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Trapped-atom interferometer with ultracold Sr atoms
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We report on a trapped atom interferometer based on Bragg diffraction and Bloch oscillations with
alkaline-earth-metal atoms. We use a Ramsey–Bordé Bragg interferometer with 88Sr atoms combined with
Bloch oscillations to extend the interferometer time. Thanks to a long coherence time for Bloch oscillations of
88Sr atoms, we observed interference up to 1 s evolution time in the lattice. A detailed study of decoherence
sources during the Bloch phase is also presented. While still limited in sensitivity by lattice lifetime and beam
inhomogeneity this result opens the way to high contrast trapped interferometers with extended interrogation time.
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I. INTRODUCTION

Due to their high sensitivities and accuracy, next-generation
atom interferometers are the focus of study in several labora-
tories around the world [1]. Research in the field has centered
on increasing the interferometric path in order to vastly
improve the sensitivity of these devices. Recent advances
in atom interferometer sensitivity pave the way for these
devices to be used in precision tests of fundamental physical
theories such as quantum theory [2–5], quantum gravity [6]
and gravitation [7–10], determination of physical constants
[11,12], and, eventually, observation of gravitational waves in
the low-frequency regime [13–16].

The most direct way of increasing the sensitivity of atom
interferometers is to simply increase the interferometer time
T . For vertical atom interferometers, this can be achieved by
using long vacuum tubes to increase the free-fall time [3,8,17].
Provided that atomic samples are sufficiently cold and there are
no limitations due to laser beam geometry, for a 10 m vacuum
tube the interferometer time T can be >1 s. However, T is
proportional to the square root of the tube length and a much
more efficient way of extending T is by trapping the atoms
against gravity during the interferometer sequence itself.

While the majority of the atom interferometers considered
rely on Raman transitions in alkali atoms, recent experiments
have demonstrated the feasibility of performing Bragg inter-
ferometry with ultracold alkaline-earth-metal (-like) atoms
[18,19]. Furthermore, long coherence time of Bloch oscil-
lations has been observed in 88Sr [20,21]. Hence, strontium
is a possible candidate for interferometric schemes that take
advantage of the long coherence time of Bloch oscillations in
order to extend the interferometer time T by trapping the atoms
in a one-dimensional (1D) vertical optical lattice, providing
an alternative avenue towards dramatically increasing the
sensitivity of atom interferometers without the need for large
atomic fountains.
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As well as extending the interferometer time through
coherent Bloch oscillations, the lattice can act as a waveguide
upon the atomic samples, limiting their radial (horizontal)
expansion [22]. Radial expansion of the atomic cloud is one of
the principal limitations in interferometer time (with a given
Raman or Bragg laser beam size and inhomogeneity), and is a
cause of interferometer contrast loss.

We demonstrate a high-contrast atom interferometer based
on a Ramsey–Bordé Bragg interferometer, where the inter-
ferometer time is extended with a long Bloch oscillation
phase, up to 1 s. Similar schemes applied to Rb atoms
have been presented in Refs. [23,24]. Here, we extend the
Bloch oscillation time with respect to previous work by
using a different atom, namely 88Sr. The motivation for using
strontium atoms for such an interferometer is due to their
unique properties: they have zero nuclear spin in the ground
state, which results in a low sensitivity to first-order Zeeman
shifts due to stray magnetic fields, as well as a low collisional
cross section at low temperatures, ensuring a coherence time
of Bloch oscillations >100 s [25] in vertical optical lattices.
Selecting strontium allows conception of high sensitivity
atom interferometers with total time T practically unreachable
through other means.

II. EXPERIMENTAL APPARATUS

A schematic view of the experimental apparatus is shown
in Fig. 1(a). In brief, a blue 461 nm laser red detuned by
� = −10 GHz from the strong 1S0 -1

P1 transition is employed
for inducing Bragg transitions. The Bragg laser source is
similar to the one described in Ref. [18] with an output power
of about 200 mW. The output is separated into two beams
needed to drive the Bragg transitions, and their intensity and
frequency are independently controlled by two acousto-optical
modulators (AOMs) placed between the laser source and
the atomic sample. The Bragg frequency detuning is set to
be δ = 2π (f1 − f2), where f1 and f2 are the driving radio
frequencies (rf) of each AOM. The two beams are coupled
into a polarization-maintaining fiber with mutually orthogonal
polarizations; at the fiber output, a set of telescopes collimate
the beam with a 1/e2 radius of 3 mm. The typical peak intensity
is about 200 mW/cm2 for each beam.

