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We describe a protocol to prepare clusters of ultracold bosonic atoms in strongly interacting states reminiscent
of fractional quantum Hall states. Our scheme consists in injecting a controlled amount of angular momentum
to an atomic gas using Raman transitions carrying orbital angular momentum. By injecting one unit of angular
momentum per atom, one realizes a single-vortex state, which is well described by mean-field theory for large
enough particle numbers. We also present schemes to realize fractional quantum Hall states, namely, the bosonic
Laughlin and Moore-Read states. We investigate the requirements for adiabatic nucleation of such topological
states, in particular comparing linear Landau-Zener ramps and arbitrary ramps obtained from optimized control
methods. We also show that this protocol requires excellent control over the isotropic character of the trapping
potential.
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I. INTRODUCTION

Ultracold atom experiments provide unique playgrounds
for investigating complex states of matter in a controlled
environment, such as strongly interacting Fermi gases, low-
dimensional states of matter, or lattice quantum systems [1].
The effect of a magnetic field on charged quantum many-body
systems leads to a wealth of interesting states of matter,
such as integer and fractional quantum Hall states. Exploring
this field with ultracold atoms requires creating an artificial
magnetic field that mimics the Lorentz force acting on charged
particles. In recent years the simulation of such gauge fields
was extensively developed along several directions, including
setting gases in rotation, dressing atoms with laser fields, and
using time-modulated optical lattices [2–5].

The physical behavior of atomic gases in the presence of
an artificial magnetic field was studied with Bose-Einstein
condensates, for high filling factors ν = N/Nv corresponding
to a number of flux quanta Nv much less than the particle
number N . In that regime, the gauge field leads to the ap-
pearance of Nv quantized vortices piercing the Bose-Einstein
condensate [6–9]. The quantum Hall regime was reached using
rotating gases with large filling factors [10,11], but the strongly
correlated regime is expected for fillings ν ∼ 1, which seems
realistic to reach in experiments with small atomic samples
only [2].

Here, we describe an experimental scheme for preparing a
system of a few atoms in strongly correlated states [12–17],
similar to the ones associated with the fractional quantum
Hall effect (FQHE) [12,15,18–26]. We propose to transfer
a controlled amount of angular momentum using Raman
transitions, making use of Laguerre-Gauss Raman beams to
transfer orbital angular momentum to the atoms. Our scheme
allows transferring a given (integer) number p of angular
momentum quanta per atom, leading to a nontrivial dynamics
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in the lowest Landau level (LLL). In particular, we propose
a method to adiabatically prepare the LLL ground state of
fixed angular momentum L = pN (we set � = 1). We discuss
the examples of the one-vortex L = N state [27–30], as well
as paradigmatic FQHE states, the Laughlin and Moore-Read
states [31,32], occurring for angular momenta L = N (N − 1)
and L = N (N − 2)/2, respectively. We also discuss the re-
quirements for adiabaticity, as well as shortcuts to adiabaticity
using optimized variations of the system parameters. Our study
is restricted to bosonic atoms but it could be transposed to
fermions straightforwardly.

II. DESCRIPTION OF THE SCHEME

We consider a cluster of bosonic atoms of (pseudo-)spin
F , strongly confined along the spatial direction z, leading to
quasi-two-dimensional (quasi-2D) dynamics in the x-y plane.
An additional harmonic confinement is produced along x and
y, of angular frequency ω—the trap being assumed perfectly
isotropic. The harmonic motion of single-particle eigenstates
can be quantized in the “left-right” basis as |j,k〉, j,k ∈ N,
with an energy �ω(j + k + 1) and orbital angular momentum
projection l along z, where l = j − k. The family of states
|j = l,k = 0〉 of maximal angular momentum forms a basis
of the LLL of charged particles in a magnetic field, of cyclotron
frequency 2ω. Including the internal spin degree of freedom,
we write single-particle eigenstates in the basis ‖m; j,k〉,
where −F � m � F denotes the spin projection along z.

