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Multicriticality and interaction-induced first-order phase transitions in mixtures
of ultracold bosons in an optical lattice
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We study a critical behavior of mixtures of two species of ultracold bosons trapped in an optical lattice.
Using mean-field approximation, we determine the ground-state phase diagram of the system for a wide range of
parameters. The introduction of interactions between different species of atoms strongly renormalizes the phase
diagram. It can alter the critical behavior modifying multicriticality of crossing points and order of phase
transitions in their vicinity between mixed and superfluid states. For selected values of model parameters, the
behavior of the system falls out of the XY model universality class, which usually is a hallmark of superfluid
phase transition. We supplement our analysis with analytical calculations to explain the observed scenario.
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I. INTRODUCTION

Multicritical systems have been extensively studied in
recent years [1]. Their uniqueness lies in the possibility of
coupling between multiple different order parameters that may
give rise to surprising critical properties. The most interesting
situation appears when the coupling occurs around the inter-
section of at least two critical lines on the phase diagram of
the system, when the underlying phase transitions coincide for
the same or similar parameters of the system. If the coupling
happens to be large, the nature of the multicritical points can
be altered along with the character of the individual phase
transitions. Multicritical phenomena have been investigated in
many contexts: anisotropic antiferromagnets [2], He3-He4 so-
lutions [3], ferromagnetic superconductors [4], etc. However,
they can also be observed in systems of ultracold atomic gases
in optical lattices, which provide an ideal, highly controllable
model setup, for simulating complicated processes of quantum
many-body physics. Properties of these atoms can be tuned
in a wide range of parameters such as geometry of trapping
potential, nature and strength of interatomic interactions, and
accurate control of particle tunneling [5]. Optical lattices
provide an opportunity to investigate various systems: purely
bosonic [6] or fermionic gases, or mixtures of different types
[7,8] or states of atoms [9]. High tunability in connection with
multiple order parameters that can be present, renders them
very good objects to investigate the multicritical phenomena.
This has stimulated interest in the investigation of mixtures
of atoms of different species or the same atoms, but in two
or more different states, i.e., multicomponent gases. The
problem has been studied both experimentally [10,11] and
theoretically [12–18]. In the case of bosons, changing the ratio
between kinetic energy and interparticle interactions drives the
system through the zero-temperature superfluid-Mott insulator
phase transition, which belongs to the XY model universality
class. Recently, the finite-temperature phase diagram of binary
bosonic mixtures has been determined using multiple methods
[19]. Various phases have been identified along with critical
lines and crossing points. Furthermore, finite-size scaling
of quantum Monte Carlo simulations in the hard-core limit
determined the universality class of the transition lines that
correspond to the Bose-Einstein condensation of one of the
two species. This proved that the critical behavior of the system
belonged to the three-dimensional XY universality class char-

acterized by the breaking of a global U(1) symmetry and by
short-range effective interactions. It has been further confirmed
by a renormalization group analysis of the Landau-Ginzburg
�4 theory of two complex fields with global U(1) ⊕ U(1)
symmetry.

In the present paper we show that strong interactions
between two bosonic condensates can lead to previously
unobserved behavior around selected crossing points, where
in the presence of a condensate of one type of atom, the other
condenses abruptly with the first-order phase transition. We
systematically analyze the phase diagram of such mixtures
to find out how the competition between order parameters
influences the nature of the phase transitions present in the
system. We show that, in order to qualitatively describe the
observed scenario, it is necessary to go beyond the quartic
Landau theory. The remainder of the paper is as follows. In
Sec. II we briefly present the model and method of reduced
occupation basis that is used for numerical calculations. In the
following section, we present phase diagrams in the symmetric
(two identical sets of bosons interacting with each other) and
asymmetric cases and discuss the nature of phase transition
occurring in the system. In Sec. IV we perform analytical
calculations based on the free-energy expansion, which allow
us to confirm our numerical results and determine the criteria
for types of multicritical points. Finally, in Sec. V we conclude
with our results.

