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Modern x-ray sources enable the production of coherent x-ray pulses with a pulse duration in the same order as
the characteristic lifetimes of core-hole states of atoms and molecules. These pulses enable the manipulation of
the core-hole population during Auger-decay processes, modifying the line shape of the electron spectra. In this
work, we present a theoretical model to study those effects in neon. We identify effects in the Auger-electron—
photoelectron coincidence spectrum due to the duration and intensity of the pulses. The normal Auger line shape
is recovered in Auger-electron spectra integrated over all photoelectron energies.

DOI: 10.1103/PhysRevA.94.043421

I. INTRODUCTION

In recent years, the advent of novel laser-based and
accelerator-based sources have enabled the generation of very
short (few femtoseconds) x-ray pulses [1-7]. The absorption
of an x-ray photon has a universal response in any phys-
ical system—it predominately produces a core-hole state.
Core-hole states usually decay through electron relaxation
transitions, such as fluorescence and Auger processes, with
lifetimes of hundreds of attoseconds to a few femtoseconds.
Interestingly, the aforementioned x-ray sources produce pulses
with pulse lengths that can be shorter than, or comparable to,
the characteristic lifetime of core-hole states.

Short x-ray pulses enable promising applications in time-
resolved experiments. In a common pump-probe experiment,
the pump pulse excites the system while the probe pulse,
delayed by a controlled specific time, interacts with the system
and allows one to track the pump-induced dynamics. Short
x-ray pulses permit the extension of time-resolved x-ray
studies into the femtosecond regime and the possibility to
study core-hole ultrafast dynamics such as fundamental elec-
tron relaxations processes in atoms, molecules, clusters, and
nanoparticles. For example, few-femtosecond time-resolved
experiments are available to study x-ray-induced phenomena
by using two ultrashort (~8 fs) x-ray pulses [8,9]. Here, at-
tosecond and femtosecond x-ray pulses may provide additional
information about the induced dynamics, as has recently been
demonstrated in a few experiments at the Linac Coherent Light
Source at the Stanford Linear Accelerator Center for molecules
and clusters [10-13]. It is then necessary to develop theoretical
approaches to explore x-ray interactions with matter at time
scales comparable to the core-hole lifetimes.

Short x-ray pulses also enable a particular control of
Auger processes as one can tailor the population of the
core-hole states while Auger decay occurs. That control causes
a fingerprint in the Auger spectrum. Previous studies have
demonstrated how such short pulses may affect resonant Auger
spectra with a single high-intensity x-ray pulse [14-19], a
single x-ray pulse with an optical field [20-24], and two-color
x-ray pulses [25,26].

The normal (nonresonant) Auger process is usually de-
scribed by a two-step model in which core-hole ionization
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and Auger decay are treated independently [27]. In this work
we have developed a theoretical model to treat normal Auger
decay in a time-dependent framework; that is, the Auger
decay proceeds at the same time that the pulse is interacting
with the system and inducing the ionization. X-ray pulses are
considered coherent at this time scale, and this has effects in the
Xx-ray—matter interactions. By using this model we reveal two
main effects in the Auger-electron—photoelectron coincidence
caused by such short pulses, while those effects are hidden
when the noncoincidence Auger spectrum is analyzed. The
first effect is due to the time duration of the pulse. As the
pulse length shortens, the Auger-electron—photoelectron peaks
broaden. For pulses much shorter than the core-hole lifetime,
the line shapes of the peaks converge to a Lorentzian profile
with a broadening given by the natural width of the core-hole
state. We discuss the relation of this effect to the known
bandwidth effects in resonant Auger decay. The second effect
is due to the intensity of the pulse, related to the depletion
of the ground state while the core-hole state is decaying by
Auger processes. In this work, the x-ray pulse, although quite
intense, is not intense enough to induce multiphoton effects,
which have known effects on atomic systems [28-30]. The
goal of the present study is to explore only the effects due to a
fast, coherent control of the core-hole state rather than entering
in a multiphoton regime in which the system is ionized several
times.

