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Strong-field photoemission and electron recollision provide a viable route to extract electronic and nuclear
dynamics from molecular targets with attosecond temporal resolution. However, since an ab initio treatment
of even the simplest diatomic systems is beyond today’s capabilities, approximate qualitative descriptions are
warranted. In this paper, we develop such a theoretical approach to model the photoelectrons resulting from
intense laser-molecule interaction. We present a general theory for symmetric diatomic molecules in the single
active electron approximation that, amongst other capabilities, allows adjusting both the internuclear separation
and molecular potential in a direct and simple way. More importantly, we derive an analytic approximate solution
of the time-dependent Schrödinger equation (TDSE), based on a generalized strong-field approximation (SFA)
version. Using that approach, we obtain expressions for electron emitted transition amplitudes from two different
molecular centers, and accelerated then in the strong laser field. In addition, our approach directly underpins
different underlying physical processes that correspond to (i) direct tunneling ionization; (ii) electron rescattering
on the center of origin; and, finally, (iii) electron rescattering on a different center. One innovative aspect of our
theory is the fact that the dipole matrix elements are free from nonphysical gauge and coordinate system-dependent
terms: this is achieved by adapting the coordinate system, in which SFA is performed, to the center from which
the corresponding part of the time-dependent wave function originates. Our analytic results agree very well with
the numerical solution of the full three-dimensional TDSE for the H2

+ molecule. Moreover, the theoretical model
was applied to describe laser-induced electron diffraction measurements of O2

+ molecules, obtained at ICFO,
and reproduces the main features of the experiment very well. Our approach can be extended in a natural way to
more complex molecules and multielectron systems.
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I. INTRODUCTION

A. Imaging in strong fields: High-order harmonic generation
and laser-induced electron diffraction

One of the most exciting prospects of strong-field and
attosecond physics is the extraction of electronic and nuclear
information on the attosecond temporal and picometer spatial
scales [1]. Strong-field techniques such as high harmonic
spectroscopy (HHS) [2–4] exploit the quiver motion of an
electron which is liberated from the target structure itself and
analyze either the recombination spectrum or the momentum
distribution of the rescattering electron [5–7].

In a seminal work, Villeneuve et al. [8] demonstrated that a
tomographic reconstruction from a HHS measurement yields
the Dyson orbital of N2 [9]. The original interpretation of
these experiments was based on the strong-field approximation
(SFA) description of the process [10], which provides a fully
quantum description of the well-known “three-step model”
[1,11–13]. Villeneuve et al.’s [8] experiment has triggered a
true avalanche of experimental and theoretical works on the
subject [2,14–21]. The use of approximations (and in particular
the SFA) in the tomography of molecular orbitals is, however,
under permanent debate and full for controversial issues: the
results strongly depend on the gauge, the choice of the dipole
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radiation form, the molecular orbital symmetry, and degree of
alignment and the reconstruction axis (cf. [22–30]).

Laser-induced electron diffraction (LIED) [5,31,32] is
based on extracting structural information directly from elec-
trons which are elastically scattered of the parent ion. Recently,
LIED has been used to successfully recover structural informa-
tion from diatomic and larger polyatomic molecules [20,33–
35]. An electron may directly depart from the molecule and
contribute to the lower-energy region of the above-threshold
ionization (ATI) spectrum; this process is termed direct
tunneling or it might return to the target molecular ion, driven
by the still present laser electric field, and rescatter, thereby
gaining much more energy. This high energetic electron could
excite the remaining ion or even cause the detachment of a
second electron (for a consistent description of these processes
within the framework of the SFA and Feynman’s path-integral
approach, see [36]).

The viability of this self-imaging technique to retrieve
structural information of molecular and atomic systems has
been demonstrated in a series of contributions [33,34,37].
The idea is here to gain insight about the electronic structure
of molecular targets interpreting the energy spectra and
angular distribution of above-threshold ionization electrons. In
particular, the high-energy region of the ATI spectra, which is
mainly due to the rescattering process, is particularly sensitive
to the structure of the target, i.e., the rescattered electron has
incurred information about the target it rescattered off and
hence permits extracting structural information.
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Some efforts have been already made in the study and de-
velopment of new theoretical tools to investigate the structure
of complex systems (such as molecules, atom clusters, and
solids) using the ATI spectra. Among those investigations,
ATI from diatomic systems is the most widely studied process
[38–41]. Two methods are commonly used and compared: a
fully quantum-mechanical description based on the numerical
solution of the time-dependent Schrödinger equation (TDSE)
and approximated methods based on the SFA and other
quasiclassical approaches. We should mention, however, that
the former is only feasible for simple diatomic molecules,
e.g., H2

+, H2, D2, and within the single active electron
(SAE) approximation. The results so far focus, for instance,
in the differences between the length and velocity gauge [42],
the influence of the internuclear distance [40], or alignment
[6,31,38,39,43] on the ATI photoelectron spectra and the
importance of the residual Coulomb interaction [41,44]. While
TDSE provides the most accurate description of the underlying
physics behind LIED, it is numerically and computationally
very costly. In addition, the multidimensional TDSE can
currently not be solved for complex molecules, multielectron
systems, or molecular systems evolving in time. Thus, one
has to resort to approximate descriptions such as the SFA
and related methods to adequately describe the more complex
instances of LIED. Similar arguments can be put forward for
molecular orbital tomography methods based on high-order
harmonic generation (HHG).

B. Overcoming the drawbacks of SFA

The standard SFA method, however, has severe drawbacks,
namely, the electronic states in the continuum are described
in their simplest approximation by Volkov states (a plane
wave in the presence of the laser field) or, in a slightly more
sophisticated version, by Coulomb-Volkov states or similar
ones which take into account Coulomb corrections [45–47].
These states are typically not orthogonal to the target bound
states and this introduces spurious contributions. For instance,
when we compute the transition dipole matrix element d(v)
between the bound |0〉 and continuum |φv〉 states, the results
depend linearly on the choice of the center of the coordinate
system: d(v) = qe〈φv|r̂|0〉 �= qe〈φv|(r̂ − R)|0〉, where R is a
constant coordinate shift, typically corresponding to the dis-
tance between the nuclei (the so-called internuclear distance)
in a two-center molecule. This is an artificial and nonphysical
effect, particularly problematic when R → ∞. Most authors
handle this problem by neglecting the linear terms in R in
the dipole matrix elements [40,42,43]. Nevertheless, this is
not a systematic approach since it does not solve adequately
problems related with various phase factors appearing on the
molecular dipole matrix elements. In addition, they present a
strong dependence on the choice of the gauge, or complications
with the correct asymptotic behavior for R → ∞ and yet
to R → 0 (cf. [40]). Furthermore, the agreement with the
TDSE results is typically poor. Aside from the mentioned
weaknesses, we should note that these previous studies have
led to a relatively good description of the ATI process in
diatomic molecules.

In this paper, we propose a natural and systematic solution
of all the above-mentioned problems by extending the SFA

to complex molecules without ambiguities. Our version of the
SFA for ATI and HHG has the following appealing properties:

(a) It analytically reproduces the results for R → ∞; for
the particular case of diatomic molecules, this corresponds to
two identical atoms (sources) generating electronic (photonic)
states with a phase difference corresponding to the distance R
between them.

(b) It reproduces analytically the asymptotic limit for R →
0; for the case of a diatomic molecule, we end up with the usual
single-atom formulation.

(c) Statements (a) and (b) agree well with their counterpart
solutions obtained using the three-dimensional TDSE (3D-
TDSE).

(d) It allows us to interpret the results in terms of quantum
orbits, e.g., we could disentangle contributions for electrons
originating at a given center Ri that rescatters at another one
Rj , etc.

(e) It is free of nonphysical dependencies on Ri .
(f) It agrees well with experimental results at ICFO

concerning O2
+ molecules.

Our approach is based on the following observation: both
in the ATI and HHG cases the molecular response, which is
determined by the probability amplitude of an electron in the
continuum with a given energy and velocity, depends linearly
on the wave functions of the initial (ground) state. More
generally, the solution of the linear TDSE depends linearly
on the wave function of the initial state. Commonly, for a
molecule it is natural to write this function as a summation
of the contributions corresponding to different nuclei: for a
diatomic molecule it is a sum of two terms, for triatomic
molecules a sum of three, etc. Following this reasoning, our
modified SFA consists in the following steps:

(i) Decompose the initial ground state of the molecule into
a superposition of terms centered at Ri , i = 1,2, . . . , i.e., at
the position where the heavy nuclei are located.

(ii) Solve independently a TDSE, exactly or using the SFA
for each term, using a coordinate system centered at each Ri .

(iii) Transform at the end all terms to the same coordinate
system and coherently add them up.

Further, this approach is formally exact, as the exact
numerical solutions of the TDSE are used; in fact it might
even has some numerical advantages. On the other hand, the
formulation is approximated if the SFA is used to solve the
TDSE, but this approach seems to give particularly robust
outcomes which agreed very well with the exact ones.

We illustrate our point with the simplest possible example: a
two-center molecule with two identical atoms separated at cer-
tain distance R driven by a strong ultrashort laser field linearly
polarized along the z direction, but nothing prevents to apply
our formalism to more complex molecular targets. To model
the electron-heavy ion interactions we take advantage of the
short-range potential model developed by Becker et al. [48].
Considering the ATI spectra are sensitive to the internuclear
distance and the orientation between the molecular axis and the
polarization direction of the laser field z, we aim to generalize
the SFA for atomic systems presented in [49,50] to the
above-mentioned diatomic molecular targets. Furthermore, we
put particular emphasis to all the possible scenarios: tunneling
ionization from both centers and propagation in the continuum
until the measurement process; tunneling ionization from one
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particular center, electron propagation in the continuum, and
rescattering on the same parent center; tunneling ionization
from one center, electron propagation in the continuum, and
rescattering with its neighboring parent center; and (perhaps
the most peculiar one) tunneling ionization from one center,
electron propagation in the continuum, and rescattering on
the same center, causing electron rescattering from the parent
neighboring center.

