentum k of the interacting particles:

k cot δ = −1

a
+ 1

2
rek

2 + O(k4). (1)

The functional proposed below is strongly guided by the
resummation technique used in EFT to tackle the problem of
unitary gas. In this case, simplified resummed formula has
been obtained in Refs. [19–21]. Here, I introduce a resummed
formula that accounts for nonzero re and write the energy as a
functional of the Fermi momentum kF as follows:

E

N
= �

2k2
F

2m

{
3

5
+ (akF )A0

1 − A−1
0 [A1 + (rekF )A2]akF

}
. (2)

(A0,A1,A2) are three constants to be determined. One pos-
sibility that has been explored in Refs. [21,22], neglecting
possible re effects, is to constrain the functional by matching
the low-density limit with the universal Lee-Yang expansion
of the energy [17,18]. This gives A0 = 2/(3π ),

A1 = 4

35π2
(11 − 2 ln 2), and A2 = 1

10π
.

The advantages of formula (2) are that (i) it can be reinterpreted
as a density-functional theory through the relation kF =
(3π2n)1/3 where n is the density, (ii) it can be expanded
in powers of (akF ), (akF )−1 or (rekF ), and (iii) it has a
definite limit as a → +∞. Taking this specific limit, we obtain
E = ξ (rekF )EFG where EFG is the free Fermi gas energy,
EFG/N = [3�

2k2
F /(10m)], and

ξ (rekF ) =
{

1 − 5

3

A2
0

[A1 + (rekF )A2]

}
. (3)
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FIG. 1. Illustration of formula (3) (black dotted curve) giving the
effective range dependence of the ξ parameter for unitary gas. The
results are compared with the ones of Ref. [23] (blue points) and
with the low-density results of [13,14] (green open squares). Note
that in Ref. [23], results are given for the Hartree-Fock energy only.
The red solid line is obtained using Eq. (6) with the values given in
Refs. [13,14]: ξ0 = 0.3897 and ηe = 0.127. The short-dashed blue
line and long-dashed red line correspond to ξ0 = 0.37 and ξ0 = 0.44,
respectively, both with ηe = 0.127. These values are compatible with
those reported in Ref. [3]. The grey area corresponds to the results
given in Ref. [21] and reflects the renormalization scale dependence in
EFT calculations. The latter case includes resummation of correlation
effects.

For unitary gas, with small but nonzero effective range, this
expression can be expanded as

ξ (rekF ) �
(

1 − 5

3

A2
0

A1

)
+ 5

3

A2
0A2

A2
1

(rekF ) − 5

3

A2
0A

2
2

A3
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(rekF )2

≡ ξ0 + (rekF )ηe + (rekF )2δe. (4)

With the values of {Ai} parameters deduced from the low-
density constraint, one gets ξ0 = 0.326, ηe = 0.19, and δe =
−0.055. The two former values have been obtained using
a phase-space average in Ref. [21]. Not only is ξ0 close
to the expected value for unitary gas, i.e., ξ0 � 0.37, but
also, the effective range dependence is not too far from the
result obtained with the fixed-node QMC calculations of
Refs. [13,14]. More generally the (rekF ) dependence deduced
from Eq. (3), while not perfect, is globally consistent with
elaborated T -matrix estimates [21,23] (see Fig. 1). The Lee-
Yang formula contains solely mean-field and second-order
perturbation terms. The fact that a constraint on LY is close
to the observed properties at unitarity indicates that strong
cancellations of higher-order effects occur. Attempts have
been made to further improve the expression of the energy
by resumming higher-order effects [19–21], leading to various
results for ξ0. However, the values obtained strongly depend
on the strategy used to select loops in the expansion.

As an intermediate summary, functional (2) has many
interesting features. However, starting from the low-density
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FIG. 2. Energy of a Fermi gas with zero effective range obtained
with the Monte Carlo calculations [26] (dark blue diamond), [27]
(green square), and the more recent result of Ref. [28] (red open
square). The results of formula (5) with ξ (rekF ) = ξ0 are shown for
ξ0 = 0.37 (blue short dashed line) and ξ0 = 0.44 (red long dashed
line). The blue area illustrates the uncertainty on ξ0. For comparison,
the first- and second-order expansions in (akF )−1, Eq. (7), using
ζ = ν = 1 (see discussion in Ref. [29]) are displayed, respectively,
with black dotted and black dot-dashed lines. Results obtained using
directly the functional constrained with the Lee-Yang expansion (ξ0 =
0.326) together with Eq. (5) are also displayed with the grey solid
line.

expansion, it only provides a very rough description of Fermi
gas at and around unitarity.