The proposed scheme is sketched in Fig. 1. We assume
an initial state composed of N atoms, spin polarized and
in the motional ground state ‖m = F ; j = 0,k = 0〉. A bias
magnetic field provides a spin quantization axis and lifts the
spin degeneracy, modeled by a Zeeman energy EZ = δZm.
The transfer of angular momentum is provided by two-photon
Raman transitions involving two Laguerre-Gauss laser beams
of modes LG1

0 and LG0
0, of frequency difference δmod. In

the regime of large bias magnetic fields (assuming it small
enough to neglect the quadratic Zeeman effect), one may use
a rotating wave approximation, leading to a simple form for
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FIG. 1. (a) Scheme of the experiment, based on a cluster of
bosonic atoms, strongly confined along z, and subjected along x

and y to an isotropic harmonic trap of frequency ω. Laguerre-Gauss
laser beams are sent on the atomic sample along −z to drive
Raman transitions transferring orbital angular momentum. Laser
polarizations are chosen linear along x and y, and a quantization
magnetic field is applied along x. (b) Scheme of the involved energy
levels ‖m; j,k〉, indexed by the spin projection m and the quanta j,k

of motion along x and y, in the presence of an isotropic harmonic
trap (“left-right” basis). Angular momentum is injected using Raman
transitions, which couple ‖m; j,k〉 to ‖m − 1; j + 1,k〉 states via the
absorption of one LG1

0 photon, followed by the emission of one LG0
0

photon. The trap isotropy ensures that orbital angular momentum
is conserved, and k �= 0 states remain unpopulated. The Raman
transitions are resonant for a detuning δmod equal to the difference
between the trap frequency ω and the Zeeman detuning δZ (negative
on the figure). On the example pictured here of a spin F = 1, an
adiabatic ramp of the detuning δmod across resonance leads to a
transfer of two units of angular momentum per atom.

the single-particle Hamiltonian:

Ĥ1 = (δZ + δmod)F̂z + ω(â†
j âj + â

†
kâk + 1)

+ �

2
[F̂−(â†

j + âk) + F̂+(âj + â
†
k)],

where âj (âk) annihilate one right- (left-)handed quantum
labeled by the integer j (k, respectively) and � denotes the
Rabi frequency of the Raman coupling.

We aim at driving the system in the LLL, i.e., with only
k = 0 states populated. The couplings F̂−â

†
j and F̂+â

†
k are

resonant for modulation frequencies δmod = −δZ + ω and
δmod = −δZ − ω, respectively. The dynamics in the LLL
is induced by working around the resonance of processes
‖m; j,k〉 → ‖m − 1; j + 1,k〉, induced by the coupling F̂−â

†
j .

We thus introduce the detuning δ ≡ δmod + δZ − ω as the
control parameter for the angular momentum injection. Under
the assumptions |δ|,� 	 ω, the other transitions ‖m; j,k〉 →
‖m + 1; j,k + 1〉 remain off resonant, and the single-particle
Hamiltonian can be restricted to (up to a constant)

Ĥ ′
1 = δF̂z + �

2
(F̂−â

†
j + F̂+âj ),

for which the LLL is stable. Note that the couplings between
‖m; j,k〉 and ‖m − 1; j + 1,k〉 are not uniform with respect
to m. We checked that uniform couplings would lead to atom
dynamics similar to the case considered here. When ramping δ

slowly across the resonance δ = 0, one expects, in the absence

of interactions, to adiabatically transfer all atoms in the state
‖m = −F ; j = 2F,k = 0〉. A residual trap anisotropy would
induce an additional coupling to k �= 0 states, which we discuss
at the end of the article.

In this process, we expect interactions to play a crucial
role. Indeed, in the absence of interactions the many-body
state with all atoms in ‖m = −F ; j = 2F,k = 0〉 is degen-
erate with all states of N particles occupying the states
‖m = −F ; j = li ,k = 0〉 (1 � li � N ), provided the energy
conservation is fulfilled, i.e.,

∑
i li = 2FN . As a result, inter-

actions play a nonperturbative role, and the true many-body
ground state occurring in the presence of interactions is likely
to be strongly correlated, i.e., not captured by a mean-field
analysis. We assume in the following that interactions can be
described as contact, spin-independent interactions of scatter-
ing length a, leading to a coupling constant g̃ = √

8πa/lz
describing collisions in a quasi-2D geometry (lz denotes the
extent of the wave function along the strong confinement
axis z) [33]. Importantly, elastic contact interactions conserve
energy and orbital angular momentum, which ensures that the
LLL subspace k = 0 is stable under collisions.