We stress, in the end, that the agreement of our results with
the TDSE solution is remarkably good, which allows us to
seriously think in extensions of our SFA version to tackle more
complex molecules, with three or more molecular centers, and
systems with more active electrons, where the solution of the
exact Schrödinger equation is not currently available.

C. Plan of the paper

This article is organized as follows. In Sec. II, we write the
formulas for the two-center molecular system ATI transition
amplitude, for both the direct and rescattered electrons, using
the prescriptions presented above. In Sec. III, we introduce
a particular nonlocal short-range (SR) model potential to
calculate the bound and rescattering electron states. The
matrix elements that describe the ionization and rescattering
processes are then provided in an analytic form. We use them
in Sec. IV to compute both energy-resolved ATI and two-
dimensional electron momentum distributions for a diatomic
molecule. Here, our numerical results are compared with
numerical results obtained from TDSE calculations. The basic
analysis of the interference minima of the photoelectron
spectra and the discussion of how structural information, the
internuclear distance, could be retrieved is presented in this
section. In Sec. V, we confront and compare our results with
experimental results obtained at ICFO for O2

+ molecules.
Clearly, the comparison is very encouraging and suggests that
our theory is on the right track to describe experiments in more
complex systems. Finally, in Sec. VI, we summarize the main
ideas and present our conclusions.

II. GENERALIZED STRONG-FIELD APPROXIMATION:
TRANSITION PROBABILITY AMPLITUDES

A. Basics of SFA: A remainder

We aim to extend the SFA from atomic systems presented
Ref. [50] to molecular targets. In particular, we focus ourselves
on calculating the final photoelectron spectrum by means of
solving the TDSE for a molecule with two identical centers
separated by a distance R and driven by a short and intense
linearly polarized laser pulse. We define the relative vector
position R = R2 − R1 where R1 = −R

2 (R2 = +R
2 ) is the

position of one atom placed at the left (right). In general, as
the molecular nuclei are much heavier than the electrons and
the laser pulse duration is shorter than the nuclei vibration and
rotational dynamics, we fix the nuclei positions and neglect the
repulsive interaction between them. Further, throughout the
formulation we consider the so-called single active electron
(SAE) approximation.

The TDSE that describes the whole laser-molecule inter-
actions (atomic units are used throughout this paper unless

otherwise stated) can be written as

i
∂

∂t
|�(t)〉 = Ĥ |�(t)〉

= [Ĥ0 + V̂int (r,t)]|�(t)〉, (1)

where Ĥ0 = p̂2

2 + V̂ (r) defines the laser-field free Hamilto-
nian, with p̂ = −i∇ the canonical momentum operator and
V̂ (r) potential operator that describes the interaction of the
nuclei with the active electron and V̂int (r,t) = −qeÊ(t) · r̂
represents the interaction of the molecular system with the
laser radiation, written in the dipole approximation and
length gauge. qe denotes the electron charge which in atomic
units has the value of qe = −1.0 a.u. Finally, the linearly
polarized, in the z axis, laser electric field has the form
E(t) = E0 f (t) sin(ω0 t + φ0) ez, where E0, ω0, f (t), and φ0

are the electric field peak amplitude, the carrier frequency,
the laser envelope, and the carrier-envelope phase (CEP),
respectively. We have defined the laser pulse envelope as
f (t) = sin2( ω0t

2Nc
) where Nc is the number of total cycles.

We shall restrict our model to the low ionization regime,
where the SFA is valid [10,49,51–54]. Therefore, we work
in the tunneling regime, where the Keldysh parameter γ =√

Ip/2Up (Ip is the ionization potential of the system and

Up = E2
0

4ω2
0

the ponderomotive energy acquired by the electron

during its incursion in the field) is less than one, i.e., γ < 1.
In addition, we assume that V (r) does not play an important
role in the electron dynamics once the electron appears in the
continuum.

These observations, and the following three statements,
define the standard SFA, namely,

(i) only the ground state |0〉 and the continuum states |v〉
are taken into account in the interaction process;

(ii) there is no depletion of the ground state (Up < Usat );
(iii) the continuum states are approximated by Volkov

states; in the continuum the electron is considered as a free
particle solely moving in the laser electric field.

For a more detailed discussion of the validity of the above
statements, see, e.g., Refs. [10,49,50].

B. SFA: An appropriate treatment of two-center systems

Based on the statement (i) and the linearity of the
Schrödinger equation, we propose a general state for the
system:

|�(t)〉 = |�L(t)〉 + |�R(t)〉, (2)

which is the coherent superposition of two states |�L(t)〉 and
|�R(t)〉. The subindices “L” and “R” refer to the contributions
of the spatially localized left and right nuclei, respectively. We
note that those left-right states are not orthogonal between
them. Following the same assumption as that in our previous
contribution [49,50], each single state can be written as the
coherent superposition of ground left-right and continuum
states

|�L(t)〉 = eiIp t

[
a(t)|0L〉 +

∫
d3v bL(v,t)|v〉

]
, (3)

|�R(t)〉 = eiIp t

[
a(t)|0R〉 +

∫
d3v bR(v,t)|v〉

]
. (4)
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Note that the whole ground state, i.e., |0〉 = |0L〉 + |0R〉, is a
composition of left |0L〉 and right |0R〉 contributions. In this
way, we are able to separate the whole state |�(t)〉 both as the
left-right states described in Eq. (2) and the two above ones
[Eqs. (3) and (4)].

The factor a(t) represents the amplitude of the state |0〉
and it is considered constant in time a(t) ≈ 1 under the
assumptions of the statement (ii). The prefactor eiIp t describes
the accumulated electron energy in the ground state where
Ip = −E0 (E0 is the molecular ground-state energy). Further-
more, the continuum states transition amplitudes bL(v,t) and
bR(v,t) are referring to the electron wave function ionized
from the left and right nuclei, respectively.

Our main task will be thereby to derive general expressions,
by means of the Eq. (1) and the definitions of Eqs. (3)
and (4), for the transition amplitudes bL(v,t) and bR(v,t).
We shall consider that Ĥ0|0L,R〉 = −Ip|0L,R〉 and Ĥ0|v〉 =
v2

2 |v〉 fulfill for the bound and continuum states, respectively.
Consequently, the evolution of the transition amplitude bL(v,t)
becomes

i

∫
d3v ḃL(v,t) |v〉

=
∫

d3v
(

v2

2
+ Ip

)
bL(v,t)|v〉 + E(t) · r|0L〉

+ E(t) · r
∫

d3v bL(v,t)|v〉. (5)

On the above equation we have assumed that the electron-
nuclei interactions are neglected once the electron appears
in the continuum, based on the statement (iii). Therefore, by
multiplying Eq. (5) by 〈v′| and after some algebra, the time
variation of the transition amplitude reads as

ḃL(v,t) = −i

(
v2

2
+ Ip

)
bL(v,t) + i E(t) · dL(v)

−i E(t) ·
∫

d3v′bL(v′,t)〈v|r|v′〉. (6)

The first two terms on the right-hand side of Eq. (6) represent
the phase evolution of the electron within the oscillating laser
field. In the last term, we have defined the bound-free transition
dipole matrix element as

dL(v) = −〈v|r|0L〉. (7)

Here, |v〉 represents in general a scattering state built up as the
superposition of a plane wave |vp〉 and corrections on the left
|δvL〉 and on the right |δvR〉:

|v〉 = |vp〉 + |δvL〉 + |δvR〉. (8)

Based on statement (iii), our formulation only considers the
continuum state as a plane wave |vp〉 for the calculation of
the bound-free dipole matrix element. We shall pay special
attention to the computation of Eq. (7). Let us stress the fact
that plane waves are not orthogonal to the bound states. Notice
also that our bound state is defined depending on the relative
position of one the atoms R1 with respect to the origin of
coordinates. In this sense, we need to introduce a “position
correction” on the dipole transition matrix in order to avoid
nonphysical terms with linear dependence on R (see Sec. I B

for more details). So, for the left contribution we introduce a
correction to the dipole matrix element as

dL(v) = −〈vp|(r − R1)|0L〉
= −〈vp|r|0L〉 + R1〈vp|0L〉. (9)

Similarly for bR(v,t) we define a bound-free transition dipole
matrix dR(v) = −〈vp|(r − R2)|0R〉, and the total bound-free
transition dipole matrix is thus dm(v) = dL(v) + dR(v). For
atomic systems, the above analysis is not necessary since
the atom is placed at the origin of the coordinate system.
Furthermore, in the second term of Eq. (9) the continuum
state |v〉 is an eigenstate of the full atomic Hamiltonian H0,
therefore, this extra term R1〈vp|0L〉 disappears.

On the third term of Eq. (6), we define the continuum-
continuum transition matrix element Gm(v,v′) = 〈v|r|v′〉 that
relies upon on the scattering states |v〉 and |v′〉 defined in
Eq. (8) as

Gm(v,v′) = i ∇vδ(v − v′) − R1δ(v − v′) + gm(v,v′). (10)

The first two terms on the right-hand side of Eq. (10)
describe the motion of a free electron in the continuum. They
are associated to events where the laser-ionized electron is
accelerated by the laser electric field without any probability
of rescattering. The last one, the rescattering transition matrix
element gm(v,v′), accounts for all the rescattering processes
concerning the entire molecule. For gm(v,v′) the residual
Coulomb potential has to be taken into account. In this sense,
it can be written as a sum of components representing each
rescattering channel on the molecule. The third term of Eq. (10)
then reads as

gm(v,v′) = gLL(v,v′) + gRR(v,v′) + gRL(v,v′) + gLR(v,v′)

= 〈vp|(r − R1)|δv′
L〉 + 〈δvR|(r − R2)|v′

p〉
+ 〈δvL|(r − R1)|v′

p〉 + 〈vp|(r − R2)|δv′
R〉. (11)

The first two terms in the above equation contain information
about spatially local processes involving only one of the atoms:
the so-called local terms. On the contrary, the last two ones,
describe processes involving both atomic centers, henceforth,
we refer to them as nonlocal and cross terms, respectively.