II. MODEL AND METHOD

Strongly interacting ultracold bosons in optical lattices are
well described by the Bose-Hubbard model [20]. In this paper
we study a behavior of a mixture of two atomic gases (A and
B) that are coupled together with an on-site density-density
interaction. The Hamiltonian of the systems is as follows:

Ĥ = −tA
∑
〈i,j〉

â
†
i âj − μA

∑
i

n̂i + UA

2

∑
i

n̂i(n̂i − 1)

− tB
∑
〈i,j〉

b̂
†
i b̂j − μB

∑
i

m̂i + UB

2

∑
r

m̂i(m̂i − 1)

+W
∑

i

n̂i m̂i , (1)
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where â
†
i (b̂†i ), âi (b̂i) are the creation and annihilation operators

of bosons A and B, respectively. The lattice is characterized
by the total number of lattice sites N and the coordination
number z, while i and j label the lattice sites. The movement
of the particles between the neighboring sites is described
by hopping elements tA and tB . On-site interactions between
atoms of the same type occur with energies UA and UB , while
different types interact with energy W. Finally, n̂i = â

†
i âi and

m̂i = b̂
†
i b̂i are the number operators for A and B bosons. The

density of particles is controlled by the chemical potentials μA

and μB . The bosonic operators then can be represented as a
fluctuation around their average values:

âi = 〈âi〉 + δâi ≡ φA + δâi ,

b̂i = 〈b̂i〉 + δb̂i ≡ φB + δb̂i . (2)

Here, φA and φB are the statistical averages of the bosonic
operators and play the role of order parameters, whose
nonzero values indicate the presence of the superfluid phase
(condensate):

φA ≡ 〈âi〉 = 1

Z
Tr âie

−βĤ ,

φB ≡ 〈b̂i〉 = 1

Z
Tr b̂ie

−βĤ . (3)

Introducing substitution (2) into the Hamiltonian (1) and ne-
glecting quadratic fluctuation terms (δâ†

i δâi = 0, δb̂
†
i δb̂i = 0)

one obtains the mean-field approximation Hamiltonian:

ĤMF = φ2
AtAzN + φ2

BtBzN

−φAtAz
∑

i

(â†
i + âi) − φBtBz

∑
i

(b̂†i + b̂i)

+ UA

2

∑
i

n̂i(n̂i − 1) + UB

2

∑
i

m̂i(m̂i − 1)

+W
∑

i

n̂im̂i − μA

∑
i

n̂i − μB

∑
i

m̂i (4)

that is only single-site dependent. As a result, site index i

can be omitted and the sum over lattice sites can be easily
calculated. Then the partition function of the system can be
written in the occupation number basis:

Z = Tr e−βĤMF

= e−βNztAφ2
A−βNztBφ2

B

∞∑
n,m=0

〈m,n|e−βNĤos |m,n〉, (5)

with β = 1/kBT and T being the temperature. The matrix
element of the one-site Hamiltonian reads:

〈m′,n′|Ĥos|m,n〉

= δn′,nδm′,m

[
−μAn − μBm

+ UA

2
n(n − 1) + UB

2
m(m − 1) + Wnm

]

− δm′,mztAφA(δn′,n−1
√

n + δn′,n+1

√
n + 1)

− δn′,nztBφB(δm′,m−1
√

m + δm′,m+1

√
m + 1). (6)

This leads to the following expression for the free energy:

f = − 1

βN
ln Z

= ztAφ2
A + ztBφ2

B − 1

βN
ln

∞∑
n,m=0

〈m,n|e−βNĤos |m,n〉. (7)

In the strong coupling limit, the separation between energy
levels grows quadratically with the number of particles. As
a result, in the ground state only finite number of states
m,n has significant contribution to the free energy. This
allows one to reduce the Hamiltonian basis and truncate the
summation in Eq. (7) at some arbitrarily selected value Nmax

(n,m = 0, . . . ,Nmax). The validity of this truncation can be
checked by observing the effect of a variation of Nmax on the
obtained results.