This manuscript is divided as follows. In Sec. II we describe
the theoretical model. In Sec. III we present our main results
showing the effects on the electron-coincidence spectra due to
the time duration as well as the intensity of the pulse. Finally,
in Sec. IV we present the conclusions and the outlook of our
findings.

II. TIME-DEPENDENT MODEL FOR AUGER DECAY

In this section we describe a time-dependent model to
study coherent processes during Auger processes in an atomic
system. The goal of this model is to allow us to treat the
electron correlations that describe the Auger decay and the
ionization of the x rays in very short and comparable time
scales. This model is similar to those used in previous works
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to study resonant Auger decay process [14,21,22]. First, we
assume that the dynamics of the system will be restricted to a
small Hilbert space by using the ansatz

(@) = bo®|0) + Y be(t)lesi)

+ ) D beeii(Dleeas i), )

&&q 1j

where by stands for the amplitude of the ground state, b,
for the core-excited states after x-ray ionization, and by, ;;;
for the final states after Auger decay. In order to construct
the Hamiltonian of the system and derive the corresponding
time-dependent Schrodinger equation, we need to choose a
many-body theoretical framework for our basis. Although our
time-dependent model can be extended to any framework, we
limit ourselves to a Hartree-Fock-based model.

In the Hartree-Fock description the ground state is written
as

10) = {a}) = {Pa(D)Pp(2) - - - Pu(N)}), 2

where the curly brackets refer to a Slater determinant, i.e., to
all possible permutations (with the proper sign) among the spin
orbitals ®,,. In a second quantization notation, the one-electron
and two-electron excitation can be written as

lesi) = ala;|{a}), 3)

legqsij) = alal aja;|{a}). 4)

Hence, b,; stands for excited states that differ from one
orbital with respect to the ground state. In particular, the spin
orbital ®; is replaced by the continuum orbital ®,. Similarly,
the amplitudes of the final states after Auger decay are given
by b,.ij, in which two orbitals, ®; and ®;, are substituted
by two continuum orbitals, &, and &, , representing the
photoelectron and the Auger electron. In general, the notation
ij refers to bound states, while e¢, refers to continuum states.
The sums over continuum states contain both integrals of the
energy variables and sums over discrete quantum numbers
such as angular momenta and spin.

The Hamiltonian H of the atomic system can be written as
the sum of the independent-particle effective Hamiltonian I:Ieff
plus a residual term V,,, which is a potential that quantifies the
departure from the independent-particle picture. Considering
also the coupling with the external electric field of the x rays,
V;, the Schrodinger equation is given by

i%llﬂ(f)) = [Heir + Va + ViOIY (1)) 5)

Including the ansatz given by Eq. (1) into the Schrodinger
equation (5), we can derive the equations of motion (EOM)
for the amplitudes by, b,;; and b, .;; (see Appendix A). The
obtained EOMs are still difficult to solve from the numerical
point of view. Within the so-called adiabatic approximation,
sometimes also referred to as local approximation [31,32],
those equations can be further reduced and be easily solved
numerically. The adiabatic approximation is well justified in
Auger processes, in which the electron-correlation couplings
responsible for the Auger decay do not significantly change
within the wide range of the Auger-electron energies. Within
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this approximation, and also the rotating-wave approximation,
the dominant terms of the EOM are reduced to
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The obtained EOM are easy to interpret. The energies of
the ground state, the core-excited states, and the final states are
givenby Eo, E;, and E,,_;;;, respectively. The Rabi frequency
of the pulse is given by 2(¢), the frequency of the pulse is given
by w, and the dipole moments between the ground state and
core-excited states are given by (0|V;|e;i), where V; stands
for the electric dipole moment —} . g; r; - s, where s is the
polarization direction. The ionization rate of the ground state
is related to the term I';(¢), which depends on the envelope
(intensity) of the pulse. The Auger transitions are given by the
couplings (&;i|V,|e"e/;i” j”). The decay of the core-excited
state is related to the term I'; ;, which is the sum of all different
Auger transitions allowed in the system.