Next, we include corrections on Eq. (6), extending the anal-
ysis based on the orthogonality of the plane and rescattering
waves, discussed before. The transition amplitude for the left
states then reads as

ḃL(v,t) = −i

[
v2

2
+ Ip − R1 · E(t)

]
bL(v,t) + iE(t) · dL(v)

+ E(t) · ∇vbL(v,t) − iE(t) ·
×

∫
d3v′bL(v′,t)gm(v,v′). (12)

The transition amplitude for the right states can be found
following exactly the same procedure, namely, (i) projecting
the entire Hamiltonian of the system on the right wave function
(4) to get an equation similar to Eq. (5); (ii) multiplying it by a
scattering state 〈v′|, and (iii) defining the bound-continuum and
continuum-continuum transition matrix elements including
their respective corrections.
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A general equation containing both of the processes
mentioned before reads as

ḃj (v,t) = −i

[
v2

2
+ Ip − Ri · E(t)

]
bj (v,t)

+ iE(t) · dj (v) + E(t) · ∇vbj (v,t)

− iE(t) ·
∫

d3v′ bj (v′,t) gm(v,v′), (13)

where the subscript j represents either the left j = L or right
j = R and i = 1,2 is the position of the atom. For instance,
to obtain the transition amplitude for the left states [Eq. (12)],
we need to set j = L and i = 1 in the above equation.

In the following, we shall describe how it is possible to
compute the transition amplitude bj (v,t) by applying the
zeroth- and first-order perturbation theories to the solution
of the partial differential equation (13). According to the
perturbation theory, the transition amplitude solution bj (v,t)
can be split into two parts: b0,j (v,t) and b1,j (v,t), i.e., bj (v,t) =
b0,j (v,t) + b1,j (v,t), the zeroth-order solution b0,j (v,t), and
the first-perturbative-order solution b1,j (v,t). These corre-
spond to the direct and rescattering terms, respectively. As
is known, the direct term describes the transition amplitude
for a laser-ionized electron that never rescatters with the
remaining molecular ions. On the other hand, the rescattering
term b1,j (v,t) is referred to an electron that, once ionized in a
particular center, has a certain probability of rescattering with
each of the molecular ions.

C. Direct transition amplitude

Let us consider the process where the electron is ionized
from one of the atoms without probability to return to its parent
ion. The last two terms in Eq. (13) describe the continuum-
continuum transition ∇vbj (v,t) without the influence of the
scattering center, and

∫
d3v′ bj (v′,t) gm(v,v′) by considering

the core potential. Here, gm(v,v′) denotes the rescattering
transition matrix element, where the potential core plays an
essential role.

As the direct ionization process should have a larger
probability compared with the rescattering one [49,50], one
might neglect the last term in Eq. (13), gm(v,v′) = 0. This is
what we refer as zeroth-order solution:

∂tb0,j (v,t) = −i

[
v2

2
+ Ip − Ri · E(t)

]
b0,j (v,t)

+ i E(t) · dj (v) + E(t) · ∇vb0,j (v,t). (14)

The latter equation is easily solved by conventional integration
methods (see, e.g., [55]) and considering the Keldysh trans-
formation [51,56]. Therefore, the solution is as follows:

b0,j (p,t) = i
∫ t

0
dt′ E(t ′) · dj [p + A(t ′)]

× exp

(
− i

∫ t

t ′
dt̃{[p + A(t̃)]2/2

+ Ip − Ri · E(t̃)}
)

. (15)

Note that the above equation is written in terms of the canonical
momentum p = v − A(t) [10]. Here, we have considered that

the electron appears in the continuum with kinetic momentum
v(t ′) = v − A(t) + A(t ′) at the time t ′, where v is the final
kinetic momentum (note that in atomic units p = v), and
A(t) = − ∫ t E(t ′)dt ′ is the associated vector potential.

Equation (15) has a direct physical interpretation which
is understood as the sum of all the ionization events that
occur from the time t ′ to t . Then, the instantaneous transition
probability amplitude of an electron at a time t ′, at which
it appears into the continuum with momentum v(t ′) = p +
A(t ′), is defined by the argument of the [0,t] integral in
Eq. (15). Furthermore, the exponent phase factor denotes
the “semiclassical action” Si(p,t,t ′), that defines a possible
electron trajectory from the birth time t ′, at position Ri , until
the “detection” one t as

Si(p,t,t ′) =
∫ t

t ′
dt̃{[p + A(t̃)]2/2 + Ip − Ri · E(t̃)}. (16)

Note that the transition amplitude equations obtained so far
depend on the position from which the electron is tunnel
ionized to the continuum. The semiclassical action Si(p,t,t ′)
contains this dependency as well.

Considering we are interested to obtain the transition
amplitude b0,j (p,t) at the end of the laser pulse, the time t is set
at t = tF. Consequently, we shall define the integration time
window as t ∈ [0,tF]. Furthermore, we set E(0) = E(tF) = 0,
in such a way to make sure that the laser electric field is a time
oscillating wave and does not contain static components [the
same arguments apply to the vector potential A(t)]. Finally, the
total transition amplitude for the direct process taking place
on our two-center molecular system reads as

b0(p,t) = b0,L(p,t) + b0,R(p,t). (17)

D. Rescattering transition amplitude

In order to find the solution for the transition amplitude
of the rescattered photoelectrons b1(v,t), we have considered,
in Eq. (13), gm(v,v′) �= 0. The first-order solution b1(v,t) is
then obtained by inserting the zeroth-order solution b0,j (p,t)
in the right-hand side of Eq. (13). Thereby we obtain a general
equation to describe the rescattering process as

ḃ1,jj ′ (v,t) = −i

[
v2

2
+ Ip − Ri · E(t)

]
b1,j ′j (v,t) − iE(t)

·
∫

d3v′ b0,j (v′,t) gjj ′ (v,v′), (18)

where j denotes the atom from where the electron is released
and j ′ the one where the electron is rescattered. As the
continuum-continuum rescattering matrix element is split in
four terms [see Eq. (12)], the associated rescattering transition
amplitude contains four terms as well, i.e.,

b1(v,t) = b1,LL(v,t)+b1,LR(v,t) + b1,RR(v,t) + b1,RL(v,t).

(19)

The above equation contains information about all the possible
rescattering scenarios which take place in our molecular
system. In addition, a direct physical interpretation of each
term can be inferred as following;

(1) The first term, b1,LL(v,t), denotes electron-tunneling
ionization from an atom located at R1 and rescattering with the
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NOSLEN SUÁREZ et al. PHYSICAL REVIEW A 94, 043423 (2016)

same parent ion. We refer this process as “spatially localized”
since the electron performs a local rescattering with the same
atomic core j = j ′ from which it was born.

(2) The process described by b1,LR(v,t) considers both
atoms of the molecule. It represents an event where the electron
is tunnel ionized from an atom at R1 and rescatters with the
other atom at R2. We call this process as “cross process.”
In fact, there exists another process involving both atoms. It
occurs when the electron is detached from an atom located at
R1 and rescatters with the same parent ion, but there is certain
probability of electron emission from the other ion core, placed
at R2. We label the latter as “nonlocal process.”

(3) The other “local” term, b1,RR(v,t), describes the same
process as (1), but now for an atom located at R2.

(4) Finally, b1,RL(v,t) represents the same process as in
(2), but the tunnel-ionization process takes place at R2.

The differential equation describing the local-rescattering
processes is constructed considering j = j ′. For processes
localized at left we need to set j = j ′ = L and i = 1 and for
the ones at the right j = j ′ = R and i = 2, respectively. In this
way, the transition amplitude for the local processes reads as

b1,jj (p,t) = −
∫ t

0
dt ′

∫ t ′

0
dt′′

∫
d3p′ E(t ′)

× gjj [p + A(t ′),p′ + A(t ′)] exp [−iSi(p,t,t ′)]

× E(t ′′) · dj [p′ + A(t ′′)] exp [−iSi(p′,t ′,t ′′)] .

(20)

As we expect, the rescattering transition amplitude contains
two exponential factors, each representing the excursion of
the electron in the continuum: before and after the rescattering
event. In the above equation, both phase factors need to be
evaluated with the same subscript, i.e., S1(p,t,t ′) − S1(p′,t ′,t ′′)
or S2(p,t,t ′) − S2(p′,t ′,t ′′) since they are local processes.

The last factor in Eq. (20), exp [−iSi(p′,t ′,t ′′)], represents
the accumulated phase of an electron born at the time t ′′ in Ri

until it rescatters at time t ′. In the same way exp [−iSi(p,t,t ′)]
defines the accumulated phase of the electron after it rescatters
at a time t ′ to the “final” one t , when the electron is “measured”
at the detector with momentum p. Finally, the quantity E(t ′′) ·
dj [p′ + A(t ′′)] is the probability amplitude of an emitted
electron at the time t ′′ that has a kinetic momentum of
v′(t ′′) = p′ + A(t ′′). Similarly, to find the transition amplitude
for a local process at the right atom, we need to consider
j = j ′ = R and i = 2 in Eq. (20) and use the right dipole
transition matrix element.

The cross and nonlocal processes are formulated by
considering j �= j ′ in the following way: j = L,R, j ′ = R,L
in Eq. (18). The phase factors have to be set in different atomic
positions: it means S1(p,t,t ′) − S2(p′,t ′,t ′′) or S2(p,t,t ′) −
S1(p′,t ′,t ′′). For instance, the transition amplitude for the
left-right reads as

b1,LR(p,t) = −
∫ t

0
dt ′

∫ t ′

0
dt′′

∫
d3p′ E(t ′)

× gLR[p + A(t ′),p′ + A(t ′)] exp [−iS2(p,t,t ′)]

× E(t ′′) · dL[p′ + A(t ′′)] exp [−iS1(p′,t ′,t ′′)].