III. PHASE DIAGRAM

In order to determine the phase diagram of the system,
minimization of the free energy in Eq. (7) in terms of values
of order parameters φA and φB is required. In the following,
we limit ourselves to Nmax = 5, which allows us to correctly
describe systems with up to four bosons of each kind at
every lattice site in the ground state (here, in numerical
calculations β = 1/kBT = 500). Depending on the value of
the order parameters φA or φB the atoms are in the superfluid
(SF, φA,B 	= 0) or in the Mott insulating (MI, φA,B = 0)
state. As a result, it can lead to one of four possible states
of the system as a whole: (a) ASF(φA 	= 0) + BSF(φB 	= 0),
(b) ASF(φA 	= 0)+BMI(φB=0), (c) AMI(φA=0)+BSF(φB 	= 0),
or (d) AMI(φA = 0) + BMI(φB = 0). To treat both species of
particles (A and B) on an equal footing, we use the following
parametrization of the system parameters:

tB = γ tA = γ t, μB = ξμA = ξμ, UB = ζUA = ζU, (8)

which allows for the introduction of differences between the
types of bosons, when γ, ξ , and ζ coefficients depart a value
of 1. First we consider a symmetric case γ = ζ = ξ = 1
(tB = tA = t , μB = μA = μ, UB = UA = U ), in which the
behavior of both types of particles is identical. However, each
type of boson interacts with other atoms of the same type,
while the interaction between two types is controlled by W (for
W = U the particles interact identically with others). Such
case was studied earlier by means of various methods [13–16].
For W = 0, the phase transition lines of both condensates
coincide and are the same as for an ultracold bosonic gas with
a single type of particles [21] [see Fig. 1(a)]. For hopping
lower than the critical value, both species of bosons are in
the Mott insulating state (AMI + BMI), while for higher, in
the superfluid phase (ASF + BSF). When the interaction W is
turned on, extra lobes of Mott insulator phase appear between
the original lobes of a single condensate and their width in
units of μ/U is equal to W/U . Densities of each kind of
boson can be calculated from the following expressions:

nA = 〈n〉 = 1

Z
Tr n̂ie

−βĤMF ,

nB = 〈m〉 = 1

Z
Tr m̂ie

−βĤMF . (9)
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W U/ =0

W U/ =0.4

zt/U

(a)

(b)

FIG. 1. Phase diagram (a) and density of particles of each type in
the Mott insulating state (b) in symmetric case tB = tA, μB=μA=μ,

UB = UA = U for interactions between different species W/U

ranging from 0 to 0.5.

Their values in the Mott insulating state (t/U = 0) are shown
in Fig. 1(b). It appears that the extra lobes are on average
half-filled with particles of each type ( 1

2 , 3
2 , 5

2 . . . particle of
each type per lattice site), while the original lobes are filled
with an integer number of particles of both species. However,
the total filling nA + nB is still an integer.

In a nonsymmetric case, critical lines of two sorts of
particles no longer coincide. As a result, the ground state of
each condensate may be dependent on the state of the other:

∂f (φA,φB)

∂φA

∣∣∣∣
φA=0

= 0,

∂f (φA,φB)

∂φB

∣∣∣∣
φB=0

= 0 (10)

as both φA and φB can have nonzero values at the same time.
Consequently, the order parameters have to be determined
using their definitions in Eq. (3) and the resulting phase
diagrams have to be calculated from the set of Eqs. (10) and (3).
The critical lines for different values of asymmetry parameters
(γ, ζ, and ξ ) are shown in Fig. 2. The lobes, which separate
superfluid and Mott insulating phases of both sorts of bosons,
no longer have a regular shape. Depending on the values of
γ, ζ , and ξ , they can be significantly modified in the presence
of the other order parameter, which is especially visible around
the multicritical (crossing) points. The possible ground states
of the system are the combination of SF and MI states of
each kind of particle and all four of them can be observed on
the phase diagram. The profile of densities of two species of
bosons in the Mott insulating phases (t/U → 0) is presented
in Fig. 3. Except for the small vicinity of the zero value of
the chemical potential, the densities are integers and change in
consecutive Mott insulator lobes.