The two-electron coincidence measurements, i.e., the mea-
surement of the photoelectron and the Auger electron in
coincidence, are given by

P(e.gq) = 1im D bee,ij (DI, ™

In the previous formula, although it is not written explicitly,
we consider also the sum over the other quantum numbers of
the photoelectron and the Auger electron. The photoelectron
spectrum and the Auger spectrum are given then by

Y Peca), ®)
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respectively.

In general, Eqgs. (6) do not have closed-analytical solutions
and we need to solve numerically the coupled differential
equations with Runge-Kutta, Crank-Nicolson, or a similar
solver. However, there is a particular case, when the x-ray pulse
is considered to have an ideal square envelope profile, in which
an analytical solution can be easily derived. It is informative
to assume the square pulse approximation to understand the
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origins of the main effects due to pulse duration and intensity.
See Appendix B for more details.

Assuming that the duration of the square pulse is given by
T, the amplitude for the final states can be written as

B ey (O = [0 Y (e | Vale: i) (e:117110)
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The factors of (10) can be interpreted to gain insight into
the physical process. The first two factors are related to the
ionization of the ground state and the core-hole decay into
a particular final state. The third factor is a sinc function,
related to the bandwidth of the pulse. The fourth factor is a
Lorentzian function, related with the decay of the core-hole
state. Because the pulse is chosen to have a temporal square
profile, the Fourier transform has a sinc shape profile. Note
that the ionization rate of the ground state is included in this
function. We use Eq. (10) to understand some of the effects we
discuss in the next section. In particular, it is worth noting that
if we consider that the ionization of the ground state is small
and the pulse is very long then the sinc function becomes a
Dirac delta function, and then we recover the normal line shape
that we find in synchrotron experiments as we discuss in the
following. The derived formula is similar to previous formulas
for normal Auger spectra (see, for example, Refs. [33—35] and
references therein). The novelty of our approach is the explicit
inclusion of the bandwidth effects and the depletion of the
ground state described by the sinc function.

III. RESULTS

In this section we present the effects on the photoelectron
and the Auger-electron spectra due to the pulse length and
intensity of an x-ray pulse. We expect those effects to be
significant when the pulse length of the pulse is comparable
to the lifetime of the core-hole state or when the intensity of
the pulse is strong enough to induce depletion of the ground
state in times that are also comparable with the core-hole
lifetime.

In our numerical simulations, solving the EOM given by
Eq. (6), we consider a Gaussian profile to model the x-ray
pulse. For the sake of clarity and of understanding the main
effects, we compare those numerical results with the analytical
formula (10) for the square pulse. In our simulations we focus
on the Ne atom. In order to calculate the necessary electric
dipole and Auger transitions, we use a K-matrix approach to
calculate the continuum orbitals [36,37]. The bound states are
expressed in the localized Pople’s Gaussian basis set 6-311G.
A Gaussian basis set is used so it will be possible to extend the
present model to molecules by using a multicenter grid [37].
The photon energy of the x-ray pulses is 1000 eV, well above
the ionization threshold of the 1s orbital of Ne (experimentally
it is 870.17 eV) [38]. In our numerical simulations, the
K -shell ionization threshold is found to be 892 eV, around
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FIG. 1. Auger spectrum for a neon atom due to a 10-fs,
10" W/cm? x-ray pulse. The three different peaks come from
different Auger-decay pathways into the final states 2572, 2s~12p~!,
and 2p~2.

22 eV higher than the experimental value. This deviation
results from neglecting orbital relaxation (if we consider
relaxation, we obtain 869.9 eV). The ionization cross section
at 1000 eV is calculated to be around 0.12 Mb. The core-hole
lifetime is calculated to be 0.1192 eV, while the experimental
value is around 0.27 eV [39]. This deviation is also due to
relaxation; if we consider relaxation we obtain 0.27 eV. Those
deviations are however not relevant for the time-dependent
effects that we discuss in the next sections, which are
reflected in the line shape of the Auger-electron—photoelectron
coincidence spectra and not in the position or height of the
peaks. Solving the EOM (6) and obtaining the amplitudes
of the final states b, ;;(t) for times long after the x-ray
absorption and core-hole decay, we obtain the Auger spectrum,
using Eq. (9), shown in Fig. 1. The Auger spectra show three
prominent peaks; the first peak involves transitions with the 2s
electrons, the second peak involves transitions with the 2s and
2 p electrons, and the third peak involves transitions with the 2 p
electrons.