(21)

Here, we notice that the above equation describes the atomic
system presented in Ref. [50] when the internuclear distance
goes to zero, R → 0. The verification of this limit for the
direct process is straightforward. The phase factor in Eq. (16)
then becomes the well-known semiclassical action S(p,t,t ′)
and the transition amplitude exactly has the same dependency
as for an atom, if we replace the atomic matrix elements on it.
For the rescattering events, we have to neglect in Eq. (19) the
contribution of the nonlocal and cross terms (the last two terms)
and follow the same procedure as before. In the following
sections, we obtain the exact dependency of the rescattered
matrix elements and demonstrate that the atomic limit can
also be recovered when R → 0.

In the total rescattering transition amplitude, Eq. (19), we
can identify two main contributions, namely, one generated
for the local processes and the other one for the nonlocal
and cross processes. In this way, we define the rescattering
transition amplitude as

b1(p,t) = blocal(p,t) + bnonlocal+cross(p,t), (22)

where

blocal(p,t) = b1,LL(p,t) + b1,RR(p,t) (23)

and

bnonlocal+cross(p,t) = b1,LR(p,t) + b1,RL(p,t). (24)

The total photoelectron spectra, |b(p,tF)|2, is computed as
a coherent superposition of both the direct b0(p,tF) and
rescattered b1(p,tF) transition amplitudes, i.e.,

|b(p,tF)|2 = |b0(p,tF) + b1(p,tF)|2
= |b0(p,tF)|2+|b1(p,tF)|2+b0(p,tF)b∗

1(p,tF) + c.c.

(25)

The direct transition amplitude, Eq. (15), is a “single time
integral” and can be computed straightforwardly. For the
rescattering one, Eqs. (20) and (21), the multiple time (“2D”)
and momentum (“3D”) integrals present a demanding task
from a computational perspective. In order to reduce the com-
putational difficulties, and to obtain a physical interpretation of
the ATI process, we shall employ the stationary phase method
to partially evaluate these highly oscillatory integrals.

The fast oscillations of the momentum p′ integral suggest
the utilization of the stationary-phase approximation or saddle-
point method to solve it in Eq. (20). This method is expected
to be accurate, when both the Up and the Ip, as well as the
involved momentum v and v′, are large. The quasiclassical
action for the two-center molecule, Eq. (16), can be rewritten
as

Si(p′,t ′,t ′′) = Ri · [A(t ′) − A(t ′′)] + S(p′,t ′,t ′′), (26)

where S(p′,t ′,t ′′) = ∫ t ′

t ′′ dt̃{[p′ + A(t̃)]2/2 + Ip} is propor-
tional to Ip, Up, and p′2, and, as a consequence, the phase
factor exp[−iSi(p′,t ′,t ′′)] in Eq. (20) oscillates very rapidly.
Then, the integral over the momentum p′ of Eq. (20) tends
towards zero except near the extremal points of the phase,
i.e., when ∇p′S(p′) = 0. Thus, the main contributions to the
momentum integral are dominated by momenta p′

s , which
satisfy the solution of the equation ∇p′S(p′)|p′

s
= 0. These
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saddle-point momenta read as

p′
s = − 1

τ

∫ t ′

t ′′
A(t̃)dt̃ . (27)

Here, τ = t ′ − t ′′ is the excursion time of the electron in the
continuum. In terms of classical mechanics, these momenta
roots p′

s are those corresponding to the classical electron
trajectories because the momentum gradient of the action
can be understood as the displacement of a particle [57].
As the momentum gradient of the action is null 	r =
∇p′S(p′,t ′,t ′′) = 0, the considered electron trajectories r(t) are
for an electron that is born at the time t ′′ at a certain position
r(t ′′) = r0. Then, after some time t ′ the electron returns to
the initial position r(t ′) = r0 with an average momentum
p′

s . Therefore, the function S(p′,t ′,t ′′) can be expanded in a
Taylor series around the roots p′

s and then apply the standard
saddle-point method to the 3D momentum integral over p′ in
all the rescattering equations b1,jj ′ (p,t):

∫
d3p′f (p′) exp [−iS(p′)]

=
∫

d3p′f (p′
s) exp

{
− i

[
S(p′

s) + 1

2
∇2

p′S(p′)
∣∣∣∣
p′

s

× (p′ − p′
s)

2

]}

≈
(

π

ε + i(t ′−t ′′)
2

) 3
2

exp [−iS(p′
s)] f (p′

s). (28)

Here, we have introduced an infinitesimal parameter ε to avoid
the divergence at t ′ = t ′′. Still, the singularity is not integrable
and practically impossible to be treated numerically. One
should stress, however, that it is the result of the saddle-point
approximation restricted exclusively to the classical action.
We have regarded in the calculation that the function f (p′) is
localized at a certain scale and consequently the singularity
would simply disappear. This observation and the simple
method to handle it has been pioneered in Ref. [10] (for
more information see the previous discussion in Ref. [50]).
The simplest way to avoid the problem is to set ε small, but
nonzero; throughout this paper we use ε = 0.4 a.u. = 0.2/Ip.

With the last equation [Eq. (28)], we have substantially
reduced the dimensionality of the problem, i.e., from a 5D
integral to a 2D one. This reduction is extremely advantageous
from a computational viewpoint. Moreover, with the saddle-
point method a quasiclassical picture for the rescattering tran-
sition amplitude is obtained for molecular systems, similarly
to the atomic approach described in [1,49,50].

In order to calculate the total photoelectron spectra for
the two-center molecular system, we first need to define the
ground and the continuum states. After having found them, we
then compute the bound-free transition dipole matrix elements
dL(v) and dR(v) and the continuum-continuum transition
rescattering matrix element gm(v,v′). In the next section,
we shall introduce a short-range potential model in order to
analytically compute both the transition matrix elements and
the final photoelectron momentum distribution.

III. ABOVE-THRESHOLD IONIZATION IN
DIATOMIC MOLECULES

A. A simplified molecular model

In this section, we define a simplified molecular model to
validate the general above-described formulation and to com-
pute the ATI photoelectron spectra. Let us consider a diatomic
molecule constructed as two fixed nuclear centers under the
SAE. We describe the interaction of the electron with each
molecular nuclei by a nonlocal potential. The Hamiltonian
Ĥ (p,p′) of the system in the momentum representation can be
written as

ĤM(p,p′) = p2

2
δ(p − p′) + V̂M(p,p′). (29)

The first term on the right-hand side is the kinetic energy
operator, and the second one is the interacting nonlocal
potential defined according to

V̂M(p,p′) = −γ ′ φ(p) φ(p′) e−iR2·(p−p′)

− γ ′ φ(p) φ(p′) e−iR1·(p−p′). (30)

This potential describes the interaction between the active
electron and each of the nuclei of the molecule, and depends
on the internuclear relative vector position R = R2 − R1. The
function φ(p) = 1√

p2+�2
is the same auxiliary function used

in [49,50]. The parameters γ ′ = γ

2 and � are constants related
with the shape of the ground state (for more details, see [50]).

By using Ĥ (p,p′) from Eq. (29), we write the stationary
Schrödinger equation as follows:

ĤM(p,p′)�0M(p) =
∫

d3p′ĤM(p,p′)�0M(p′),

(
p2

2
+ Ip

)
�0M(p) = γ ′ φ(p) e−iR2·p ϕ̌1 + γ ′ φ(p) e−iR1·p ϕ̌2,

(31)

where Ip denotes the ionization potential energy of the wave
function �0M(p) which is related to the ground potential
energy by E0 = −Ip. To analytically solve Eq. (31), in the
momentum representation, we consider

ϕ̌1 =
∫

d3p′�0M(p′)φ(p′)eiR2·p′ =
∫

d3p′�0M(p′)eiR2·p′√
p′2 + �2

,

(32)

ϕ̌2 =
∫

d3p′ �0M(p′)φ(p′)eiR1·p′ =
∫

d3p′�0M(p′)eiR1·p′√
p′2 + �2

,

(33)

where the wave function for the bound states in momentum
space �0M(p) is defined by

�0M(p) = γ ′ ϕ̌1 e−iR2·p√
(p2 + �2)

(
p2

2 + Ip

) + γ ′ ϕ̌2 e−iR1·p√
(p2 + �2)

(
p2

2 + Ip

) .

(34)

Solving the system of Eqs. (32) and (33), we find that
ϕ̌1 = ±ϕ̌2. This relation let us two possible solutions, namely,
symmetric and antisymmetric wave functions for �0M(p).
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Throughout this paper, we shall only consider the symmetric
wave function as follows:

�0M(p) = M√
(p2 + �2)

(
p2

2 + Ip

)
[

2 cos

(
R · p

2

)]
, (35)

where M = γ ′ ϕ̌1 = γ

2 ϕ̌1 is a normalization constant. This
constant is obtained by employing the conventional normal-
ization condition for the bound states. Consequently, this factor
thereby reads as

M = 1

2

[
2π2

(2Ip − �2)2

{
2 e−R�

R
− 2 e−R

√
2Ip

R

− (2Ip − �2)e−R
√

2Ip√
2Ip

+ (
√

2Ip − �)2√
2Ip

}]−1/2

. (36)

With the exact dependency of M we have well defined
the bound state for our two-center molecular system. The
wave function for the bound state can then be written as
a combination of two left and right functions, �0M(p) =
�0,L(p) + �0,R(p), in agreement with the photoelectron tran-
sition amplitude derivation. �0M(p) then reads as:

�0M(p) = M e−iR1·p√
(p2 + �2)

(
p2

2 + Ip

) + M e−iR2·p√
(p2 + �2)

(
p2

2 + Ip

) .

(37)
In the above wave function we can clearly see that each
term contains information about only one of the nuclei. The
first term corresponds to the electron-wave-function portion
located at the atom on the left at R1 = −R

2 , meanwhile the
second one to the electron portion placed on the right atom
of the molecule at R2 = +R

2 , respectively. Equations (32) and
(33) give us a relation between the electronic energy Ee of the
molecular system and the internuclear distance R as follows:

2π2γ

R(�2 − 2Ee)
[e−√

2EeR − e−�R + R(� −
√

2Ee)] = 1. (38)

In order to test the validity of the latter formulas, in Fig. 1
we show the potential energy surface (PES) of the diatomic
molecule H2

+ as a function of internuclear distance. We depict
the different energy contributions, electronic and nuclear, of
the molecular system H2

+ obtained using the SFA model (left

panel) and the exact solution of the TDSE (right panel). While
the electron-nuclei interaction is described by a kind of non-
local short potential for our test molecular model, we choose
as a repulsive potential between the nuclei a Yukawa one.