The Bragg laser beams are aligned from below onto the
atomic sample, and the verticality of the beams is verified to
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FIG. 1. (a) Schematic view of the experimental apparatus. Pre-
cooled 88Sr atoms trapped in a vertical optical lattice operating at
532 nm (narrow green arrows) are launched upwards. Bragg pulses
at 461 nm (thick blue arrows) are then applied to first velocity select
the atoms along the vertical direction and subsequently to apply the
interferometer sequence. The Bragg beams, with frequency ω1 and ω2

and orthogonal polarizations, are sent from the bottom, rotated by a
λ/4-wave plate and retroreflected by a mirror (M) on top. The lattice
beams come from two independent fibers with linear polarizations
and are superimposed onto the Bragg beams’ center by means of two
dichroic mirrors (DM). (b) Atomic trajectories separated by 2n�kblue

in the interferometer. In the middle of the interferometric sequence,
the atoms are trapped in the green vertical optical lattice (green shaded
region) where they undergo Bloch oscillations.

within 1 mrad by means of a water surface reflection. The
beams are then retroreflected by a mirror positioned atop
the system. The reflecting mirror is not vibration isolated
due to geometric limitations of the system. A quarter-wave
plate is placed before the retroreflecting mirror to rotate the
polarizations of each reflected Bragg beam by 90◦, forming two
traveling waves in opposite directions with which to induce the
Bragg transitions. Each n th-order Bragg transition transfers
2n�kblue to every atom, where kblue is the wave vector of the
461 nm Bragg laser.

The Bragg AOMs are driven by a two-channel rf generator,
phase locked to a 10 MHz rubidium clock. The Bragg pulses
are generated and shaped into Gaussian profiles by a second
arbitrary-wave function generator mixed onto both channels
of the first rf generator, which serves as a variable attenuator
for the driving rf signals. In this text, pulse lengths are always
given in terms of the corresponding Gaussian 1/e2 width σ . A
phase-modulated rf source is mixed with one channel of the
first rf generator to provide a phase shift for the interferometer.

A second laser, superimposed onto the path of the blue
Bragg laser, is used to provide the 1D lattice for the Bloch
evolution. The source laser for the lattice is a Coherent Verdi-
V6 which delivers 6 W single-mode radiation at 532 nm. The
green laser output is split equally into two beams, with each
beam passing through an AOM to stabilize the lattice intensity
and to control the frequency difference between the two beams.
The two lattice AOMs are driven by two rf synthesizers at

∼100 MHz. Two PID controllers modulate the rf synthesizers
for lattice intensity stabilization. A triggering signal with a time
constant of about 230 μs is summed onto the control signals for
adiabatic loading of the atoms into the lattice. The two lattice
beams are then each coupled into independent polarization-
maintaining fibers. The two fiber outputs (about 1 W each)
are collimated and sent from opposite directions to the atoms,
with the same linear polarization. Both lattice beams share
the same vertical path as the Bragg beams, onto which they
are superimposed by means of two dichroic mirrors placed
below and above the vacuum chamber. At the position of the
atoms the waist of each beam is chosen to be 800 μm, with a
Rayleigh length of about 3 m. The lattice potential depth in this
condition is about 2Er,green, where Er,green = �

2k2
green/2m is the

recoil energy of the green lattice, and kgreen is the wave vector.

III. EXPERIMENTAL SEQUENCE

The cold-atom preparation stage, as described in Ref. [18],
results in about 4 × 106 88Sr atoms which are trapped and
cooled down to 1.2 μK with a two-stage magneto-optical trap
(MOT). The final radial (vertical) atomic distribution has a full
width at half maximum (FWHM) of 170 μm (70 μm).

About 10% of the atoms are loaded directly from the
MOT into the lattice in order to give them an initial vertical
launch. During the loading, an additional cooling stage occurs
by setting the second-stage-MOT laser frequency closer to
resonance and by reducing the MOT beam intensity. This
additional cooling stage reduces the losses due to initial
evaporation of hot atoms loaded in the lattice and, as a result,
there is an almost twofold increase in the number of atoms
available for the interferometer. In these conditions, the atoms
loaded in the lattice reach a temperature of ∼400 nK, with a
typical lifetime of about 1 s, limited mainly by the background
vacuum.