FIG. 2. Phase diagrams of a mixture of two atomic gases in an
optical lattice for γ = 1.1, ξ = 0.8, and ζ = 0.9 and selected values
of interaction between two species W/U = 0.2,0.4,0.6 (from top
to bottom). Solid (blue) lines denote critical lines of bosons A,
while dashed (red) ones are for the bosons B. Areas below each
line represent the Mott insulator of the respective type of bosons.

nA

nB

FIG. 3. Density of bosons A (solid line) and B (dashed line)
in the Mott insulating phase (t/U → 0) as a function of the
chemical potential μ/U for W/U = 0.4, γ = 1.1, ξ = 0.8, ζ = 0.9
[corresponding to Fig. 2(b)].
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TABLE I. Multicritical points in the region μ/U = 0.2, . . . ,2.5
of the phase diagram from Fig. 2(b).

Critical point number μ/U zt/U

1 1.05291 0.13710
2 1.79352 0.09971
3 2.49943 0.07788

The exact behavior of the critical lines near the crossing
points is strongly dependent on their position on the phase
diagram. The presence of another order parameter does not
influence the critical lines around some crossing points, while
next to some others, it strongly modifies their shapes. In order
to analyze this behavior, we focus on a chosen asymmetric
phase diagram with W/U = 0.4, γ = 1.1, ξ = 0.8, and ζ =
0.9 [see Fig. 2(b)] and three multicritical points that lie in
the region of the chemical potential μ/U = 0.2, . . . ,3.0 (see
Table I). At point 1, critical lines of both condensates do not
show any deflection at the crossing point. However, near points
2 and 3 significant deflection is observed. Therefore, we cal-
culate the values of order parameters as a function of hopping
t/U at the multicritical points and for slightly lower and higher
chemical potential μ/U . The results are presented in Fig. 4.
Close to point 3, the phase transition from AMI + BMI phase
to AMI + BSF or ASF + BMI is continuous. However, while
hopping is increased, the finite jump of the order parameters
φA or φB during the transitions to the ASF + BSF state is
observed, which means that this transition is of the first order.

U/tzU/tz

FIG. 4. Dependence of order parameters φA and φB on hopping
t/U for W/U = 0.4, γ = 1.1, ξ = 0.8, ζ = 0.9 and the three values
of the chemical potential μ = μc − 0.01,μc,μc + 0.01 (from top to
bottom) surrounding two multicritical points μc = 1.793 52 (left),
2.499 43 (right) demonstrating the second-order (left) and the first-
order (right) phase transitions in the presence of condensed atoms
of the other type, respectively. Filled (blue) circles denote φA, while
empty (red) circles correspond to φB .

FIG. 5. Free energy of the mixture of atomic gases for W/U=0.4,

γ = 1.1, ξ = 0.8, and ζ = 0.9, near points 2 (left) and 3 (right) from
Table I and Fig. 2(b). Darker colors denote lower energy.

Investigating the behavior of the order parameters exactly
at the critical point, a discontinuous transition from Mott
insulator to the superfluid state (AMI + BMI to ASF + BSF) can
be observed. On the other hand, point 2 is an intersection of
two second-order transition lines. These observations can be
verified by calculating the free energy of the system at critical
points 2 and 3. The result is shown in Fig. 5. The free energy
of the system at point 3 has two minima that are typical for the
first-order phase transition and coexisting metastable states
of the Mott insulator (φA = 0, φB = 0) and the superfluid
(φA 	= 0, φB 	= 0). This situation differs significantly from the
results of Ref. [4], where such scenario was not present. We
provide further investigations of this case in the next section.