We stress that Fig. 1 is in very good agreement with the
PES reported in the literature [58]: it shows the minimum of
equilibrium for an interatomic distance at R0 = 2 a.u. This
value is a clear signal of the good description offered by
our SFA model. When R is large, the two atoms are weakly
interacting and the energy of the system is equal to the energy
of the atomic hydrogen, −0.5 a.u. As R becomes smaller, the
interaction results stronger and the energy is large and negative.
In this case, we say that a bond is formed between the atoms.
At even smaller values of R, the internuclear repulsion is very
large (red line), therefore, the energy is large and positive.
It is a standard approach to use zero-range potentials as a
caricature of the true Coulomb ones in SFA. In fact, this choice
is perfectly legitimate within the SFA framework, where the
atomic or molecular potential is neglected when the electron
is moving in the continuum, but if we consequently take, for
instance, delta potentials between the two protons in the H2

+

molecule, we would not have the possibility of stabilizing it
for R �= 0. For this reason, we employ a Yukawa potential,
that is also a short-range caricature of the Coulomb potential,
but it has a finite-range repulsive core, which combined with
attractive electronic energy allows to reach the stabilization of
our molecule for finite values of R in the Born-Oppenheimer
approximation. By comparing our results with the TDSE, we
could argue that our approximation appears to work perfectly
well (see Sec. IV A for more details).

B. Bound-continuum transition matrix element

So far we have analytically obtained the ground state of
our two-center molecular system. It allows us to compute
the bound-free transition dipole matrix element dL(p0) and
dR(p0) by using Eq. (9). By approximating the free or
continuum state as a plane wave with a given momentum
p0, the bound-free transition dipole matrix in the momentum
representation reads as

dL(p0) = −i∇p�0,L(p)|p0 + R1�0,L(p0)

= −2i MA(p0) e−iR1·p0 , (39)

FIG. 1. Potential energy surface (PES) for the diatomic molecule H2
+ as a function of the internuclear distance. (a) Electronic energy (blue

line) calculated using Eq. (38), nuclear-nuclear energy (red line), and total energy of the system (green line) obtained with the SFA model.
(b) The same as in (a) but computed by the numerical solution of the TDSE. The vertical dashed lines show the energy minimum corresponding
to the equilibrium distance of the system (see the text for details).
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for the atom on the left, meanwhile that for the one on the
right it results dR(v) = −2i MA(p0) e−iR2·p0 . In both cases,
A(p0) is defined as

A(p0) = −p0
(
3p2

0 + 2Ip + 2�2
)

(
p2

0 + �2
) 3

2
(
p2

0 + 2Ip

)2
. (40)

The second important quantity to be calculated before eval-
uating the whole transition amplitude b(p,t) is the transition
continuum-continuum matrix element gm(p,p′). Hence, we
need to find the scattering or continuum wave functions of our
model potential. Next, we shall calculate them by analytically
solving the time-independent Schrödinger equation in the
momentum representation for positive energies.

C. Scattering waves and the continuum-continuum
transition matrix element

Let us consider a scattering wave �Mp0 (p), with asymptotic
momentum p0, as a coherent superposition of a plane wave and
an extra correction δ�Mp0 (p):

�Mp0 (p) = δ(p − p0) + δ�Mp0 (p). (41)

This state has an energy E = p2
0/2. Then, the Schrödinger

equation in momentum representation reads as(
p2

2
− p2

0

2

)
δ�Mp0 (p)

= −V̂M(p,p0) −
∫

d3p′V̂M(p,p′)δ�Mp0 (p′). (42)

Inserting the nonlocal potential, Eq. (30), in Eq. (42) and after
some algebra, we obtain(

p2 − p2
0

)
δ�Mp0 (p)

= 2γ ′ φ(p)φ(p0)[e−iR2·(p−p0) + e−iR1·(p−p0)]

+2γ ′ϕ̌′
1 φ(p)e−iR2·p + 2γ ′ϕ̌′

2 φ(p)e−iR1·p, (43)

where the variables ϕ̌′
1 and ϕ̌′

2 are defined by

ϕ̌′
1 =

∫
d3p′δ�Mp0 (p′)φ(p′)eiR2·p′=

∫
d3p′δ�Mp0 (p′)eiR2·p′√

p′2 + �2
,

(44)

ϕ̌′
2 =

∫
d3p′δ�Mp0 (p′)φ(p′)eiR1·p′=

∫
d3p′δ�Mp0 (p′)eiR1·p′√

p′2 + �2
.

(45)

Finally, for δ�Mp0 we write

δ�Mp0 (p) = D1(p0) e−iR2·(p−p0) − D2(p0) e−iR2·(p+p0)√
p2 + �2

(
p2

0 − p2 + iε
)

+ D1(p0) e−iR1·(p−p0)−D2(p0)e−iR1·(p+p0)√
p2 + �2

(
p2

0 − p2 + iε
) ,

(46)

where ε is another infinitesimal parameter to avoid the
divergence at the “energy shell” p2 = p2

0. The singularity
at the “energy shell” is avoided due to the finite spread of

the involved wave packets. In numerical calculations we set
throughout this paper ε = 0.4 a.u. (for more details, see [50]).
The integration “constants” for the scattering states in Eq. (46)
have the following dependency:

D1(p0) = γ√
p2

0 + �2

{
1 + I1

I 2
2 − (1 + I1)2

}
;

D2(p0) = γ√
p2

0 + �2

{
I2

I 2
2 − (1 + I1)2

}
, (47)

where

I1 = −2π2 γ

� − i

√
|p2

0 + i ε|
, (48)

I2 = −2π2 γ

R
(
p2

0 + �2 + iε
) [eiR

√
p2

0+iε − e−R �]. (49)

Finally, the molecular scattering wave function can be written
as a composition of two contributions, namely,

�Mp0 (p) = δ(p − p0) + δ�Rp0 (p) + δ�Lp0 (p), (50)

where

δ�Lp0 (p) = D1(p0) e−iR1·(p−p0) − D2(p0) e−iR1·(p+p0)√
p2 + �2

(
p2

0 − p2 + iε
) , (51)

δ�Rp0 (p) = D1(p0) e−iR2·(p−p0) − D2(p0) e−iR2·(p+p0)√
p2 + �2

(
p2

0 − p2 + iε
) . (52)

Equation (51) describes electrons that have probability of
scatter with the ion core placed at R1. Similarly, Eq. (52)
represents a scattering process with the nucleus placed at R2.

Let us consider the scattering waves obtained in Eqs. (51)
and (52) to evaluate the continuum-continuum transition
matrix element of Eq. (12). After some algebra it reads as

gm(p1,p2) = Q1(p1,p2)[e−iR1·(p1−p2) + e−iR2·(p1−p2)]

+Q2(p1,p2)[e−iR1·(p1+p2) + e−iR2·(p1+p2)], (53)

where

Q1(p1,p2) = i[D1(p2)C1(p1,p2) − D∗
1(p1)C2(p1,p2)],

(54)

Q2(p1,p2) = −i[D2(p2)C1(p1,p2) − D∗
2(p1)C2(p1,p2)],

(55)

and

C1(p1,p2) =
[

p1
(
3p2

1 − p2
2 + 2�2

)
(
p2

1 + �2
) 3

2
(
p2

2 − p2
1 + iε

)2

]
,

C2(p1,p2) =
[

p2
(
3p2

2 − p2
1 + 2�2

)
(
p2

2 + �2
) 3

2
(
p2

1 − p2
2 − iε

)2

]
. (56)

Equation (53) can be recast as:

gL(p1,p2) = gLL(p1,p2) + gLR(p1,p2)

and

gR(p1,p2) = gRR(p1,p2) + gRL(p1,p2)
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where

gLL(p1,p2) = Q1(p1,p2) e−iR1·(p1−p2),

gLR(p1,p2) = Q2(p1,p2)eiR1·(p1+p2),

gRR(p1,p2) = Q1(p1,p2)e−iR2·(p1+p2),

and

gRL(p1,p2) = Q2(p1,p2)eiR2·(p1−p2).

From these last equations we can identify all the contri-
butions, i.e., local, gLL/RR(p1,p2), and nonlocal and cross,
gLR/RL(p1,p2), respectively. After obtaining both the bound-
free and continuum-continuum transition matrix elements, it is
possible to compute Eqs. (15) and (20) to obtain the direct, the
rescattering, and the total photoelectron transition amplitudes.
The presented model is an alternative way to describe the
ATI process mediated by a strong laser pulse. Our two-center
molecular model is an extension to the one presented in
Ref. [50] and renders to the same atomic equations when R is
close to zero (see Appendix for more details and proofs).

We stress that the method is physically intuitive, and can be
understood on the basis of a quasiclassical picture, i.e., electron
trajectories. This is the main difference of our approach in
comparison to the numerical solution of the TDSE, whose
physical interpretation is, in spite of its accuracy, frequently
challenging. The main advantage of the proposed model is
that Eqs. (15) and (20) give a clear physical understanding of
the ATI process and provide rich and useful information about
both the laser field and the diatomic molecular target, which
are encoded into the complex transition amplitude b(p,t) =
b0(p,t) + b1(p,t). The exact analytical solutions of both the
direct and rescattering transition amplitudes are, however,
not trivial to obtain if no approximations are considered. In
particular, for the rescattering photoelectrons, the solution is
even more complex and depends, generally, of the laser electric
field shape.

IV. RESULTS AND DISCUSSION

Along this section we shall compare the outcomes of our
model for the ATI spectra emitted from a H2

+ system to the
exact numerical solution of the 3D-TDSE. A scan on different
internuclear distances of the ionization probability and the
whole momentum distribution along the polarization laser
and molecular orientation axis shows that our model works
reasonably well. Furthermore, split of contributions coming
from the left and right nuclei and local, cross, and nonlocal
rescattering processes help to distinguish which part of the
photoelectron spectra is relevant for each kind of event. The
molecular internuclear distance is retrieved probing that our
model is capable to capture the structural information encoded
on the photoelectron spectra.