Once loaded into the lattice, in order to do state preparation
and to gain sufficient interferometer time, a vertical atom
acceleration is achieved by chirping the frequency detuning
between the two lattice beams from 0 to 850 kHz with a
constant rate of 10 kHz/ms, corresponding to a constant
acceleration of 2.59 m/s2. The atomic cloud is then further
elevated for 40 ms in a moving lattice with constant velocity of
0.22 m/s, to a height of about 0.9 cm above the MOT position.
During this stage the atoms are adiabatically following the
moving lattice in the first band; losses (about 20% of the
initial population) are mainly due to Landau–Zener tunneling
in the acceleration phase. At this point, the remaining atoms
are released from the trap and a sequence of three first-order
Bragg π pulses is applied, each with an increasing duration
(9 μs, 20 μs, and 40 μs, respectively). The last pulse ensures
the required velocity selection for the interferometer, while the
first two pulses are necessary to spatially separate the velocity-
selected atomic cloud from the residual atoms. The efficiency
of the velocity selection is about 25%, leaving about 4 × 104

atoms, with a typical vertical momentum width of ∼0.15�kblue.
For Bragg interferometers a narrow selection of the atomic
momentum is very important, not only for ensuring the high
coherence of the initial atomic wave packet (which is necessary
for a high-contrast interferometer signal [26]), but also for
independent detection of the different interferometer channels.
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In stark contrast to Raman interferometers, the quantum
interferometer states of a Bragg interferometer are encoded
only onto the atoms’ external degrees of freedom, which
are all detected by using standard on-resonance fluorescence
or absorption detection. In this case, a narrow momentum
distribution is important in order to separate the interferometer
output signals after a reasonable time of flight.

The n th-order Bragg diffraction has an effective Rabi fre-
quency �eff = �n/[(8ωr )n−1(n − 1)!2] [27,28], where ωr =
�k2

blue/2m = 2π × 10.7 kHz is the recoil frequency for the
chosen Bragg laser and � is the two-photon Rabi frequency.
In our experiment, the typical Rabi frequency of a first-
order Bragg diffraction is �eff = 2π × 20 kHz for velocity-
selection pulses and �eff = 2π × 80 kHz for each of the
interferometer’s beam splitter pulses. The Fourier width of
the beam splitter pulses is then sufficiently larger than the
atomic momentum distribution, so most of the selected atoms
are addressed for the interferometer. The π pulse efficiency is
95% for first-order Bragg transitions and 80% for second-order
transitions.

As shown in Fig. 1(b), the interferometer consists of
two pairs of 10-μs-long π/2 pulses separated by a time TR

and a Bloch oscillation phase lasting for a time TB = NτB ,
where τB = 2h/mgλgreen = 1.74 ms is the Bloch period and
N is the number of Bloch oscillations. While the first pair
of π/2 pulses are applied as the atomic cloud is travelling
upward (immediately after the velocity-selective pulses), the
two closing pairs are applied after the release from the lattice.

After the first π/2 pulse, the atomic wave packet is coher-
ently split into two states, one with a vertical momentum of |p0〉
and the other with a vertical momentum of |p0 + 2n�kblue〉.
The second π/2 pulse coherently splits each state again,
resulting in four states, two with momentum |p0〉 and two with
momentum |p0 + 2n�kblue〉. When the atoms in the higher-
momentum state reach the apogee, the green lattice beams
are switched on over 230 μs to adiabatically load the atoms
into the first lattice band. Meanwhile, the atoms in the lower
momentum state free-fall away and do not interfere with the
trapped atoms [see Fig. 1(b)]. The recapture efficiency of the
atoms in the optical lattice after the free-flight period mostly
depends on the free-fall expansion of the atomic cloud after
the launch that determines the final size of the cloud with
respect to the lattice beam waist (and potential trap depth). To
ensure a high recapture efficiency, the final launch velocity is
set in order to limit the free-fall time between the second π/2
pulse and the switching-on of the lattice recapture to ∼20 ms.
With this choice, we typically obtain a recapture efficiency of
∼90%. The timing of the Bragg pulses is also critical in order
to avoid double Bragg diffraction [29]; we set them to occur
at least 5 ms away from the apogee time. Based on our launch
and Bragg pulse timing parameters, the total time between two
π/2 pulse pairs is T ′ = (38.8 ms − TR) + NτB .