For this reason, here I follow a more pragmatic strategy
and directly constrain functional (2) assuming that its Taylor
expansion matches Eq. (4) up to first order in (rekF ). Then, the
functional will depend only on the two parameters ξ0 and ηe.
Since Eq. (2) has three parameters and the Taylor expansion
around unitarity only leads to two constraints, I again assume
that A0 = 2/(3π ) so that the LY formula is also reproduced
up to k3

F in dilute systems. The resulting energy then reads

E

N
= �

2k2
F

2m

{
3

5
+ 2

3π

akF

1 − 10
9π

(akF )/[1 − ξ (rekF )]

}
, (5)

with

ξ (rekF ) =
{

1 − (1 − ξ0)2

(1 − ξ0) + (rekF )ηe

}
. (6)

These two formulas are the main results of the present paper.
In the following, I explore the range of applicability of the
proposed functional as well as possible applications. Note that
ξ0 and ηe are not free parameters in the sense that they are fixed
by recent measurements or QMC calculations in unitary gas.
Note that an equation similar to (5) was also considered for a
Fermi gas with vanishing effective range in Refs. [24,25].

In Fig. 2, an illustration of the energy obtained as a
function of (akF )−1 for different ξ0 (and re = 0) are shown
and compared to experiments. It is interesting to mention that
the result obtained using directly the Lee-Yang expansion
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as a constraint, i.e., using Eq. (5) with ξ0 = 0.326, gives
already a good approximation especially for −(akF )−1 > 1.
However, around unitarity, the energy is underestimated. With
constraints imposed at unitarity, the energy is reasonably
reproduced both as 1/(akF ) → 0 and for large values of
(akF )−1.

It is worth noticing that for re = 0, close to unitarity, we
deduce from Eq. (5)

E

N
� 3

5

�
2k2

F

2m

{
ξ0 − ζ

akF

− 5

3

ν

(akF )2
+ · · ·

}
, (7)

with

ζ = 9π

10
(1 − ξ0)2, ν = 3

5

ζ 2

(1 − ξ0)
. (8)

For ξ0 = 0.37, this gives ζ = 1.12 and ν = 1.19, while for
ξ0 = 0.44, we obtain ζ = 0.89 and ν = 0.84. These values
are rather close to those reported in QMC (ζ = 0.9) [26,27] or
fixed node diffusion Monte Carlo (ζ = 0.95) [30]. In Ref. [29],
a direct fit to QMC leads also to ζ � ν � 1. The range of
validity of the expansion (7) is illustrated by the dotted and
dot-dashed lines in Fig. 2. We clearly see that it applies only
for 1/|akF | � 1 while the new functional applies on a wider
range of density. Using directly ξ0 and ηe to constrain the
functional also leads to a better description of the possible
effective range dependence. In Fig. 1, I present the quantity
ξ (rekF ), given by Eq. (6) using the values ξ0 = 0.3897 and
ηe = 0.127 [13,14]. The QMC results with nonzero effective
range are perfectly described while keeping a description at
larger (rekF ) consistent with the many-body calculations of
Refs. [21,23].

I now illustrate how the functional can be used, first to
reproduce some observables measured in unitary gas and
second to predict their possible effective range dependence.
A typical example, which has been the subject of intensive
experimental and theoretical works [31], is the Tan contact
parameter [32–34]. Here, I follow closely [31]. In the present
case of an infinite spin saturated system, the contact parameter
C can be related to the contact density C through C/(NkF ) =
(3π2)C/k4

F which is itself related to the energy density E
through C = 4πma2(dE/da)/�

2. The energy density is given
by E = k3

F E/(3π2N ). Using expression (5), we deduce that
the contact parameter expresses as