In the following, assuming the dynamics to be restricted to
the LLL, we write many-body wave functions as ψ({zi}) =
P ({zi}) exp(−∑

i |zi |2/2a2
ho), where zi is the complex coordi-

nate of particle i in the x-y plane, and P ({zi}) is a polynomial
function of the variables zi (1 � i � N ) [2]. All lengths are
expressed in units of the ground state extent aho = √

�/mω,
and the Gaussian factor is further omitted in many-body wave
functions. Energies are written in units of the trap frequency ω.

III. ONE-VORTEX STATE

We first consider the simplest case of a spin F = 1/2,
for which a single unit of angular momentum is transferred
per atom, leading to the ground state of the LLL of angular
momentum L = N . The structure of levels is illustrated in
Fig. 2(a) on the case N = 2. The system is prepared with both
atoms in the state ‖m = 1/2; j = 0,k = 0〉, and the detuning
δ is ramped across 0 in the positive direction. An adiabatic
following of the lowest energy state leads to both atoms
polarized in the m = −1/2 state, with L = 2. In the absence of
interactions, one ends into a degenerate subspace spanned by
the vectors |ψ1〉 ∝ ĉ

†2
−1/2;1,0|0〉 and |ψ2〉 = ĉ

†
−1/2;2,0ĉ

†
−1/2;0,0|0〉,

where ĉ
†
m;j,k creates a particle in the state ‖m; j,k〉. Interactions

lift this degeneracy, leading to a ground state |ψv〉 = (|ψ1〉 −
|ψ2〉)/

√
2, separated in energy from the first excited state

by g̃/(2π ).
A similar structure occurs for larger particle numbers. The

subspace L = N of the LLL features a unique ground state, of
(non-normalized) wave function

ψv({zi}) =
∏

1�i�N

(zi − zc), zc = 1

N

∑
1�i�N

zi, (1)

and energy E = N (N − 2)/2 [27–30]. In the limit of large
particle numbers, the fluctuations of the center-of-mass posi-
tion zc decrease to 0, leading to a Bose-Einstein condensate
of wave function ψv({zi}) = ∏

1�i�N zi , with one vortex at
the trap bottom [34]. We plot in Fig. 2(b) the energy levels
of the many-body Hamiltonian as a function of the detuning
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FIG. 2. (a), (b) Energy levels E (black lines) as a function of the detuning δ, for N = 2 (a) and N = 8 (b) particles of spin F = 1/2, which
corresponds to a transfer of one unit of angular momentum per atom. The Raman coupling amplitude is set to � = g̃/(2π ). The system is
prepared at rest, spin polarized in m = F , corresponding to the many-body ground state for δ < 0. The adiabatic detuning ramp connects it to
the one-vortex state |ψv〉, without any level crossing. The red dashed lines correspond to the lowest energy of stationary states of the mean-field
nonlinear Schrödinger equation (4). For N = 8 the mean-field energy almost coincides with the many-body ground state. (c), (d) Overlap O
(c) and fidelity F (d) between the one-vortex state |ψv〉 and the state prepared for a ramp of finite speed δ̇, as a function of the dimensionless
parameter �2/δ̇ (blue solid lines). The overlap and fidelity are defined according to Eqs. (2) and (5), respectively. The calculation is performed
for N = 8 particles, and the result is compared with the Landau-Zener prediction expected for noninteracting systems (dotted lines). The
calculated fidelity coincides with the one obtained from a mean-field description [dashed red line in (d)].