At the end of the interferometer sequence, fluorescence
detection is performed after 50 ms of time of flight (TOF).
We employ a linearly polarized probe beam, resonant with the
1S0 -1

P1 transition, placed 1.3 cm below the MOT position
and retroreflected to increase the intensity of the fluorescence
signal. To improve selectivity of different momentum states,
the probe beam is collimated into a sheet of light with a vertical
(horizontal) width of about 200 μm (2 mm).
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FIG. 2. Typical Ramsey–Bordé plus Bloch interferometer fringes
for an order of Bragg transition n = 1, obtained by scanning the
frequency chirping α. In this particular measurement we choose
TR = 1 ms and T ′ = 123 ms, where TB = 85.2 ms for N = 49. The
sinusoidal fit gives a visibility of 0.4.

IV. INTERFEROMETER RESULTS

In this section, we focus on the interferometer results,
especially the fringe contrast and its decay. The interferometer
output is recorded by measuring the relative population P of
the momentum state |p0〉 over the sum population of both states
|p0〉 and |p0 + 2n�kblue〉: P = N|p0〉/(N|p0〉 + N|p0+2n�kblue〉).
The interferometer fringes can be written as

P (φ) = P0 + C

2
cos (φ), (1)

where P0 ∼ 0.5 is a fringe offset and C is the contrast.
The phase φ for the trapped Ramsey–Bordé plus Bloch
interferometer is

φ = n(2kblueg − α)TR(TR + T ′) + n(φ1 − φ2 − φ3 + φ4),

(2)

where n is the order of the Bragg transitions involved and α

is the frequency chirping on the Bragg beams, which is used
to compensate the Doppler shift seen by the atoms during
the free-fall (typically set to a value of α = 42.5509 kHz/ms,
for local gravity), while φi denotes the relative optical phase
between i th Bragg pulse.

The trapped lattice phase will also induce an additional
phase shift φt = 2kblueTRN × 2vr,green, with respect to a free-
falling atom [23,30], where vr,green = �kgreen/m is the recoil
velocity of the green lattice. However, in order to compensate
for the Doppler shift after the trapped atoms are released from
the lattice, the Bragg laser needs to jump a frequency �ω =
2kblueN × 2vr,green rather than keeping a constant chirping rate
α for a free-falling frame, which means the phase shift term φt

can be exactly canceled. A demonstration of the interferometer
for first-order Bragg pulses (n = 1) is shown as an example
in Fig. 2, where the signal is showing the expected sinusoidal
behavior as a function of α:

P = P0 + C

2
cos[(2kblueg − α)TR(TR + T ′)]. (3)
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FIG. 3. Contrast decay as a function of Bloch evolution time TB .
The separation time is TR = 1 ms, and T ′ = 37.8 ms + TB . The solid
line is an exponential decay fit, giving a time constant of 900(10) ms.
With this parameter choice the interference is preserved for more than
N = 575 Bloch oscillations. The inset shows the contrast as a function
of TR , with different sets of TB (red circles for TB = 3.5 ms, blue
squares for TB = 20.4 ms, and black triangles for TB = 59.1 ms). The
solid lines in corresponding colors are exponential decay functions
numerically estimated with the model of Eq. (4).

The velocity splitting by a first-order Bragg π/2 pulse is
17 mm/s, which for an interferometer with TR = 1 ms results
in a wave-packet separation of 0.017 mm. For the same Ramsey
time TR = 1 ms, we also measured the contrast evolution as a
function of total Bloch oscillation time TB (see Fig. 3). For this
measurement the interval time between each set of π/2 pulse
pairs is T ′ = 37.8 ms + TB . The contrast decay with TB is
satisfactorily fit with an exponential decay function with a time
constant of τ = 900(10) ms. In this condition, we show that
the interference can be preserved for a total number N = 575
of Bloch oscillations in the green lattice.

The fringe contrast of this lattice-trapped interferometer
is an important feature because it limits the potential per-
formances for future precision measurements of gravity and
gravity gradients. For this reason, we also studied the contrast
decay as a function of both parameters TR and TB . In a second
set of measurements we fix the Bloch evolution time TB , and
we recorded the contrast as a function of π/2 pulse separation
time TR , as shown in the inset of Fig. 3.

Following the argument in Ref. [23], if we associate this
decay to a random variation of the longitudinal velocity δv of
the atomic wave packet during the interferometer, for a certain
TR this induces a random phase shift of δφ = 2kblueδvTR .
Eventually, the contrast decay is given by the convolution of
this random phase shift δφ with the probability distribution of
velocity variation P (δv):

C

C0
=

∫
P (δv) cos (2nkblueTRδv)dδv, (4)

where n is the order of the Bragg transition. Applying this
formula to the contrast observed as a function of TR in the inset
of Fig. 3, for TB = 3.5, 20.4, and 59.1 ms, the distribution

function P (δv) is nearly Lorentzian with a width γ ∼ 0.2,
1.6, and 3.6 μm/s, respectively, corresponding to very small
momentum changes, less than 0.0004�kblue, depending on TB .