Finally, experimental photoelectron spectra on the O2
+

molecule driven by a mid-IR source (3.1 μm) demonstrate that
our simplified model is able to render the main physics behind
the rescattering process in a more “complex” symmetric
diatomic molecule.

A. Comparison of SFA and TDSE models

The numerical integration for the photoelectron spectra
computation by means of Eqs. (15) and (20) has been
performed via a rectangular rule with particular emphasis on
the convergence of the results. As the final momentum distri-
bution, Eq. (25), is “locally” independent of the momentum
p, |b(p,t)|2 can be computed concurrently for a given set of
p values. We have optimized the calculation of the whole
transition amplitude |b(p,t)|2 by using the OPENMP parallel
package [59] and the MPI paradigm [60]. The final momentum
photoelectron distribution |b(p,t)|2 is computed both in a 1D
momentum line along pz, and in a 2D momentum plane
(py, pz). We shall compare these results with the numerical
solution of the TDSE. We fix the parameters of the nonlocal
potential to � = 1.0 and γ = 0.1 a.u. Such values describe the
potential energy surface of Fig. 1, which is in good agreement
with the expected energy dependency of the H2

+ molecular
system. We use in our simulations an ultrashort laser pulse with
central frequency ω0 = 0.057 a.u. (wavelength λ = 800 nm,
photon energy 1.55 eV), with a sin2 envelope shape with
Nc = 4 total cycles (this corresponds to a full-width at half-
maximum FWHM = 5.2 fs) and a CEP φ0 = 0 rad. The time
step is fixed to δt = 0.02 a.u., and the numerical integration
time window is t ∈ [0,tF], where tF = NcT0 ≈ 11 fs and
T0 = 2π/ω0 denote the final “detection” time and the cycle
period of the laser field, respectively.

In addition, we perform the numerical integration of the 3D-
TDSE by using the Crank-Nicolson algorithm in cylindrical
coordinates (ρ,z) where the polar angle ϕ is neglected. This
is well justified by considering the laser field is linearly
polarized along the molecular z axis and the fact that the
magnetic momentum electron-quantum number m remains
as a conserved quantity during the whole evolution of the
system. Thereby, the electronic Hamiltonian of our system

is Ĥ = p̂2
ρ

2 + p̂2
z

2 + V̂ (ρ,z) + zE(t). For the present numerical
solution of the TDSE, we have fixed the position grid step to
δρ = δz = 0.2 a.u., with a total number of points for the ρ axis
of Nρ = 6000 and the z axis of Nz = 12 000, respectively. The
ground state is computed via imaginary-time propagation with
a time step of δt = −0.02 i and the Coulomb potential for our
two-center molecule is given by V (ρ,z) = − 1√

ρ2+(z+R/2)2
−

1√
ρ2+(z−R/2)2

. The strong-field laser-molecule interaction is

simulated by evolving the electronic ground-state wave func-
tion in real time, with a time step of δt = 0.02 a.u., and
under the action of both the molecular potential and the
laser electric field. At the end of the laser pulse tF, when the
laser electric field is zero, we compute the final photoelectron
energy-momentum distribution |bTDSE(pρ,pz,tF)|2 by project-
ing the “free”-electron wave packet �c(ρ,z,tF) over plane
waves. The wave packet �c(ρ,z,tF) is calculated by smoothly
masking the bound states from the entire wave function
�(ρ,z,tF).

First, and in order to test if our model is capable to
capture the final photoelectron spectrum of the ATI processes,
we compare our SFA model to the numerical solution of
the 3D-TDSE for the simplified case of H2

+. Figure 2
depicts such comparison. In Fig. 2(a), we calculate a scan
of the ionization probability over a set of 15 interatomic
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FIG. 2. (a) Ionization probability (in logarithmic scale) as a function of the internuclear distance R calculated using the SFA (circle magenta)
and the TDSE (square light blue) for I0 = 4 × 1014 W cm−2. (b) Full transition amplitude |b(pz,tF)|2 as a function of the photoelectron final
momentum, calculated using the SFA model (red line) and ATI computed by the numerical solution of the TDSE (blue line) (see the text for
details).

distances. Note that by ionization probability the reader should
understand the final-time integral momentum distribution of
the whole transition probability amplitude, Eq. (25). Here,
we set the molecular axis parallel to the laser electric field
polarization. Those results show a reasonable agreement
between the SFA and TDSE models, particularly for larger
internuclear distances, when the details of the potential are not
important. In both calculations we can observe that for shorter
distances the ionization probability is strongly dependent on
the relative position of the atoms inside the molecule. The
ionization probability scales almost exponentially (note that
the scale is logarithmic) and increases rapidly, when the
atoms are close to each other, at R � 4 a.u. Both models
present the same trend, namely, a low-ionization probability
for shorter distances, followed by a rapid increasing, and a
sort of “stabilization” for larger internuclear distances. The
physical picture of this behavior is as follows: the electron
is tightly (loosely) bounded for small (larger) internuclear
distances. According to the Keldysh-Faisal-Reiss model, the
electrons have less probability to be ionized by tunneling effect
[51–53] for potentials with larger Ip, which of course in this
molecular case corresponds to small internuclear distances.
Note that we mean small or large internuclear distances R in
comparison to the equilibrium one R0(R0 = 2.0 a.u. for our H+

2
molecule). Furthermore, the same tendency of both the SFA
and the 3D-TDSE in the whole internuclear distances range
is observed, except a constant factor, which clearly indicates
the difference between the short-range (SFA) and long-range
(TDSE) potentials. Further, the ionization probability shows a
stabilization value (around 10−3 arb. units for both cases) from
which it remains constant regardless the value of R.

The previous comparison only describes the final photo-
electron spectra dependence on the internuclear distance. A
better scenario to evaluate the quality of our model, however,
can be employed, namely, a one-to-one analysis of the ATI
momentum distributions. The aim is to confirm if our model
is able to capture both the interference nature of the ATI
spectra for molecules and the underlying electron dynamics.
In Fig. 2(b), we show results of the photoelectron momentum
spectra computed by our quasiclassical model and the TDSE
along the momentum line p = (0,0,pz) at R = 3.8 a.u. As in
Fig. 2(a), we observe an excellent agreement between both

models. It means that our quasiclassical approach is able
to provide a reasonable good description of the whole ATI
processes. We can argue that the two models are describing
the same physics: stronger oscillations for small values of
momentum followed by a rapid decrease of the ATI yield
(at |pz| � 2.5 a.u.), a plateau, where the amplitude remains
almost constant, and both approaches end up with an abrupt
cutoff around the same value of |pz| � 4 a.u.

One of the main advantages of our SFA model is the
possibility to disentangle the different contributions to the final
ATI spectra (for details, see previous sections). In Fig. 3, we
show the different contributions, in logarithmic scale, as a
function of the ponderomotive energy Up for electrons with
negative momenta along the pz direction and for a fixed
value of R, close to the equilibrium distance R0 = 2.0 a.u.
Figure 3(a) shows the main contributions to the full final
photoelectron spectra: the total |b(p,t)|2 [Eq. (25)], the direct
|b0(p,t)|2 [Eq. (17)], and the rescattering |b1(p,t)|2 [Eq. (22)]
terms, respectively. In the same way in Fig. 3(b) we plot
the two terms |b0,L(p,t)|2 and |b0,R(p,t)|2 which contribute
to the direct process. The terms that play an important
role in the rescattering process |blocal(p,t)|2 [Eq. (23)] and
|bnonlocal+cross(p,t)|2 [Eq. (24)] are displayed in Fig. 3(c). As
we can infer from the latter figure, the main contribution to
the rescattering term is from the local processes (see Sec. II).
Finally, in Fig. 3(d) we show the two processes contributing
to the local one. For this calculation we have considered the
molecule aligned in the same direction as the laser electric field
polarization, i.e., the internuclear distance vector has only a z

component R = (0,0,Rz).
Our second clear observation in Fig. 3 is that each

term contributes to different regions of the photoelectron
spectra, i.e., for electron energies Ep � 4Up the direct term
|b0(p,t)|2 dominates the spectrum and, on the contrary, it
is the rescattering term |b1(p,t)|2 the one that prevails in
the high-energy electron region. The photoelectron spectra
show the expected two cutoffs defined by 2Up and 10Up

(black dashed lines) which are presented in the atomic and
molecular ATI process [21,49]. As a consequence of this
last observation we can safely argue that our approach is a
reliable alternative for the calculation of photoelectron spectra
in molecules. For the direct process, Fig. 3(b), we observe that
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NOSLEN SUÁREZ et al. PHYSICAL REVIEW A 94, 043423 (2016)

FIG. 3. Terms contributions to the photoelectron spectra (in logarithmic scale) as a function of the ratio between electron energy and
ponderomotive energy Up calculated by using our quasiclassical SFA model for R = 2.6 a.u. The peak laser intensity used in this calculation
is set to I0 = 4 × 1014 W cm−2. (a) Total, direct, and rescattering terms; (b) direct, direct left, and direct right terms; (c) rescattering, local, and
nonlocal+cross terms; (d) local, local right, and local left terms (see the text for more details).

both the direct left and direct right terms contribute within
a comparable energy range. In addition, both terms show
the same behavior, having exactly the same energy for the
interference minimum: the coherent sum of these two terms,
the total direct contribution (solid blue line), has a deeper
minimum value around 1.0 a.u. In Fig. 3(c), we observe
that the local term (green dotted line) contributes mostly in
the low-energy region of the ATI spectrum. Furthermore, the
nonlocal and cross terms do not contribute for electron energies
Ep � 6Up. It is also demonstrated that the contribution of
|bnonlocal+cross(p,t)|2 becomes even less important for larger
internuclear distances as it is expected. Finally, in Fig. 3(d) we
show that the local right and local left contributions have the
same shape and contribute to the whole energy range.