δ for a system of N = 8 particles, which correspond to a
Hilbert space of dimension 185. We observe that the ground
state remains gapped; thus an adiabatic ramp of the detuning
δ should lead to the ground state of the LLL with L = N ,
spin polarized in the state |F,m = −F 〉. We confirm this
result numerically by solving the Schrödinger equation with
the many-body Hamiltonian, for a linear detuning ramp of
speed δ̇, connecting initial and final values δ = −20 g̃/(2π )
and δ = 20 g̃/(2π ), respectively. We compare the quantum
state |ψf〉 obtained numerically with the ground state (1), by
calculating the many-body overlap

O ≡ |〈ψf|ψv〉|2. (2)

We observe that the overlap tends to 1 in the slow ramp limit.
This calculation is compared with the overlap expected for
noninteracting particles, given by the Landau-Zener formula

O =
[

1 − exp

(
−2π

�2

dδ/dt

)]N

. (3)

The larger overlap values obtained for interacting particles is
reminiscent of the behavior observed with Bose-Einstein con-
densates into optical lattices [35] or coupled one-dimensional
Bose liquids [36].

In the limit of large particle numbers, we expect the system
to be well described as a Bose-Einstein condensate of wave
function |ψ〉 = α|a〉 + β|b〉, occupying the two modes |a〉 ≡
‖1/2; 0,0〉 and |b〉 ≡ ‖ − 1/2; 1,0〉. The time evolution of the
BEC wave function is governed by the nonlinear Schrödinger
equation (NLSE) [37,38]

iα̇ = δ

2
α + N − 1

2

(
|α|2 + |β|2

4

)
α + �

2
β,

iβ̇ = − δ

2
β + N − 1

2

( |α|2
4

+ |β|2
2

)
β + �

2
α,

|α|2 + |β|2 = 1. (4)

We plot in Fig. 2(b) the lowest energy E associated with
stationary solutions of (4) for N = 8, which is close to the
actual ground state energy for all detuning values. The many-
body overlap O is not suited for comparing the calculations
performed on the many-body wave functions and the mean-
field description. We thus introduce the fidelity

F = Tr
√√

ρ̂f ρ̂v

√
ρ̂f, (5)

defined from the single-particle density matrices ρ̂v and ρ̂f

associated with the states |ψv〉 and |ψf〉, respectively [39,40].
As shown in Fig. 2(d), the fidelities calculated with the full
many-body system and from the NLSE are in good agreement,
for all values of the detuning ramp speed.

IV. LAUGHLIN STATE

We now discuss the realization of strongly correlated states,
which are bosonic analogs of fractional quantum Hall states
observed with 2D electron gases. For contact interactions, the
ground state of the LLL with N particles, and total angular
momentum L = N (N − 1), is exactly given by the Laughlin
state at filling ν = 1/2, of wave function

ψL =
∏

1�i<j�N

(zi − zj )2. (6)

The Laughlin state can be reached in our scheme for an
adiabatic transfer of N − 1 units of angular momentum per
atom, i.e., for a pseudospin F = (N − 1)/2. We performed a
numerical study of the quantum state evolution during the ramp
detuning, for particle numbers N = 2,3,4, corresponding to
Hilbert spaces of dimensions 5, 61, 1417, respectively. The
overlap between the Laughlin state and the state reached after
the detuning ramp is calculated numerically for N = 2,3,4
particles and for different ramp speeds. As shown in Fig. 3(a),
a high overlap O > 0.99 can be obtained for ramp speeds
δ̇ < 0.2 �2.
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FIG. 3. (a) Overlap between the Laughlin state and the state
reached for a detuning ramp of speed δ̇, for particle numbers N =
2,3,4 [(top) green, (middle) red, (bottom) blue lines, respectively],
and a coupling � = g̃/(2π ). The vertical lines indicate the three ramp
speeds considered in (b) and (c). (b) Atom density corresponding to
the state reached for ramp inverse speeds �2/δ̇ = 1.5,3,5 (dotted,
dashed, solid blue lines, respectively) and N = 4. The atom density
of the N = 4 Laughlin state is indistinguishable from the solid line.
(c) Density probability P2(r) of the interparticle distance r calculated
for the three ramp speeds.