V. DECOHERENCE SOURCES

In this section we present a detailed analysis of different
decoherence sources in our lattice-trapped interferometer.
Most of the measurements focus on a precise determination
of the atomic momentum distribution, which is a key property
that strongly affects the final interferometer contrast [26]. It is
important to notice that, as shown by the model in Eq. (4), it
is not only the initial momentum spread of the atoms which
contributes to determining the maximum contrast achievable,
but the momentum variation during the interferometer which
can also crucially affect the final interferometer outcome. Since
the system is not vibration isolated, a phase noise is present on
the Bragg and lattice laser beams. However, at the resolution
of our measurements, this phase noise does not affect the
momentum distribution or the coherence length in the Bloch
evolution stage, as we will show in this section.

To independently study the various decoherence sources
taking place along the whole interferometer sequence, simpler
interferometer schemes were studied, such as pure Ramsey–
Bordé or Mach–Zehnder configurations, as well as measure-
ments of the atomic momentum distribution during the various
phases of the full trapped interferometer sequence.

A. Photon scattering

A first source of decoherence resulting in contrast losses
comes from photon-scattering events from off resonant blue
and green light involved in the interferometer. Due to the large
detuning of the 532 nm lattice light, we expect a negligible
contribution to the interferometer contrast decay. Indeed, for a
total light intensity of about 90 W/cm2 at 532 nm we estimate a
photon-scattering rate of 
s,green = 0.007 s−1, allowing a long
lattice trap lifetime and a long coherence time for the Bloch
oscillation phase.

A more important contribution comes from the Bragg laser
light at 461 nm. The Bragg laser is a semiconductor infrared
source, which is amplified with a tapered amplifier and then
frequency doubled into the blue part of the optical spectrum.
Although the laser is frequency stabilized with a detuning of 10
GHz from the 1S0 -1

P1 transition at 461 nm, the optical output
spectrum of the tapered amplifier is several nanometers wide
and the nonlinear crystal employed for frequency doubling
could also double some frequency components close to
resonance. This could potentially cause additional amplified
spontaneous emission (ASE) at a rate 
ASE [31].

To avoid this additional resonance scattering, we filtered
the laser light from the Bragg source with a 30-cm-long
strontium heat-pipe operating at 400◦ C. At this temperature
on-resonance light is absorbed by about 95% (−20 dB).
Several tests were done (as shown in Fig. 4) to study the
effect of spontaneous emission in our system, by keeping
the Bragg laser 10 GHz detuned from the atomic transition
with an intensity of 400 mW/cm2. Under these conditions,
the estimated scattering rate 
s,blue for a pure monochromatic
source, is 
s,blue = 300 Hz.
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FIG. 4. Lattice decay measurements in the presence of Bragg
light square pulse. The blue squares correspond to 150◦ C heat-pipe
temperature, and red circles to 400◦ C. The upper blue and lower red
solid lines are exponential decay fits for each respective set of data.
The decay time constants according to the fits are 3.07 (13) ms for
150◦ C and 3.10 (13) ms for 400◦ C. The two vertical axes are offset
with respect to each other to display these two sets of data clearly.
The inset plot is Rabi oscillations taken at 150◦ C and 400◦ C with
the same plot notation.

In a first test, we observed Rabi oscillations for an n = 2
Bragg transition for different heat-pipe temperatures, ranging
from 150 ◦C to 400 ◦C. As shown in the inset of Fig. 4, the
Rabi oscillations taken at different heat-pipe temperatures are
measured to be the same, from which we infer that, during a
Bragg pulse, 
ASE is negligible.

To confirm this, a second set of measurements of the lattice
lifetime in presence of the Bragg beams, as a function of
heat-pipe temperature, were taken. As shown by the data in
Fig. 4, the lattice decay time constants do not depend on
heat-pipe temperature, and the mean value τs = 3.08(13) ms
is consistent with the previously estimated resonant scattering
rate 
s,blue. This result is also confirmed by a third test, in which
contrast measurements of a Mach–Zehnder interferometer
have been repeated for the same temperature set. Also in
this case the contrast observed is C = 70%, independent of
heat-pipe temperature. Here, the contrast is mainly limited by
Rabi frequency inhomogeneities that arise from a combined
effect of atomic cloud expansion and imperfections on the
profile of the Bragg beams [22,28]. However, all additional
decoherence processes during the trapped Bloch evolution
phase will further decrease the value observed here in simple
Ramsey–Bordé or Mach–Zehnder configurations.