The existence of the first-order phase transition lines in the
phase diagrams precludes the determination of the positions
of the critical lines using minimization of the free energy in
Eq. (10) since instead of a single, global minimum, multiple
minima can occur. In this case, the thermodynamic phase
transition can be determined by comparing and equating the
values of the free energy of both phases:

f (φA = 0,φB = 0) = f (φA 	= 0,φB 	= 0), (11)

where nonzero values of order parameters are calculated self-
consistently from Eq. (3). As can be deduced from Fig. 4, the
first-order phase transition is not limited to the multicritical
point, but extends to some region of the chemical potential
(see Fig. 6). As the distance from the crossing point gets larger,
the finite jump of the order parameters becomes smaller until
finally continuous phase transitions are restored.

IV. MULTICRITICAL POINTS

In the previous section we have numerically determined
the phase diagram of the mixture of two types of bosons
for arbitrary values of model parameters. The results suggest
that in the vicinity of selected crossing points, where the
critical lines for both kinds of particles meet, the type of phase
transitions can change from continuous, which is characteristic
for regular bosonic condensates (single type of atoms) to
discontinuous (of the first order). In the following, we present
an analysis based on the free-energy expansion to support
the previous results and determine the criteria for the type of
multicritical points present in the phase diagram.
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A +BSF SF

A +BMI MI

A +BSF MI

A +BMI SF

zt

FIG. 6. First-order phase transition lines (dashed) of conden-
sation in the presence of other condensates around the bicritical
crossing point no. 3 (see Table I). Solid lines denote continuous
phase transitions.

A. Generic free-energy expansion

Expansion of the free energy of a mixture of two kinds of
bosons can be written in the standard way up to quartic terms:

f = f0 + aA

2
φ2

A + aB

2
φ2

B + bA

4
φ4

A + bB

4
φ4

B + dAB

2
φ2

Aφ2
B,

(12)

where f0 is the free energy of the disordered state. This
problem has already been analyzed in the case of two general
order parameters, which are coupled [22] and in the context
of coexistence of superconductivity and magnetism [4]. Since
the Landau expansion works in the vicinity of the critical
line, in the case of mixtures of particles, it can be used
only around crossing points of two critical lines (multicritical
points) or to describe condensation of one subsystem, while
the other is in the disordered (Mott insulating) state (φA = 0
or φB = 0). The free energy can be minimized and analytical
solutions for order parameters φA and φB can be found if the
expansion up to quartic terms is taken into account. This leads
to two possible scenarios for multicritical points presented
in Figs. 7(a) and 7(b) depending on the interplay of the
expansion parameters. For bAbB > d2

AB four phases are present
around the multicritical point (which is tetracritical) with the
phase transitions between them being continuous. However, as
the difference bAbB − d2

AB becomes smaller, the mixed state
region (ASF + BSF, φA 	= 0, φB 	= 0) becomes narrower and
finally closes for bAbB = d2

AB . When bAbB < d2
AB the mixed

state is no longer present. Instead, the two states with only
one of the atoms groups being superfluid are separated by a

FIG. 7. Possible scenario of the behavior of a system with two
interacting orders around the multicritical point.

first-order transition line. Consequently, the multicritical point
changes to bicritical. Although the former scenario presented
in Fig. 7(a) is observed in the case of a mixture of cold bosons
in optical lattice (see Sec. III), the latter is missing. Instead,
a different one is observed, which is schematically depicted
in Fig. 7(c): around the multicritical point four phases are
possible: ASF + BSF, ASF + BMI, AMI + BSF, and AMI + BMI;
however, AMI + BMI is separated from ASF + BMI with the
AMI + BSF continuous phase transition, while ASF + BSF with
the first-order one.