C

NkF

= 4

3

(akF )2{
1 − 10

9π
(akF )/[1 − ξ (rekF )]

}2 . (9)

The resulting contact parameter is shown as a function of
(akF )−1 in Fig. 3 for the specific case re = 0. C deduced
from the new functional is in good agreement with the
experimental observations and within the error bars of most
recent theoretical estimates. We also show for comparison the
result of the functional obtained using parameters deduced
from the low-density Lee-Yang expansion. It is interesting
to note that these results are very close to the one obtained
by setting the constraint at unitarity. In particular, different
curves cannot be distinguished for (akF )−1 < −1. However,
around unitarity, differences are noticeable. It should also
be mentioned that the comparison between Eq. (9) and
experiments is given here only as an illustration since this
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FIG. 3. Contact parameter as a function of (akF )−1 obtained with
Eq. (9) assuming re = 0. The light blue area is the region between
the two results obtained either with ξ0 = 0.37 or ξ0 = 0.44. The
black dashed line is the BCS result given by 4(akF )2/3. The black
dotted and dot-dashed lines are the theoretical results of Refs. [35,36],
respectively. The blue open circles, triangles, and squares are the
moment, PES, and rf measurements of [37]. The red filled circles
are the measures of Ref. [38]. In the inset, the dependence of the
contact parameter for unitarity gas with nonzero effective range re

is shown (for ξ0 from 0.37 to 0.44) using a value ηe = 0.127 in
Eq. (10). In the figure and in the inset, the gray solid line corresponds
to the contact parameter obtained using the values ξ0 = 0.326 and
ηe = 0.19 (constraint with the low-density LY expansion).

formula applies to uniform systems while experimental data
are performed with finite-size nonuniform atomic clouds. A
consistent comparison would require performing calculations
accounting for finite-size effects using, for example, a local-
density approximation. This development will be considered
in the near future.

Focusing now on the unitarity limit, I denote by C0 the
contact parameter as a → +∞. We then have

C0

NkF

= 27

25
π2[1 − ξ (rekF )]2, (10)

which includes possible effective range dependence. This
dependence is illustrated in the inset of Fig. 3. It is predicted
that a reduction of C0 should occur for unitary gas with nonzero
effective range. The experimental observation of such reduc-
tion would be a stringent test of the present functional theory.
In addition, since the contact parameter in the unitary limit has
direct connection with many properties [31], number of closed
channel, shear viscosity, and tail of the momentum distribution,
I also anticipate that these properties will be modified as re

increases while keeping the scattering length infinite. Note,
however, that most connections with the Tan parameter have
been obtained using the zero-range model and a more careful
study for nonzero re is desirable. It is finally interesting to
mention that the present functional can be directly combined
with the technique proposed in Ref. [35] to obtain the contact
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FIG. 4. Energy obtained with Quantum Monte-Carlo approach
in neutron matter assuming a finite range s-wave interaction (green
square) [39]. The red curves are the result obtained with formula (5)
together with (6) assuming ξ0 = 0.3897, ηe = 0.127 (thick solid line)
[13,14] or ηe = 0 (dashed line). The blue area indicates the variation
of the result when ξ0 varies from 0.37 to 0.44 keeping ηe fixed.
For comparison, I also show the result obtained using ξ0 = 0.44 and
ηe = 0.03 that perfectly match the QMC approach (blue dot-dashed
line). In all cases presented here, I took a = −18.9 fm and re = 2.7
fm. For comparison, I also show the result obtained (thin solid gray
line) using the Lee-Yang expansion as a constraint (ξ0 = 0.326 and
ηe = 0.19).

parameter for finite systems in a trap by reinterpreting the
energy as a functional of the local density n(r).