B. Momentum distribution and lattice dynamics

Further characterization of the atomic wave-packet evo-
lution during the interferometer has been done in order to
evidence small random velocity changes, predicted to be
responsible for the loss of contrast.

In a first set of measurements we evaluate the coherence
length of the atomic sample for different interferometer
sequences. This is done by measuring the interferometer
contrast as a function of the time delay δT on the last
recombining beam-splitter pulse. As the delay is increased,

the fringe contrast decays because of the reduced wave-packet
overlap at the recombination position. As a result, the typical
contrast envelope as a function of the time delay is described
by a Gaussian of the form [32]

C(δT ) = C0 + A exp

(
−vrδT

2

8x2
a

)
, (5)

which represents the convolution of free-space Gaussian wave
packets with a coherence length xa , recombining at position
δx = vrδT

2, where vr = 2�nkblue/m is the recoil velocity for
an n th-order Bragg transition.

It is important to notice that, in a free-space interferom-
eter, it has been demonstrated that the coherence length is
independent of the wave packet’s time evolution [33]. As a
consequence, the coherence length depends only on the initial
longitudinal velocity momentum distribution as given by the
Heisenberg’s uncertainty principle. A similar approach has not
yet been discussed for trapped configurations, so we performed
a set of measurements to check whether the lattice might
perturb the atomic coherence length. Figure 5 shows the results
of the contrast envelope measurements for different Bloch
oscillation durations TB . As a reference, the contrast envelope
for a pure Ramsey–Bordé interferometer is also reported. The
data are fit with Gaussian functions as in Eq. (5). The fit
coherence lengths are shown in the inset of Fig. 5 and the
results (up to TB = 331.2 ms) are consistent within 1σ with a
mean value of 236(5) nm. Since the coherence length is directly
related to the velocity spread of the wave packets via δxδp =
�/2, the resulting momentum spread is δp = 0.155(4)�kblue, a
value consistent with independent measurements done through
Bragg spectroscopy (see the next section). This analysis
indicates that any changes in the momentum distribution
introduced by the trapped interferometer phase is small and
below the measurement sensitivity. In other words, the Bloch
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FIG. 5. Contrast measurements for different Bloch oscillation
periods TB (with Ramsey time TR = 1 ms) as a function of final
pulse delay time δT . The contrast envelope for a pure Ramsey–Bordé
interferometer is also reported as a reference. Offsets were removed
for better comparison of the fitted curves. The inset shows the
estimated coherence length of the atomic sample given by the
Gaussian fit of the contrast measurements.
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FIG. 6. Bloch oscillations in the recaptured lattice. The top plot
is the calibrated TOF signal of ∼5 ms and ∼800 ms evolution
time. Correspondingly, the bottom plot is the width of the velocity
distribution of the atomic cloud.

oscillation phase does not increase the longitudinal velocity
distribution by an amount larger than previous estimation by
the model in Eq. (4) with the observed contrast decay (see
Fig. 3).

A similar result can be obtained independently from the
direct measurement of the atomic momentum distribution
during the various interferometer phases, and in particular after
the Bloch oscillation phase. In this case, Bloch oscillations
have been observed in TOF, and information on the atomic
cloud’s longitudinal velocity distribution has been extracted.
Figure 6 shows the Bloch oscillations in the recaptured
lattice up to 800 ms evolution time, together (bottom plot)
with the estimated width of the atomic longitudinal velocity
distribution. The data show that, during the Bloch evolution,
the mean longitudinal velocity width does not change. The
large standard deviations on distribution widths for longer
evolution times arise mainly from fitting errors, which increase
for smaller atomic number.

An even more sensitive technique employed for the es-
timation of the atomic cloud velocity distribution is Bragg
spectroscopy. Here, Bragg spectra were recorded before the
lattice recapture and after 20.6 ms Bloch evolution, as shown
in Fig. 7. The Bragg pulse for spectroscopy has a Gaussian time
profile with a duration of 150 μs. The momentum resolution of
this Bragg pulse is 0.02�kblue. The fit of the two datasets gives a
momentum width of 0.155(4) �kblue and 0.147(4) �kblue, before
and after the Bloch oscillation phase, respectively. Again, the
difference between the two values is within the resolution
of the Bragg spectroscopy itself, indicating that there is no
process changing the momentum distribution during the Bloch
evolution phase. The measured velocity distribution by TOF
signal of Bloch oscillations is consistent with the one obtained
by Bragg spectroscopy.