Having in mind a deeper analysis of the ATI processes,
we extend our numerical calculations from a 1D momentum
line (Fig. 3) to a 2D momentum plane. The results of our
computations are shown in Fig. 4. Here, we depict the different
contributions using our analytical quasiclassical ATI model.
For this calculation we use a laser field with a peak intensity
of I0 = 1 × 1014 W cm−2 and the internuclear distance is set
to R = 4.2 a.u.

The 2D calculations resemble the features of the 1D ones:
the low momenta region of the spectrum is dominated by
the direct process [Fig. 4(a)], meanwhile the rescattering
term, dominated by the local processes, is important for large
electron momenta [Fig. 4(c)]. Furthermore, the nonlocal and
cross [Fig. 4(b)] processes can be neglected when compared to
the local processes. In all the figures we clearly distinguish the

position of a deep minimum about an electron momentum
p = 0.74 a.u. (the corresponding energy is E = p2/2 =
1.23Up) and the well-known asymmetric rings. Furthermore,
we observe a symmetry of the structures about the py axis
for all the terms and a left-right asymmetric for electrons
with pz < 0 or pz > 0. As was already mentioned, one of the
advantages of our diatomic SFA model is that it allows us to
account for the individual contributions to the ATI spectrum. In
addition, aside from being analytically formulated, our model
is able to switch on and off each of the ionization mechanisms
which build up the final total and experimentally accessible
ATI momentum spectrum |b(pz,py,tF)|2.

As was mentioned at the outset, one of the main concerns
with our model is to find a way to retrieve structural
information of the molecular system starting from the ATI
spectra. In the following we perform a detailed analysis of the
interference pattern for different internuclear distances. Here,
the well-known two-slit interference formula p = (2n+1)π

R cos θ
[40]

is used in order to extract the internuclear distance from the
interference pattern present in the photoelectron spectra.

In Fig. 5, we show the photoelectron distribution or ATI
spectra [|b(p,t)|2], in logarithmic scale, as a function of the
final electron momentum for different internuclear distances.
Figure 5(a) depicts the ATI spectra for a large value of
the internuclear distance: R = 14.2 a.u., in order to see a
considerable number of interference minima. Furthermore, the
ATI spectra in Fig. 5(b) are computed varying the internuclear
distance R (see the panel labels for the values). The dashed
black lines represent the expected minima calculated by
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FIG. 4. Different contributions to the photoelectron spectra for a 2D momentum plane (pz,py). ATI photoelectron spectra (in logarithmic
scale) as a function of the momentum (pz,py) computed by our quasiclassical model for each term. (a) Direct term, (b) nonlocal and cross
terms, (c) local term, and (d) total contribution. We use a laser field with a peak intensity of I0 = 1 × 1014 W cm−2 and the internuclear distance
is set to R = 4.2 a.u.

applying the two-slit interference formula. As it is observed,
our model is able to reproduce all the interference minima and
this is a clear evidence that the photoelectron spectra contains
structural information of the molecular system.

B. Theory versus experimental results

In order to conclude our analysis and as an additional
validation of our model, we compare the results computed

using the SFA approach with experimental data obtained at
ICFO for O2

+ molecules [61]. The experimental data were
taken for randomly oriented molecules and the laser pulse was
CEP randomized, i.e., an average of the theoretical results over
both the molecular orientations and different CEP values is
required for an accurate theoretical description. The reported
laser peak intensity and wavelength are I0 = 8.5 × 1013 W
cm−2 and λ = 3.1 μm, respectively. The laser pulse has a

FIG. 5. ATI spectra calculated using the SFA model for an intensity value of I0 = 4 × 1014 W cm−2, as a function of the momentum.
(a) Photoelectron spectra computed for R = 14.2 a.u.; (b) the same as (a) but for an internuclear range R = [2.6, 12.2] a.u. The vertical lines
in both panels indicate the position of the interference minima (see the text for details).
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FIG. 6. Photoelectron spectra for the O2
+ molecule. (a) ATI

spectra calculated using the SFA model; (b) experimental ATI spectra
obtained in the attosecond and ultrafast optics group at ICFO [61].
In the theoretical calculations, the laser peak intensity, wavelength,
and total time duration are I0 = 8.5 × 1013 W cm−2, λ = 3.1 μm,
and 52 fs (5 optical cycles), respectively. The dynamic range of
the experimental data as shown here was adapted to the theoretical
simulation for an adequate comparison. In addition, the internuclear
distance is set to R = 2.21 a.u. (1.17 Å) (see the text for details).

duration of 75 fs full-width at half-maximum at a repetition
rate of 160 kHz. Furthermore, the O–O bond length is retrieved
from the photoelectron spectra and set to a value R = 1.17 Å
(2.21 a.u.) [61]. This value of R corresponds to an ionization
potential energy of Ip = 0.93 a.u and, in order to reproduce
this value, in our model we set the parameters of the nonlocal
potential � = 0.75 and γ = 0.097 a.u. With these values we
obtain a very good fit to the dissociation energy Ed = 18.5 eV,
and the equilibrium internuclear distance R = 1.116 Å (2.11
a.u.), reported in the literature [62].

In order to accurately compare with the experimental
measurements, the calculated ATI spectra are averaged over
the orientation of the molecule with respect to the laser-
polarization axis, using eight values of the orientation angle
θ in the range [0◦–360◦]. In addition, an average over the
CEP values, and for the same orientation range, is consid-
ered. For symmetry considerations, only 16 different sets of
photoelectron spectra are computed. For each set a total of
8192 points in the (pz,py) plane are used. Around 150 000
CPU hours were employed for the whole ATI computation.
For the comparison experiment versus theory, we employ the
same laser peak intensity (no focal averaging is considered in
the calculations) and the internuclear distance reported in the
experiment for each calculation. The result of this comparison
is depicted in Fig. 6.

In Fig. 6(a) we show the calculated total ionization
probability |b(p,t)|2 [Eq. (25)] and in Fig. 6(b) we present
the experimental data. In order to make an easier comparison,

the theoretical calculations are multiplied by a constant factor.
The plots show that our model is in very good agreement with
the experimental measurements. In fact, both panels present
the same color scales, covering six orders of magnitude. Both
the simulated and measured data exhibit the same regions of
signal, with comparable amplitudes for all the longitudinal
momentum. In addition, a similar dome structure, around
pz = [−3; 3] and py = [0; 0.7], is observed in both pictures.
Note that the interference fringes are not observed either in the
experimental or in the theoretical calculations. Thereby, the
different recollision scenarios in terms of electron trajectories
are washed out due to both the molecular orientation and CEP
averages. We could trace out the theory versus experiment
discrepancies considering that (i) our SFA model neglects
Coulomb effects, which could be important in the low-energy
region of the ATI spectrum; (ii) we are working within the SAE,
i.e., our approach does not take into account any multielectron
contributions, that could play a role in the photoelectron
distributions, particularly for multielectronic molecules; (iii)
we are not including a laser intensity focal average, i.e., in our
calculations only one laser intensity is used in the simulations,
contrarily with the experiment, where the atoms or molecules
in the interaction region feel different laser intensities, due the
intensity spatial distribution of the laser beam.

V. CONCLUSIONS AND OUTLOOK

We have presented a simple and analytical model to describe
the above-threshold ionization (ATI) process from a diatomic
molecule while an ultraintense infrared laser field drives the
system. Our approach is based on the analytical solution of the
time-dependent Schrödinger equation by means of considering
the bound and scattering states as a composition of two states
depending on the relative position of the atoms inside of
the molecule, within the framework of both the SFA and
SAE approximations. Further, a systematic and analytical way
for computing both the bound-free dipole with respect to
each center and the rescattering transition matrix elements is
developed. This is the advantage of our theoretical model with
respect to those used before since it gives a solution free of any
artificial and nonphysical effects. In fact, a correct asymptotic
behavior for R → ∞ and yet to R → 0 is obtained. In addition,
the rescattering transition amplitude is written as a sum of
components, obtained from equations which describe each
rescattering process (local, nonlocal, and cross) independently.

Our model is an extension and generalization of previous
works for atomic systems. It shows that each component
contributes, in a different way, to a different region of the
ATI spectrum. The results indicate, as expected, that the
main contribution to the rescattering transition amplitude
corresponds to local events, with the cross and nonlocal
terms playing almost no role, when the internuclear distance
becomes much larger than the equilibrium one. We should
stress, however, that our model is by no means a simple
correction to the well-established SFA. Here, we do predict
physical processes which were not previously considered, i.e.,
those modeled by the nonlocal and cross terms, and we do
provide methods to identify their contributions, which, at the
end can be quite significant for small internuclear distances
compared to the equilibrium one. On top of that, our version of
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SFA compares very well with the TDSE and the experimental
data, which provides an even stringent argument in favor of
our model.

In this paper, we used our model for a proof-of-principle
that photoelectron spectra contain structural information about
the target system. We employ it to retrieve, satisfactorily,
the internuclear distance of a H2

+ molecule using a simple
interference equation. The magnitude of the ionization prob-
ability for different values of R was calculated and compared
with the TDSE outcomes, and the results present a very
good agreement. Both models exhibit the similar behavior:
the ionization probability shows the same tendencies, namely,
it starts to increase linearly with R reaching a saturation value
from which it remains constant. The comparison of TDSE with
SFA, as well as the good agreement between the experiment
and the simulations, validates our theoretical model and allows
us to believe that extensions to more complicated systems,
such as polyatomic molecules with more than three centers,
are perfectly feasible. We hope that our work paves the way
toward fascinating studies of structural information and charge
migrations in the fragmentation processes in large molecules
and other complex targets.
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APPENDIX: TREATMENT OF THE ASYMPTOTIC BEHAVIOR WHEN R → 0

In this appendix we prove, analytically, that our model is capable to satisfy the asymptotic limit when the separation between
the two atoms of the molecule is close to zero. For this condition, our model describes a single atom that satisfies the equations
previously presented in Ref. [50]. In this sense our theoretical formulation for a diatomic molecule remains compatible with the
atomic model.