As the many-body overlap cannot be accessed in exper-
iments, we also calculated the atom density profile and the
density-density correlation function, which give a more phys-
ical insight on the prepared quantum state. The density profile
n(r) should feature a plateau at its center, reminiscent of the
incompressibility of the Laughlin state in the thermodynamic
limit. As shown in Fig. 3(b) on the case N = 4, the prepared
state exhibits a plateau in the middle of the trap for ramp speeds
δ̇ � 0.3 �2. The Laughlin state also exhibits a strong particle
antibunching that can be revealed from the density probability
P2(r) of the interparticle distance, defined as

2πrP2(r)

= 1

N

〈∫
dr1dr2 ψ̂†(r1)ψ̂†(r2)ψ̂(r2)ψ̂(r1)δ(‖r2−r1‖−r)

〉
.

(7)

As shown in Fig. 3(c), a strong antibunching appears for
ramp speeds δ̇ � 0.3 �2. For the particle numbers investigated
here, the physical characteristics of the Laughlin state thus
appear for ramp durations comparable to those required for
the adiabatic spin flip of a single particle.

So far we considered linear detuning ramps of given speed
δ̇, with initial and final detunings chosen far from resonance. In
practice one may seek for detuning ramps of minimal duration
leading to the Laughlin state with high fidelity. Minimizing
the ramp duration could be crucial in experiments, where

heating processes could prevent reaching the ground state
for long ramps. The issue of driving as fast as possible a
quantum system into a given state received a lot of attention in
recent years [41], in particular in the context of quantum gate
engineering. While the notion of quantum speed limit is well
understood for time-independent Hamiltonians [42–44], its
extension to time-dependent systems was restricted to simple
cases [45–49]. Optimal control of strongly interacting systems
brings up interesting open questions [49–55], such as the defect
generation close to quantum phase transitions [50,52,55].

Here we aim at maximizing the overlapO with the Laughlin
state, obtained for a detuning ramp of fixed duration T , by
adjusting the shape of the detuning δ(t). The Rabi coupling �

is kept constant for simplicity. The optimization is performed
by writing the detuning δ(t) as a function interpolating
discrete values {δi(ti)}0�i�n, with ti uniformly spaced in the
[0,T ] interval. The overlap is optimized over the δi values,
using a stochastic variation algorithm [50]. The number n

of discretization points is increased up to n = 200 steps,
and the optimum overlap Oopt is defined by extrapolating
the calculated overlaps to n = ∞ (see Appendix). Note that
the optimized detuning ramps are highly irregular, similarly
to the behavior of other physical systems [53,55,56] (see
Appendix). The optimum overlap Oopt, calculated for atom
numbers N = 2,3,4 and ramp durations 0 � T � 17 × 2π/g̃,
increases monotonically with T [see Fig. 4(b)]. We compare
the performance of this optimized ramp with the overlap
reached with a linear detuning ramp of same duration T . For
a given duration T , we find the optimum start and end points
of a linear ramp, maximizing the overlap value. As shown in
Fig. 4(a), using linear ramps results in much smaller overlap
values, especially for long ramp durations and the largest atom
number.

In the case of detuning ramps of arbitrary shape, an
optimum overlap very close to 1 is reached for ramp durations
T larger than a threshold time TQSL—the quantum speed
limit required to drive the system into the Laughlin state.
We extract the duration TQSL by fitting the optimum overlap
data with Oopt > 0.95 using a piecewise linear function (see
Appendix). As shown in Fig. 4(b), the quantum speed limit
TQSL increases with the atom number. It would be interesting
to calculate or measure experimentally the quantum speed limit
for larger atom numbers, as it relates to the complex many-
body dynamics around a topological critical point [52,57].
We also mention alternative schemes to efficiently prepare
fractional quantum Hall states in the context of quantum
gases [58,59]. For a practical implementation in ultracold
atom experiments, the quantum speed limit would be reached
for durations TQSL ∼ 0.1 s, assuming an interaction strength
g̃ = 0.1 and a trapping frequency ω = 2π × 1 kHz.