Again, the study of the lattice dynamics in terms of
momentum spread confirms the same result: the interferometer
contrast decay is mainly due to very small random changes
in the atomic velocity that are well below the measurement
resolution in all the experimental tests mentioned above.
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FIG. 7. Bragg spectroscopy of the atomic cloud before Bloch
evolution (black circles), and after 20.6 ms Bloch evolution (red
squares). The dashed black line and solid red line are Gaussian
amplitude fits of the respective data set.

C. Random momentum changes from lattice speckles

Despite being below our present level of measurement
resolution, as shown in the previous section, we searched
for possible cause of the small momentum changes in our
interferometer other than photon-scattering events. Especially
during the long lattice phase, random momentum changes
may arise from random lattice intensity gradients which,
through dipole forces on the atoms, can impart a momentum
perturbation to the interferometer and eventually cause a
contrast loss.

In particular, a speckle pattern arising from imperfections
in some optical elements (especially the vacuum chamber
windows) is the largest contributor to this effect. To show
clearly how this effect can dramatically affect the interfer-
ometer, we measured the contrast loss as a function of the
distance D between the trapped atoms and the top window of
the vacuum chamber (the lattice beam waist was ∼300 μm
for this measurement). In this case, the trapping position has
been controlled by modifying the lattice elevation time. By
classical geometrical consideration, the dipole force induced
by speckles produced by the window scales as D−2; therefore,
given a fixed Bloch evolution time, we expect a similar
dependence of the random velocity variation as a function of
distance D. The result of the measurement is shown in Fig. 8.
Here, we numerically estimated the contrast decay with Eq. (4),
with random velocity variation δv = (δU0d

2/16λD2)(TB/m)
[34], where δU0 is the potential depth variation due to speckle
pattern and d the dimension of the imperfection on the window.
For our system δU0 ∼ 0.05 U0, d ∼ 250 μm. The result of
this model explains the contrast decay in Fig. 8 and gives
an estimate of δv ∼ 1.2 μm/s for the atoms at the position
of our typical experimental sequence (with D = 8.4 cm and
TB = 38.4 ms), consistent with the estimate obtained from the
contrast decay as a function of TR in Sec. III.

While in a typical experimental sequence the atoms are
held sufficiently far from the top and bottom windows, the
previous measurement shows clearly that any small intensity
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FIG. 8. The black circles are the contrast-loss measurements
versus the distance D between the atomic cloud and the top window
of the vacuum chamber (the minus sign means the atoms are below
the window), the solid line is a numerical estimate with Eq. (4),
using a Lorentzian distribution with a width scaling as D−2. For this
measurement we choose TR = 1 ms and TB = 38.4 ms. The inset plot
is the contrast decay as a function of TR , for a fixed TB = 20.4 ms,
for two different lattice beam waists. Black diamonds correspond to
beam waist of 300 μm, and red squares with 800 μm (the solid lines
are to guide the eye).

imperfection in the lattice profile can dramatically reduce the
interferometer contrast. Far from the windows, the Gaussian
beam profile depends strongly on the optical setup chosen to
collimate the beam as well as on diffraction from apertures
along the beam path. Furthermore, given a finite Rayleigh
length (proportional to the square of the beam waist) of the
lattice beams, it is also possible to have a coupling between
the transverse and longitudinal motions in the lattice due to
the wavefront curvature. One clear indication of this fact is
shown by a measurement of the contrast decay as a function of
the lattice beam waist. For this measurement we choose TB =
20.4 ms and we measured the contrast decay as a function of
the Ramsey time TR for two different lattice beam waists, 300
and 800 μm, respectively. As shown in the inset of Fig. 8,
the contrast is improved by a factor of about four (for a fixed
value of TR = 5 ms), when the lattice beam waist at the atoms’
position is enlarged by a factor of ∼2.

The contrast decay is therefore strongly affected by the
lattice beam profile and can be improved dramatically by

increasing the lattice size. From this evidence, we expect that
a further increase of the lattice beam size or a better optical
setup may improve our system. In the present experimental
configuration this is not possible because of the limited lattice
laser power at 532 nm. Another possible approach is to use a
resonant cavity for both the lattice and interferometer beams
so that the beam profile can be improved and, moreover, high
laser intensity can be achieved [35].