1. Bound states and bound-continuum transition matrix element

When the internuclear distance is close to zero, the bound state of our diatomic molecule is equal to the bound state of an
atom, limR→0 �0M(p) = �0(p). The wave function describing the bound state for the atomic system [50] reads as

�0(p) = N√
(p2 + �2)

(
p2

2 + Ip

) , (A1)

where N = [
√

2Ip(�+
√

2Ip)
2

4π2 ]
1/2

is the normalization constant. In order to perform the limit R → 0 for the molecular bound state,

we are going to use Eq. (37). If we write it as an explicit function of R and taking the limit we have

lim
R→0

�0M(p) = lim
R→0

{
M e

iR
2 ·p√

(p2 + �2)
(

p2

2 + Ip

) + M e− iR
2 ·p√

(p2 + �2)
(

p2

2 + Ip

)
}

= limR→0 2M√
(p2 + �2)

(
p2

2 + Ip

) . (A2)

On the other hand, the normalization constant for the molecular bound state is given by Eq. (36) and its limit is

lim
R→0

2M = lim
R→0

1(
2π2

(2Ip−�2)2

{
2 e−R�

R
− 2 e

−R
√

2Ip

R

[ 2
√

2Ip+R(2Ip−�2)

2
√

2Ip

] + (
√

2Ip−�)2√
2Ip

})1/2

= lim
R→0

1{
2π2

(2Ip−�2)2

[
2 (−� + √

2Ip) − 2Ip−�2√
2Ip

+ (
√

2Ip−�)2√
2Ip

]}1/2

=
[√

2Ip(
√

2Ip + �)2

4π2

]1/2

= N , (A3)

from where the relation limR→0 2M = N is demonstrated.
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For the bound-continuum transition matrix element, we follow the same analysis. By taking the asymptotic limit as

lim
R→0

dm(p0) = lim
R→0

{−2i MA(p0)[e
iR
2 ·p0 + e− iR

2 ·p0 ]} = i p0

(
p2

0 + �2
) + (p2

0
2 + Ip

)
(
p2

0 + �2
) 3

2
(p2

0
2 + Ip

)2
lim
R→0

2M, (A4)

and using Eq. (A3), we obtain

lim
R→0

dm(p0) = i p0

(
p2

0 + �2
) + (p2

0
2 + Ip

)
(
p2

0 + �2
) 3

2
(p2

0
2 + Ip

)2
N , (A5)

which is exactly the bound-continuum transition matrix element for the atomic system, i.e.,

d(p0) = iNp0

(
p2

0 + �2
) + (p2

0
2 + Ip

)
(
p2

0 + �2
) 3

2
(p2

0
2 + Ip

)2
. (A6)

2. Scattering states and continuum-continuum transition matrix element

For the scattering states, we will prove that limR→0 �Mp0 (p) = �p0 (p). For the atomic system, the scattering state obeys the
equation

�p0 (p) = δ(p − p0) + B(p0)√
p2 + �2

(
p2

0 − p2 + iε
) , (A7)

where B(p0) = − 2γ

(p2
0+�2)

1
2

(1 − 4π2iγ
|p0|+i� )

−1

is the normalization constant.

From Eqs. (41) and (46), the asymptotic limit for the molecular system reads as

lim
R→0

�Mp0 (p) = δ(p − p0) + lim
R→0

{D1(p0)[e− iR
2 ·(p−p0) + e

iR
2 ·(p−p0)]√

p2 + �2
(
p2

0 − p2 + iε
) − D2(p0)

[
e− iR

2 ·(p+p0) + e
iR
2 ·(p+p0)

]
√

p2 + �2
(
p2

0 − p2 + iε
) }

= δ(p − p0) + 2 limR→0{D1(p0) − D2(p0)}√
p2 + �2

(
p2

0 − p2 + iε
) . (A8)

Working with the above equation we are going to prove that

B(p0) = 2 lim
R→0

{D1(p0) − D2(p0)}. (A9)

Substituting the values of the constants, we have

B(p0) = 2γ√
p2

0 + �2
lim
R→0

{
1 + I1

I 2
2 − [1 + I1]2

− I2

I 2
2 − [1 + I1]2

}
. (A10)

By taking the limit R → 0 of I2 and using Eq. (49),

lim
R→0

= −2π2 γ

R
(
p2

0 + �2 + iε
) [eiR

√
p2

0+iε − e−R �] = −2π2 γ

� − i

√∣∣p2
0 + i ε

∣∣ , (A11)

we find that limR→0 I2 = I1. From this last result we can write

B(p0) = 2γ√
p2

0 + �2

[
1

I 2
1 − [1 + I1]2

]
= −2γ√

p2
0 + �2

[1 + 2I1]−1 = −2γ√
p2

0 + �2

(
1 − 4π2iγ

|p0| + i�

)−1

, (A12)

which is identical to Eq. (33) of Ref. [50].
Concluding the analysis of the diatomic molecular system when R → 0 we proceed to demonstrate that the continuum-

continuum molecular matrix element is equal to the continuum-continuum atomic matrix element. The dipole matrix element for
the atomic system can be written as

g(p1,p2) = iB(p2)p1

{
3p2

1 − p2
2 + 2�2(

p2
1 + �2

) 3
2
(
p2

1 − p2
2 + iε

)2

}
− iB∗(p1)p2

{
3p2

2 − p2
1 + 2�2(

p2
2 + �2

) 3
2
(
p2

1 − p2
2 + iε

)2

}
. (A13)
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Taking the limit in Eq. (53),

lim
R→0

gm(p1,p2) = 2 lim
R→0

[Q1(p1,p2) + Q2(p1,p2)]

= iC1(p1,p2) 2 lim
R→0

[
1 + I1

I 2
2 − [1 + I1]2

− I2

I 2
2 − [1 + I1]2

]
p2

− iC2(p1,p2) 2 lim
R→0

[
1 + I1

I 2
2 − [1 + I1]2

− I2

I 2
2 − [1 + I1]2

]∗

p1

, (A14)

where

lim
R→0

gm(p1,p2) = i C1(p1,p2)

{
2γ√
p2

2+�2
limR→0

[
1

I 2
1 −[1+I1]2

]
p2

}
− i C2(p1,p2)

{
2γ√
p2

1+�2
limR→0

[
1

I 2
1 −[1+I1]2

]∗

p1

}
. (A15)

By following the same procedure as in Eq. (A12), we finally obtain that

B(p2) =
{

2γ√
p2

2 + �2
lim
R→0

[
1

I 2
1 − [1 + I1]2

]
p2

}
(A16)

and

B∗(p1) =
{

2γ√
p2

1 + �2
lim
R→0

[
1

I 2
1 − [1 + I1]2

]∗

p1

}
. (A17)

Grouping conveniently the above equations we get

lim
R→0

gm(p1,p2) = iB(p2)p1

{
3p2

1 − p2
2 + 2�2 − iε(

p2
1 + �2

) 3
2
(
p2

1 − p2
2 + iε

)2

}
− iB∗(p1)p2

{
3p2

2 − p2
1 + 2�2 + iε(

p2
2 + �2

) 3
2
(
p2

1 − p2
2 + iε

)2

}
, (A18)

which is nothing else than the atomic transition matrix continuum-continuum element [see Eq. (37) of Ref. [50]].
We have indeed demonstrated, with the above analysis and relations, that the theoretical model presented in this contribution

configures a general model which not only describes the ATI process in diatomic molecules, but is also able, when the appropriate
limits are taken, to model the atomic ATI.
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043423-17

https://doi.org/10.1103/PhysRevLett.71.1994
https://doi.org/10.1103/PhysRevLett.71.1994
https://doi.org/10.1103/PhysRevLett.71.1994
https://doi.org/10.1103/PhysRevLett.71.1994
https://doi.org/10.1126/science.1123904
https://doi.org/10.1126/science.1123904
https://doi.org/10.1126/science.1123904
https://doi.org/10.1126/science.1123904
https://doi.org/10.1103/PhysRevLett.100.143903
https://doi.org/10.1103/PhysRevLett.100.143903
https://doi.org/10.1103/PhysRevLett.100.143903
https://doi.org/10.1103/PhysRevLett.100.143903
https://doi.org/10.1038/nature09185
https://doi.org/10.1038/nature09185
https://doi.org/10.1038/nature09185
https://doi.org/10.1038/nature09185
https://doi.org/10.1016/0009-2614(96)00786-5
https://doi.org/10.1016/0009-2614(96)00786-5
https://doi.org/10.1016/0009-2614(96)00786-5
https://doi.org/10.1016/0009-2614(96)00786-5
https://doi.org/10.1088/0953-4075/40/16/R01
https://doi.org/10.1088/0953-4075/40/16/R01
https://doi.org/10.1088/0953-4075/40/16/R01
https://doi.org/10.1088/0953-4075/40/16/R01
https://doi.org/10.1038/nphys3010
https://doi.org/10.1038/nphys3010
https://doi.org/10.1038/nphys3010
https://doi.org/10.1038/nphys3010
https://doi.org/10.1038/nature03183
https://doi.org/10.1038/nature03183
https://doi.org/10.1038/nature03183
https://doi.org/10.1038/nature03183
https://doi.org/10.1103/PhysRevLett.97.123003
https://doi.org/10.1103/PhysRevLett.97.123003
https://doi.org/10.1103/PhysRevLett.97.123003
https://doi.org/10.1103/PhysRevLett.97.123003
https://doi.org/10.1103/PhysRevA.49.2117
https://doi.org/10.1103/PhysRevA.49.2117
https://doi.org/10.1103/PhysRevA.49.2117
https://doi.org/10.1103/PhysRevA.49.2117
https://doi.org/10.1103/PhysRevLett.68.3535
https://doi.org/10.1103/PhysRevLett.68.3535
https://doi.org/10.1103/PhysRevLett.68.3535
https://doi.org/10.1103/PhysRevLett.68.3535
https://doi.org/10.1038/nature08253
https://doi.org/10.1038/nature08253
https://doi.org/10.1038/nature08253
https://doi.org/10.1038/nature08253
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