In the next section we discuss the effects on the photoelec-
tron and Auger spectra when the pulse length of the pulses are
comparable with the lifetimes of core-hole states. Then, in the
following section, we discuss the effects that arise purely from
the intensity of the x rays.

A. Pulse duration effects

In this section we explore the effects on the electron spectra
when the x-ray pulses have pulse lengths comparable to the
lifetime of the core-hole state. We focus our discussion on the
first Auger peak centered around 787 eV, with the 2s? final
state, but the effects are also observed in the other peaks of the
spectra.

We consider three pulse lengths that differ from the
calculated 8.3 fs core-hole lifetime: 0.1, 1, and 10 fs. We
begin by considering low intensities in which the ground state
is barely depleted (around 0.01% excitation). For the three
previous pulse lengths we consider 10'> W/cm?, 10'* W/cm?,
and 10" W/cm?, respectively, to maintain the ionization of
the ground-state constant. In Fig. 2 we show the first peak
of the Auger spectrum centered around 787 eV, and it shows
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FIG. 2. Auger spectrum centered at 787 eV for three x-ray pulses
with 0.1, 1 and 10 fs pulse length. The three Auger spectra overlap,
and show no dependence on the pulse length. The intensity of the
pulses is 10"> W/cm?. The K-shell ionization probability is small,
less than 0.01%.

no dependence on the pulse length. However, a dependence
on pulse duration emerges when we consider the Auger-
electron—photoelectron coincidence spectrum. We select a
photoelectron energy of 208.5 eV with an energy resolution
of 50 meV. Figure 3(a) shows the Auger spectrum for the
selected-photoelectron energy that has a clear dependence on
the duration of the pulse. For the sake of comparison, all
the peaks shown have been properly normalized—the heights
of the peaks are taken to be one—in order to compare the
obtained line shape with different pulse parameters. First we
note that for longer pulses the broadening of the peak reduces.
This is a bandwidth effect, similar to the bandwidth effect
observed in resonant Auger processes [40]. This effect can be
connected with nonresonant Auger Raman spectroscopy [41],
in which the photoelectron was detected in coincidence with
the Auger electron in order to obtain Auger spectra with
sublifetime energy widths. However, in our case, we note that
the broadening of the peaks for the 0.1- and 1-fs pulses are
similar, even though there is a factor of 10 between the time
duration of both pulses. In fact, the broadening of the peaks
is not larger than the natural width of the ls core hole. This
effect is clear in the analytical formula (10) for a square pulse.
The selected-photoelectron Auger coincidence spectrum is the
result of the multiplication of the bandwidth of the pulse with
the Lorentzian profile from the Auger decay. If the bandwidth
is broad enough, i.e., with a pulse length much shorter than the
core-hole lifetime, then the selected-photoelectron Auger line
shape is mainly given by the Lorentzian profile. In Fig. 3(b)
we show the line shapes given by the formula (10) for the
three different pulse lengths, showing the same trend as the
selected-photoelectron Auger spectra of Fig. 3(a). For longer
pulses, the broadening of the pulse is mainly given by the
bandwidth of the pulse, convoluted by the natural width of
the core-hole state [41]. Note that Fig. 3(a) slightly deviates
from a perfect Lorentzian line shape; the fine structure is
due to the selection of the data in the energy range, without
considering any smooth integration in the edge of the energy
windows.
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FIG. 3. (a) Auger-electron—photoelectron coincidence spectrum
centered at 787 eV for three x-ray pulses that are 0.1, 1, and 10 fs in
pulse length. A noticeable pulse duration effect is visible, because the
spectrum broadens as the pulse length is decreased. The intensities
of the pulses are 10" W/cm?, 10" W/cm?, and 10'* W/cm?,
respectively. (b) Normalized probability obtained with formula (10)
at the photoelectron energy of 787 eV and using pulse parameters
corresponding to those in panel (a).