A realistic example of a system that has a large but finite
negative scattering length and nonzero effective range is the
case of neutron matter. In this case, the neutron-neutron scat-
tering length is a � −18.9 fm and re � 2.7 fm. In particular,
the ratio |re/a| � 0.14 is much larger than the one generally
obtained in cold atoms (see for instance the discussion in
Ref. [21]). Consequently, a density functional based on EFT
techniques together with low-density expansion only applies in
a very narrow range of densities verifying that |akF | � 1 and
the effective range effect should be included [15,16]. In Fig. 4,
the results of the new functional are compared with QMC
calculations [39–41]. For the comparison, I did not adjust the
ξ0 and ηe parameters but directly took the values reported in
Refs. [13,14]. The blue area indicates the possible dependence
of the result with the ξ0 value. The proposed functional (red
solid line) reproduces remarkably well the exact QMC results
even if (akF ) is much greater than unity. Some deviations are
observed for |akF | > 5. This deviation might come from the
fact that Eq. (6) is constrained to reproduce the QMC only up
to second order in (rekF ) and higher-order corrections might
be needed. It is worth mentioning that these deviations can
also be reduced either by keeping ξ0 = 0.3897 and reducing
ηe slightly to 0.08 or by varying both parameters. An example
is given in Fig. 4 with the dot-dashed line. The effect of re is
clearly pointed out by comparing the full results with the result
obtained by keeping the same value of ξ0 and setting artificially

ηe to 0. Important differences are observed uncovering the
non-negligible effect of the effective range. I note that the result
obtained empirically in Ref. [19] is also close to the QMC.
However, this result were obtained neglecting the effect of re

and the agreement is most probably accidental. In Ref. [22], an
alternative functional has been proposed and shown to match
the equation of state of neutron matter from very low to higher
density. In this case, the parameters were adjusted to directly
reproduce a set of ab initio calculations. Restricting the range
of density considered, it is shown that the functional proposed
here can reproduce exact QMC results by having as unique
parameters the universal parameters deduced independently at
unitarity. This clearly opens new perspectives to less empirical
nuclear density-functional theories.

Another important conclusion is that the results obtained
using parameters deduced only from low-density constraints
(gray thin solid line) fail to describe the neutron matter in
the density range considered here. This indicates that for
nuclear systems with very large scattering lengths in the
s-wave channel and nonzero effective range, the unitary
regime seems to be a better starting point than the low-
density expansion. Interestingly enough this strategy has
been recently explored in Ref. [42] where calculations are
made for small nuclei setting the unitary limit as the leading
order.

In the present work, inspired by the resummed expression
obtained in EFT, I propose a new functional for strongly
interacting Fermi systems. The functional parameters are
directly constrained to reproduce the universal behavior of
Fermi gas at unitarity including the possible effective range
influence. The resulting functional has only two parameters,
the so-called Bertsch parameter ξ0 and the effective range
parameter ηe that can be taken from previous studies on
unitary gas. The proposed functional further has the advantage
to naturally extend functionals [9–12] proposed for unitary
gas at low density while being able to (i) describe systems
with finite scattering length, (ii) include possible effective
range effects, and (iii) applies to a wider range of density,
even if |akF | � 1. I apply the functional to estimate the
energy of Fermi gas on a wide range of (akF ) values showing
good reproduction of experimental results as well as QMC
calculations. I use the functional to obtain an expression of
the Tan contact parameter at and away from unitarity. The
possible effects of nonzero effective range at unitarity are also
discussed. It is finally shown that the functional can reproduce
well recent QMC results obtained for symmetric neutron
matter.

The present work promotes the idea that the unitary regime
can be a proper starting point for describing systems with
large s-wave scattering length and eventually nonzero effective
range. Here, I concentrated on infinite uniform systems. To
apply the functional to finite systems like atomic clouds and/or
nuclei a number of issues should be clarified. The most natural
way to extend a functional designed for infinite systems to
finite systems is to use a local-density approximation. Then, the
energy becomes functional of the local density. It is anticipated,
however, that such a rough approximation will improperly
describe nonuniform systems. For instance, the effective mass
of nuclear or atomic systems are known to differ from the
bare mass. A proper treatment of the effective mass would
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require one to introduce an explicit gradient correction in the
functional.

A second important aspect is superfluidity, which is crucial
in both nuclei and atomic clouds. The energy provided by
the functional (5) is describing the total energy of interacting
fermionic systems and therefore contains implicitly the effect
of superfluidity. For finite system, however, it is well known
that effects like odd-even staggering require the explicit
introduction of the anomalous density. The treatment of the
pairing field with the proposed functional needs also to be

clarified in the near future to extend the present work to finite
systems.
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