V. MOORE-READ STATE

We now consider the realization of the bosonic Moore-Read
state, described by the wave function

ψMR =
∏

1�i<j�N

(zi − zj ) Pf

(
1

zk − zl

)
1�k �=l�N

, (8)
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FIG. 4. (a) Overlap between the Laughlin state and the state reached for an optimized ramp of duration T , either linear (crosses) or of
arbitrary shape (dots), for atom numbers N = 2,3,4 [(top) green, (middle) red, and (bottom) blue, respectively)]. The vertical lines indicate the
quantum speed limits TQSL. Error bars (most of them smaller than the point size) are calculated for the ramps of arbitrary shape, as the error
from the extrapolation to an infinite number of time discretization steps. (b) Quantum speed limit TQSL deduced from (a) as a function of the
atom number N .

where Pf denotes the Pfaffian of an antisymmetric matrix [32].
This state is the analog for bosons of the Moore-Read state
proposed to describe the FQHE at filling 5/2 [60]. It received
a lot of attention due to the exotic nature of its elementary
excitations, described as non-Abelian anyons [61]. The ground
state |ψ∗

MR〉 of the LLL with contact interactions, of angular
momentum L = N (N − 2)/2 (for N even), is expected to
be close to the Moore-Read state |ψMR〉 [19]. The Moore-
Read state features a three-body antibunching, which can be
revealed from the density distribution P3(R) of the three-
body hyperradius R =

√
|z1 − z2|2 + |z2 − z3|2 + |z3 − z1|2

[P3(R) being defined by analogy with the definition (7)
of P2(r)]. As shown in Fig. 5(b), the ground state |ψ∗

MR〉
exhibits a significant three-body antibunching, yet with a
nonzero value for P3(R = 0). Note that the exact realization
of the Moore-Read state |ψMR〉 would require implementing
repulsive three-body interactions [13,62].
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FIG. 5. (a) Overlap between the Moore-Read-like state |ψ∗
MR〉

and the state reached for a detuning ramp of speed δ̇, for particle
numbers N = 4,6 [(top) blue, (bottom) brown lines, respectively],
and a coupling � = g̃/(2π ). The vertical lines indicate the two ramp
speeds considered in (b). (b) Density probability P3(R) for the three-
body hyperradius R, calculated for the Moore-Read state |ψMR〉, the
actual ground state |ψ∗

MR〉, and the states reached after detuning ramps
of inverse speed �2/δ̇ = 1,3.2 (dash-dotted and dotted black lines,
dashed and solid brown lines, respectively), in the case N = 6.

The Moore-Read-like state |ψ∗
MR〉 can be realized in our

scheme for an even particle number N , and a spin value
F = (N − 2)/4. We calculated numerically the state reached
after a detuning ramp of finite speed, for particle numbers
N = 4 and 6 (associated Hilbert spaces of dimension 20 and
2166, respectively). As shown in Fig. 5(a), the overlap between
the prepared state and the actual LLL ground state is larger
than 0.95 for ramp speeds δ̇ < 0.3 �2 for N = 6. In that
regime, the distribution P3(R) of the three-body hyperradius
features a clear antibunching as R → 0 [see Fig. 5(b)]. These
calculations show that FQHE-like states can be realized with
atomic clusters using our method, provided the injection of
angular momentum occurs on time scales comparable to the
durations required for single-particle Landau-Zener adiabatic
transitions.

VI. TRAP ELLIPTICITY EFFECTS

So far we restricted the discussion to the LLL |m; j,k = 0〉,
which is decoupled from k �= 0 states as long as the trapping
potential is rotationally symmetric. We now discuss the impact
of a trap anisotropy, corresponding to a harmonic confinement
in the x-y plane with trapping frequencies ωx = ω(1 + ε/2)
along x and ωy = ω(1 − ε/2) along y. The anisotropy induces
a coupling between states with different k values, leading to a
departure from the LLL. We consider here the effect of such a
coupling on the generation of the Laughlin state |ψL〉. As the
Hilbert space is significantly enlarged when considering the
coupling to k �= 0 states, we limit the analysis to N = 3, for
which the dimension of the Hilbert space to consider is 470 (it
raises up to 15 080 for N = 4).