In an analysis of the free-energy expansion, one has
to be careful to allow only these values of the expansion
parameters, which make the function physically well defined:
being divergent to +∞ for |φA|,|φB | → ∞ and as a result
having a global minimum. For this reason, in Refs. [4,22]
it was assumed that bA, bB , and dAB are positive, which
limited the possible results to scenarios (a) and (b) in Fig. 7
(although, the analysis in Ref. [4] is valid for dAB < 0 as long
as d2

AB < bAbB). In order to describe the regime from Fig. 7(c),
it is required that the free energy has multiple local minima:
one for both φA and φB being nonzero and the other for only
one of them being nonzero. This, in some circumstances, can
be achieved if dAB is negative. As it may lead to the free energy
being divergent to −∞, the expansion in Eq. (12) has to be
taken to higher order. The simplest extension is to include an
additional term 
(φ2

A + φ2
B)3 with positive values of 
. This

leads to the following expansion of the free energy:

f = f0 + aA

2
φ2

A + aB

2
φ2

B + bA

4
φ4

A + bB

4
φ4

B

+ dAB

2
φ2

Aφ2
B + 


(
φ2

A + φ2
B

)3
. (13)

Unfortunately, the expression in Eq. (13) is too complicated to
be minimized analytically and to calculate the order parameters
dependence on the expansion parameters. However, from a
general analysis of the Landau expansion it is known that at
the critical line of the continuous phase transitions coefficients
of the quadratic terms are equal to zero. As in the scenario
in Fig. 7(c), two continuous phase transition lines meet at the
critical point; the behavior of the system at this point can be
investigated by assuming that aA = aB = 0. In this case values
of the order parameters that minimize the free energy can be
calculated. It appears that two solutions exist: one is trivial,
φA = 0, φB = 0, and it corresponds to the disordered phase
AMI + BMI. The other one is complicated; however, it has the
following form:

φA ∼ i
√

bB − dAB

√
bAbB − d2

AB,

φB ∼ i
√

bA − dAB

√
bAbB − d2

AB, (14)

where i is the imaginary unit. For negative values of dAB

obeying the condition d2
AB > bAbB this solution is real and

nonzero. As a result, at the multicritical point two phases
can be present: AMI + BMI and ASF + BSF, each with its own
local minimum of the free energy corresponding to point 3
in Fig. 5. Furthermore, the free energy in Eq. (13) can be
analyzed numerically to discover that the scenario in Fig. 7(c)
can be realized for dAB which is negative and d2

AB > bAbB .
Obviously, the question is whether the free energy of the
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model analyzed in Sec. III falls into this scenario, which will
be studied in the following section.

B. Coefficients of the free-energy expansion

In the following, we use a method based on the Laplace
transform to calculate the coefficients of the free-energy ex-
pansion of the Bose-Hubbard model of a mixture of two types
of bosons from Secs. II and III, when both order parameters
(φA and φB) are zero. This allows one to retrieve the lower (in
terms of value of t/U ) of the critical lines in Fig. 2 and, as
a result, works also at multicritical points. This approach has
already been applied to single-component systems [23,24];
here we adapt it to a more complex system. The existence
of two heterogenic order parameters makes the calculation
more complicated, but the main idea remains the same. The
mean-field Hamiltonian in Eq. (4) is decomposed into a
diagonal H0 and a nondiagonal H ′ part, ĤMF = Ĥ0 + Ĥ ′:

Ĥ0

N
= UA

2
n̂(n̂ − 1) + UB

2
m̂(m̂ − 1) + Wn̂m̂ − μAn̂ − μBm̂,

H ′

N
= −φAtAz

∑
i

(â†
i + âi) − φBtBz

∑
i

(b̂†i + b̂i). (15)

The partition function can be written as

Z = e−βz(tAφ2
A+tBφ2

B )Z′, (16)

where

Z′ = Tr e−β(H0+H ′). (17)

The key step of the method is to perform a perturbation expan-
sion of the partition function Z′ starting from representation as
an integral over a contour �, which surrounds all singularities
of the resolvent (s − H )−1:

Z′ =
∫

�

ds

2πi
e−βsTr(s − H )−1

=
∫

�

ds

2πi
e−βsTr

{
(s − H0)−1

∞∑
n=0

[(s − H0)−1gH ′]n
}

.