VI. CONCLUSIONS

In conclusion, we demonstrated a high-contrast atom
interferometer based on a combination of Ramsey–Bordé
Bragg pulses and a Bloch oscillation stage in a vertical lattice.
By using 88Sr atoms, the total interferometer time we reach is
1 s, currently limited by the atom lifetime in the lattice and
geometry imperfections of the lattice beams. This limitation
has been highlighted through a detailed experimental study
of main decoherence sources in our system. In particular, a
detailed study of the contrast decay sources as functions of the
principal parameters (as the pulse separation time TR and the
Bloch evolution time TB) has been conducted.

As a result, we provide evidence that, at this level,
decoherence is mainly given by technical and not funda-
mental limitations. For this reason, we think that trapped
interferometer schemes employing Bloch oscillations with
88Sr atoms are valid candidates for further extending the
total atom interferometer time, toward high-precision inertial
measurements.

A future prospect is to use a red laser at 689 nm to both drive
the Bragg transitions and to trap the atoms in a standing-wave
lattice. Thanks to the narrow intercombination line and the
high power available at this wavelength, it should be possible
to realize larger trapping beams maintaining a sufficiently low
photon-scattering rate.
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Phys. Rev. Lett. 111, 030401 (2013).

[3] T. Kovachy, P. Asenbaum, C. Overstreet, C. A.
Donnelly, S. M. Dickerson, A. Sugarbaker, J. M.
Hogan, and M. A. Kasevich, Nature (London) 528, 530
(2015).

[4] R. Lopes, A. Imanaliev, A. Aspect, M. Cheneau, D. Boiron, and
C. I. Westbrook, Nature (London) 520, 66 (2015).

[5] A. Manning, R. Khakimov, R. Dall, and A. Truscott, Nat. Phys.
11, 539 (2015).

[6] G. Amelino-Camelia, C. Lämmerzahl, F. Mercati, and G. M.
Tino, Phys. Rev. Lett. 103, 171302 (2009).

[7] G. W. Biedermann, X. Wu, L. Deslauriers, S. Roy, C. Ma-
hadeswaraswamy, and M. A. Kasevich, Phys. Rev. A 91, 033629
(2015).

043608-7

http://dx.doi.org/10.1103/PhysRevLett.111.030401
http://dx.doi.org/10.1103/PhysRevLett.111.030401
http://dx.doi.org/10.1103/PhysRevLett.111.030401
http://dx.doi.org/10.1103/PhysRevLett.111.030401
http://dx.doi.org/10.1038/nature16155
http://dx.doi.org/10.1038/nature16155
http://dx.doi.org/10.1038/nature16155
http://dx.doi.org/10.1038/nature16155
http://dx.doi.org/10.1038/nature14331
http://dx.doi.org/10.1038/nature14331
http://dx.doi.org/10.1038/nature14331
http://dx.doi.org/10.1038/nature14331
http://dx.doi.org/10.1038/nphys3343
http://dx.doi.org/10.1038/nphys3343
http://dx.doi.org/10.1038/nphys3343
http://dx.doi.org/10.1038/nphys3343
http://dx.doi.org/10.1103/PhysRevLett.103.171302
http://dx.doi.org/10.1103/PhysRevLett.103.171302
http://dx.doi.org/10.1103/PhysRevLett.103.171302
http://dx.doi.org/10.1103/PhysRevLett.103.171302
http://dx.doi.org/10.1103/PhysRevA.91.033629
http://dx.doi.org/10.1103/PhysRevA.91.033629
http://dx.doi.org/10.1103/PhysRevA.91.033629
http://dx.doi.org/10.1103/PhysRevA.91.033629


ZHANG, DEL AGUILA, MAZZONI, POLI, AND TINO PHYSICAL REVIEW A 94, 043608 (2016)

[8] J. Hartwig, S. Abend, C. Schubert, D. Schlippert, H. Ahlers, K.
Posso-Trujillo, N. Gaaloul, W. Ertmer, and E. M. Rasel, New J.
Phys. 17, 035011 (2015).

[9] L. Zhou, S.-T. Long, B. Tang, X. Chen, F. Gao, W.-C.
Peng, W.-T. Duan, J.-Q. Zhong, Z.-Y. Xiong, J. Wang,
Y.-Z. Zhang, and M.-S. Zhan, Phys. Rev. Lett. 115, 013004
(2015).

[10] X.-C. Duan, X.-B. Deng, M.-K. Zhou, K. Zhang, W.-J. Xu,
F. Xiong, Y.-Y. Xu, C.-G. Shao, J. Luo, and Z.-K. Hu, Phys.
Rev. Lett. 117, 023001 (2016).
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