We have also studied other Auger spectra with different
photoelectron energies. In Fig. 4 we show different selected-
photoelectron Auger spectra for the intermediate intensity
with a 10-fs pulse. Note that other selected-photoelectron
Auger spectra also present similar line shapes, deviated from a
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FIG. 4. Auger-electron—photoelectron Auger spectra around the
peak value of 208.5 eV. Their center depends on the selected-
photoelectron energy. By summing the coincidence peaks, we obtain
the total Auger spectrum, indicated in the figure as the envelope with
a perfect Lorentzian profile.
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Lorentzian function; however, the sum of all of them (envelope
line) has the expected Lorentzian profile. Note that by selecting
the photoelectron energy, we also select the range of energies
of the emitted Auger electron. This is explained by conser-
vation of energy as in the case of resonant Auger processes
[40].

B. Intensity effects

In this section we focus on the effects on the photoelectron
and Auger spectra that arise from the intensity of the pulse
instead of the pulse duration. Similarly to the last section,
we find no effects in the integrated Auger spectrum, but
instead, by selecting the Auger electrons in coincidence with
a particular photoelectron energy, we observe changes in the
Auger-electron—photoelectron line shape.
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FIG. 5. Auger-electron—photoelectron coincidence spectrum

centered at 787 eV for three different intensities, 10'*, 10", and
10" W/cm?, for a (a) 0.1-fs pulse and a (b) 10-fs pulse. A noticeable
intensity effect is visible only for the longer pulse. (c) Normalized
probability obtained with formula (10) at the photoelectron energy of
787 eV and using the same pulse parameters as in panel (b).
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We select the peak photoelectron energy, 208.5 eV, with an
energy resolution of 50 meV, and we study three intensities:
when the ground state is barely depleted, 10'> W/cm? (0.01%);
when the ground state is intermediately depleted, 10'> W /cm?
(1%); and when the ground state is completely depleted,
10" W/cm? (100%). We choose not to use higher intensities,
S0 as to avoid entering the multiphoton regime that the model
does not account for. In Figs. 5(a) and 5(b) we show the
selected-photoelectron Auger spectra for two different pulse
lengths, 0.1 and 10 fs, respectively. While the spectrum for the
shorter pulse shows no intensity dependence, the spectrum for
the longer pulse shows a clear dependence with the intensity.
Specifically, the width of the peaks become broader as the
intensity of the pulse is increased. Similar to the observed
effect in the previous section, the broadening of the peak never
becomes larger than the natural width of the core-hole state.
Hence, we observe that the strong population of the core-hole
state at times comparable with the core-hole lifetime modifies
the line shape of the spectrum; however, this is not noticeable
for the 0.1-fs pulse length. We observe that this effect persists
at longer 500-fs pulses (see Fig. 6; no multiphoton processes
are considered). Hence, this effect exists in the continuous-
wave limit but gradually disappears as the pulses become
shorter.

In order to understand the intensity dependence and the
connection between the spectrum and the broadening caused
by the intensity of the pulse and the pulse length, we resort
to the analytical formula (10) for the square pulse to gain
additional insight. In Fig. 5(c) we show the line-shape profile
calculated with the analytical formula for the three different
intensities for the 10-fs pulse, showing a trend similar to that
of the selected-photoelectron Auger spectra. The intensity
dependence is contained in the sinc function (10) via the
ionization rate given by I';. If we increase the ionization rate,
the sinc function begins to lose the oscillations and the tail
starts to increase, and consequently the central peak becomes
broader. However, if the sinc function becomes very broad
when the intensity is very high, then the line shape is dominated
by the Lorentzian function from the core-hole decay. This
explains why we do not observe any intensity effect for the
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FIG. 6. Auger-electron—photoelectron coincidence spectrum

centered at 787 eV for four different intensities, 103, 10'7, 10'8,
and 102 W/cm?, for a 500-fs pulse. Normalized probability obtained
with formula (10) at the photoelectron energy of 787 eV and using
the same pulse parameters as in Fig. 5(b).
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0.1-fs pulse, because the broadening of the peak is already
dominated by the Lorentzian function and the intensity does
not play a role in the line shape of the spectrum.