(18)

This can be rewritten in a more compact form:

Z′ = Z0 − β

∞∑
n=1

∫ 1

0

dg

g

∫
�

ds

2πi
e−βsTr[(s − H0)−1gH ′]n,

(19)

where Z0 is

Z0 =
∞∑

n,m=0

e−βEn,m (20)

and En,m are eigenvalues of the H0 Hamiltonian. The partition
function can be expanded in the powers of the order parame-
ters:

Z = e−βz(tAφ2
A+tBφ2

B )
(
Z0 + ZA

2 φ2
A + ZB

2 φ2
B + ZA

4 φ4
A

+ZB
4 φ4

B + ZAB
4 φ2

Aφ2
B

)
. (21)

As a result, the coefficients in the expansion of the free
energy in Eq. (12) can be calculated as functions of the model
parameters:

f0 = T ln Z0,

aA = 2

(
z J − T

ZA
2

Z0

)
,

aB = 2

(
z J − T

ZB
2

Z0

)
,

bA = − 4

β

[
−1

2

(
ZA

2

Z0

)2

+ ZA
4

Z0

]
,

bB = − 4

β

[
−1

2

(
ZB

2

Z0

)2

+ ZB
4

Z0

]
,

dAB = − 2

β

(
−ZA

2 ZB
2

Z2
0

+ ZAB
4

Z0

)
. (22)

It should be noted that the method allows for analytical
calculation of coefficients of higher order expansion of the
free energy, although the expressions are becoming more
complicated. As a result, one can include the parameters
that determine the nature of the phase transitions into the
phase diagram of the mixture of bosons. These parameters,
according to Sec. IV A, are the values of bAbB − d2

AB and
dAB . If the former is positive at the intersection of critical lines
of two types of bosons, a tetracritical is present. On the other
hand, if the value is negative, the lines meet at a bicritical
point. If dAB is negative, the mixed phase (ASF + BSF) is
separated from the single-particle-ordered phases (ASF + BMI

and AMI + BSF) with the first-order transition line. The
interplay of the parameters is presented in Fig. 8, which leads
to two tetracritical points at μ/U = 1.05 and μ/U = 1.79
and one bicritical point at μ/U = 2.5 (another one close to

)
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FIG. 8. Phase diagram from Fig. 2(b) with values of coefficients
determining the type of multicritical points: the sign of dAB (dashed
line on the top) and the negative value of bAbB − d2

AB (vertical shaded
regions).
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μ/U = 0.25 is not analyzed since critical lines are highly
coinciding) since it is the only crossing point at which negative
values of bAbB − d2

AB and dAB coincide. This confirms the
results of the numerical analysis in Sec. III. However, the
question on the physical reason for a large negative value of
dAB (effective coupling between bosonic order parameters)
is still open. From Fig. 3, it seems that it has no connection
with the particle densities of the bosonic species. On the other
hand, the exact expression for dAB resulting from Eq. (22) is
too complicated to be helpful in solving this conundrum.

V. CONCLUSION

We have investigated the phase diagrams of mixtures of
atomic gases in an optical lattice interacting via density-
density coupling for various parameters of the model. In
the Bose-Hubbard model of a single condensate the phase
transition from the Mott insulator to the superfluid is always

a continuous one. However, we showed that the presence
of an additional order parameter in connection with strong
interactions between different species of atoms can lead
to a change of the nature of the phase transition close to
selected multicritical points along with a change of their
multicriticality: they change from tetracritical to bicritical,
while the critical lines between MI-SF and SF-SF phases
become of the first order. As a result, the condensation of
bosons in the presence of other bosonic condensates may
fall out of the XY model universality class. The reason for
this behavior is an effective strong and negative coupling
between bosonic parameters resulting from the complicated
nature of the many-body quantum problem. In solid-state
physics, finding a multicritical system with strongly coupled
order parameters is not easy. From our results, it seems that
due to high tunability of atoms in an optical lattice this
task should be much more fruitful for systems of ultracold
bosons.
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