In the limit δ → ∞ and ε → 0, we expect the ground state
to be doubly degenerate, corresponding to two Laughlin states
of opposite direction of rotation, constructed either within the
states |m; j,k = 0〉 (state |ψL〉) or |m; j = 0,k〉 (state |ψ∗

L〉).
A small anisotropy ε �= 0 induces a coupling between those
states, leading to a strong departure of the actual ground state
from the expected state |ψL〉. However, our scheme allows
for an approximate realization of the Laughlin state |ψL〉, by
keeping the detuning δ to a finite value. The Raman coupling
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FIG. 6. (a) Overlap O between the Laughlin state |ψL〉 and the
ground state of the full Hamiltonian for N = 3 (red line), a Raman
coupling � = g̃/(2π ), and ellipticities ε = 0 (dashed line) and ε =
0.05 g̃/(2π ) (solid line), as a function of the detuning δ. A maximum
valueOmax can be reached when varying the detuning δ. (b) Maximum
overlap Omax as a function of the ellipticity ε.

then leads to a dressing of the single-particle quantum states,
which breaks the symmetry between |m; j,k〉 and |m; k,j 〉
states and favors the Laughlin state |ψL〉. In the regime of
large detunings δ, the effect of the Raman coupling can also be
understood as an effective gauge field breaking time-reversal
symmetry [63].

Taking into account all states |m; j,k〉, we calculated
numerically the ground state for various values of ε and
δ, for the case � = g̃/(2π ). For a perfectly isotropic trap
(ε = 0), the overlap between the ground state and the Laughlin
state |ψL〉 approaches 1 for large detunings δ → ∞ [see
Fig. 6(a)]. For a nonzero trap ellipticity ε, balancing the
residual population of k > 0 states induced by the anisotropy
and the mF = 1/2 states induced by the Raman coupling
results in an optimal choice of δ, leading to a maximal
overlap Omax [see Fig. 6(a)]. The maximal overlap depends
on the dimensionless parameter ε/g̃ [see Fig. 6(b)], and
reaching Omax > 90% requires anisotropies ε < 0.07g̃/(2π ).
Using strong confinement along z and/or Feshbach resonances,
interaction strengths g̃ ∼ 0.1–1 can be obtained [64–67],
leading to a constraint on the maximum allowed ellipticity
in a small but achievable range ε ∼ 10−3–10−2.

VII. CONCLUSION

We have presented a protocol for generating small clusters
of atoms in FQHE states. It would be interesting to extend
this work to fermionic atoms, and to consider the effect of
dipolar interactions, which should increase the stability of the
Moore-Read state [68], and lead to the formation of other
exotic FQHE states [68–72]. While this proposal could be
realized with most atomic species, lanthanides such as Er or Dy
would be most suited thanks to the large number of available
spin levels, and the ability to apply Raman transitions with low
residual heating due to spontaneous emission [73].
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APPENDIX: DETAILS ON OPTIMAL CONTROL

We provide additional details on the calculation of the
optimum overlap with the Laughlin state that can be reached
using a detuning ramp δ(t) of duration T . As discussed in the
main text, the detuning ramp is discretized in n steps, and the
optimization is performed on the discrete values {δi(ti)}0�i�n,
with ti uniformly spaced in the [0,T ] interval. From the
maximum overlaps On obtained using n steps, we obtain the
maximum overlapOopt as the valueOn extrapolated to n = ∞.
An example of extrapolation is shown in Fig. 7(a).

We also show in Fig. 7(b) an example of optimum detuning
ramp δopt(t), which reveals a typical irregular profile. Note that
we expect the performance of the optimized ramp to be robust
against small perturbations, such as noise or finite bandwidth
[74,75].

Finally, we discuss the fitting procedure to extract the
quantum speed limit time TQSL from the optimum overlaps O.
We use a piecewise linear function min[A,A + B(T − TQSL)]
to fit the data with O > 0.95, with A, B and TQSL as free
parameters [see Fig. 7(c)].
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FIG. 7. (a) Optimum overlap On as a function of the inverse
number of discretization steps n−1, for N = 4 and T = 5. The opti-
mum overlap O is obtained from the extrapolated value limn→∞On,
obtained from a linear fit of the data for n � 50. (b) Example of
optimum detuning ramp δopt(t) corresponding to N = 4 and T =
5 × 2π/g̃, with n = 200 discretization steps. (c) Optimum overlaps
Oopt calculated for N = 2, 3, and 4 [(top) green, (middle) red, and
(bottom) blue, respectively]. The quantum speed limit times TQSL are
obtained from piecewise linear fits (solid lines).
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