IV. CONCLUSIONS

We have studied the effects in the Auger-electron—
photoelectron coincidence spectra due to ultrashort x-ray
pulses. These pulses modify the core-hole population within
the time scale of the core-hole lifetime. By using a time-
dependent model for Ne atoms, we are able to explain two
effects that arise from the pulse length and the intensity of the
pulse. These effects are observable in a photoelectron—Auger-
electron coincidence measurement. When the pulse is shorter,
we observe a broadening of the Auger-electron—photoelectron
peaks. This effect in the line shape is similar to the known
bandwidth broadening in resonant Auger decay. When the
pulse is intense enough to deplete the ground state and populate
the core-hole states during the Auger lifetime, we observe
a broadening of the Auger-electron—photoelectron peaks.
However, in both effects the broadening of the peaks is always
limited by the natural width of the core-hole state. When the
total Auger-electron spectrum is analyzed, by integrating over
all photoelectron energies, the normal Auger line shape is
recovered, exhibiting no dependence on the time duration or
the intensity of the pulse.

J

PHYSICAL REVIEW A 94, 043421 (2016)

The results shown in this work provide a better understand-
ing of the x-ray interactions with pulses that are comparable
to the lifetime of the core-hole states. These effects are
expected to be present in any other physical system, such
as molecules, clusters, and nanoparticles. The theoretical
framework presented here is ideal to study Auger processes of
future ultrafast experiments with femtosecond and attosecond
x-ray pulses.
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APPENDIX A: EQUATIONS OF MOTION

When we include ansatz (1) into the time-dependent Schrodinger equation, we obtain the following equations for the

amplitudes:

ibo(t) = Eobo(t) + Y > (0IVi()les i) bei (1), (A1)
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g 0

Ty
We have neglected the terms
(€311 Val0) ~ 0,
(e€q;1j|Val0) = 0.
In any case, because of the Brillouin theorem, the first product is identical to zero in the Hartree-Fock approximation.
In inner-shell ionization, when the ionization may come from several degenerate states or close by in energies, for example,
the ionization of a 3d electron in Xe, then the random phase approximation (RPA) provides a good theoretical description of the

involved electron correlations (see, for example, Ref. [42]). The RPA can also be applied in the calculations for the Auger-decay
transitions. In this work, we consider those electron-correlation couplings to be zero; that is,

(10| Vule'si") =~ 0,
(eeqsij|Vale'el i’ 'y = 0.

The system of Eqgs. (Al), (A2), and (A3) can be further decoupled by using the adiabatic approximation, also called the
local approximation [31,32]. For the ionization part, we also use the adiabatic approximation, also known in the quantum optics
literature as the Markov approximation (see, for example, Refs. [43,44]). Within these approximations, the EOM can be reduced
with the derivation of the decay rates I" that accounts for the ionization of the ground state and the Auger decay of the core-excited
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state, and with the Stark shifts R that account for the dephasing introduced by the continuum part that has been decoupled:

2 F ei,e'i’ .
ibo(1) = Eobo(t) — i[ lz(t) +iR1(t)i|b0(t)— ;Z(OH/HS i / dr’ ZZ[ +1RE,-,£/,»}

fo &'Fe i'#i

X bg/ l’(t ) e_l(Eer+Rsx ei =1 eiei /2)(t— [)

ibe:i (1) = Eeiibey(t) + (31| Vi(£)|0) bo(t) — i ZZ[ +iR£,-,8,,-lb£,;,-,(t),

ibssa;ij(t) = Ess(,;ij bssa;ij(t) + Z Z(S‘ga; ij|Va|8/; i/> ba’;i’(t)a (A4)

g i

where

Fl il ZZ e: l|V |8N ”. // //) (8”8:;,1”]”|Va|8/;il) 5(E rein 1 — s’;i/),

e’el i j"
1
R = —i i\V,e"elsi" iy (e i |V, P ’
» DD el ”%’”“8’1'“’>[Eiﬁiiﬁ}
i"j" &"e) J 3
L@ Q ! Fsisi 2
0 _ ()ZZ 01V, le3i) (&3 V/10) sif? .
2 (Eeii + Reiei — Eo — 0)* + (Tgi6i/2)
Q% i + Reiei — Eo —
Ri(t) = - ()ZZ (01Vyles ) (31| Vr|0) Eog & Reiot = By — @

(E &l + Rsz ei T EO - w)2 + (Fsi,ai/z)z )

The symbol P stands for the principal value. By taking only the dominant contributions, the Stark shifts are smaller than the
decay rates, we obtain the EOM given in Eq. (6).

APPENDIX B: AUGER DECAY FOR A SQUARE PULSE

In this section we show the derivation of the analytical formula (10) for the special case in which the electric field is an ideal
square pulse. First, we calculate the line-shape profile of the photoelectron, by using the second equation of the EOM (A4), and
then we can calculate the amplitudes giving rise to the Auger-electron spectrum.

Considering a square pulse from #; to 71, the photoelectron amplitude for a time ¢ that satisfies fy < ¢ < f;, and using the
second line of Egs. (A4),

d ~ : / Iy . - Teiei ,

bei(t) = —i / dr' (e;1]V;]0) €(t')[e B0t 0 g 3 (=) ] i Ees i =5 et (B1)
fo

where (g;i|V;(t)|0) = (e;i|V;]0) €(t), and €(¢) is the electric field that can be written as €(t) = Q(¢) cos(wt). If we perform the

integration, we obtain

bei(t) = Q(t)(e i1V,10)e —l(w+E0)(r—zU)|:

. Teiei Ty
| — pi@+Eo—Eei)t—10) p—(“55L T )(1—1)
¢ ¢ emF W (B2)

(w+ Eg — Eqy) +i (T4 — 1)

Similarly, for times ¢ where ¢ > ¢, the solution is given by

; Ceiei _
ba,i(t) = bs;i(tl)eilEm(tih)ei 7 (=)

_ o

, | — pi@+Es=Ecti—10) )~ (-5 ="Dyt—10) |,
e l|V1|0> 71(w+E0)(t1ﬂo)eﬂEb;z(tft]) 6*7(11 f0) —

_ e~FHw (B3
(w+E0 sz)+l( S/N_TI)
The time evolution of the Auger-electron amplitude is given by the third line of Eqs. (A4). Similarly to the amplitude of the
core-excited state, we can transform the differential equation in its integral form. Then, considering a square pulse from #j to 7,

we can split the integral into two terms, one term for when the time evolution of the system is interacting with the square pulse
and another accounting for the free propagation of the system after the square pulse:

n . , t . ,
bee,ij(t) = —i Y _(e€q3ij| Valesi') / d'be (t)e Fean () — iy Neegij|Vole:d) / dt'be(t)e ™ Feeait 0= - (B4)
l'/

fo i’ n
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for ¢ > t;. The solutions for b,.;(¢) are given by Eqgs. (B2) and (B3). If we perform the corresponding integrations, we obtain

Q1) . 1 1
bss,,;ij(t):_ (gga;ij|Va|8;i/)_(8;i/|Vl|0>”: T T :|
l-Z, 2 [(w + Eo — Eece,ij) — ZTI] [(Eg;i/ — E¢eij) — l%]
X [_ 1+ e_[FTI+i(w+EU_Es€a;ij)](tl_IU)]e_iEsea:i](l_tO)
1 1
+ - (Do it Iy - Dot it
[(a) + Eg — Ea;i’) + l(T - 7)] [(Ea;i’ - Essa;ij) - IT]
x[-1 +e—[(rz'—w)+i(w+E0—Eg;,')](f|—to)]e—[r”/ﬂ+iEe;i’](f—to)}. (BS)

At much longer times than the core-hole lifetime, all the population in the core-hole states has already decayed into the
final states. Hence, the Auger-electron—photoelectron spectra will be given by the modulus square of the final states’ amplitude,
considering long times until the electrons reach the detectors. For long times, please note that the second line of Eq. (BS) tends

to zero.
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