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Sympathetic laser cooling of graphene with Casimir-Polder forces
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We propose a scheme to actively cool the fundamental flexural (out-of-plane) mode of a graphene sheet
via vacuum forces. Our setup consists of a cold-atom cloud placed close to a graphene sheet at distances of
a few micrometers. The atoms couple to the graphene membrane via Casimir-Polder forces. By deriving a
self-consistent set of equations governing the dynamics of the atomic gas and the flexural modes of the graphene,
we show it is possible to cool graphene from room temperatures by actively (laser) cooling an atomic gas. By
choosing the right set of experimental parameters we are able to cool a graphene sheet down to ∼60 μK.
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I. INTRODUCTION

A lot of attention has been drawn in the last years to the
development of quantum technologies with hybrid quantum
systems whose elementary building blocks are of different
nature [1]. The general trend is to combine well-characterized
individual quantum systems, such as trapped ions [2,3],
degenerate quantum gases [4], superfluid or superconducting
Josephson junctions [5], quantum dots [6], and nanome-
chanical oscillators [7,8], with microwave guides, optical
resonators, and fibers [9]. The most promising applications of
such systems range from high-precision force and mass mea-
surements to quantum computation [10–13]. Optomechanical
setups have been particularly successful in that task, making it
possible to cool down a mechanical system to its quantum
ground state [14]. Radiation-pressure cooling of nano- or
micromechanical cantilevers [15–19], vibrating microtoroids
[20,21], and membranes [22] constitute important hallmarks
in the field of optomechanics with important implications in
quantum technologies.

With the advent of graphene and other two-dimensional
materials, the zero-point cooling of macroscopic membranes
becomes an imperative to the development of quantum tech-
nology based on suspended graphene. At low temperatures, the
electrical resistivity in graphene is essentially hindered by the
scattering between the electrons and the flexural (out-of-plane)
phonons [23,24], which one could, in principle, cool down
with the help of an optomechanical setup. However, given
the broadband optical transmission of graphene (a graphene
mirror is typically 98% transparent) [25], the coupling between
the macroscopic mechanical motion and the photons is very
unlikely, making radiation-pressure cooling totally ineffective
[26]. As such, dilution refrigerators have been used in the
attempt to approach the quantum limit. Recently, narrow-gap
microwave-cavity cooling of graphene has brought the thermal
motion of graphene down to ∼60 mK [27]. It is therefore
natural to investigate suitable alternatives to radiation-pressure
schemes by exploiting the advantage of interfaces with cold
atoms. Recent results showed that sympathetic cooling with
ultracold atoms enables us to reach ultralow temperatures in
levitated optomechanical systems originally at room temper-
ature when direct laser or evaporative cooling is not possible
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[28]. Also, it has been shown that heat transfer between two
parallel layers of dipolar ultracold Fermi gases at different
temperatures via dipolar couplings could be used as an
effective cooling process [29].

There has been growing interest in exploring carbon
nanotubes held at positive voltage to capture and ionize
individual cold atoms [30,31] and also to explore the dispersion
interactions between Bose-Einstein condensates and carbon
nanotubes [32,33] and laser-controlled ultracold (Rydberg)
atoms and graphene setups that may be used to create ripples
on demand [34]. The dispersion forces arising from quantum
fluctuations of the electromagnetic field between cold atoms
and a carbon nanotube, commonly known as Casimir-Polder
(CP) interaction [35], have been experimentally measured and
pointed to as potentially useful for applications in quantum
sensing and quantum information [33]. Immersing nanotubes
in cold-atom clouds has also been suggested as a passive
sympathetic cooling method [36]. In a recent study, the authors
have theoretically examined the possibility of strong-coupling
matter waves with a graphene sheet, paving the stage for
non-destructive cold atom-graphene interfaces [37].

This article is organized as follows. In Sec. II, we intro-
duce the Hamiltonian of the system. Using the Lamb-Dicke
approximation, the adiabatic elimination of the electronic
states, and linearization methods, we derive an effective master
equation for the system. In Sec. III, we study the cooling
process: not only do we derive the stationary state of the
system, but also we calculate the cooling rate as a function of
tunable experimental parameters. Finally, concluding remarks
are provided in Sec. IV.

II. THEORETICAL MODEL

We propose a scheme to approach the quantum limit of the
zero-point flexural motion of a graphene sheet by sympathetic
laser-cooling via vacuum forces. Our setup consists of a laser-
cooled two-dimensional cloud of cold atoms that is placed
near the membrane (a few micrometers). At this distance, the
atoms and the flexural modes couple as a consequence the
CP interaction, allowing the exchange of excitations without
destroying the atomic cloud [37]. By cooling the atomic
motion with a far-detuned laser, we show that it is possible
to effectively tailor the dissipation of the graphene membrane
via vacuum fluctuations. Contrary to other optomechanical
cooling protocols [27], our method offers the possibility of
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FIG. 1. Scheme of the experimental setup of a quantum gas at
a distance zA from a graphene sheet. The motion of the particles
is coupled to the flexural modes of graphene via Casimir-Polder
interactions. The cooling of the vibrational modes of the gas can be
done with the help of the cooling laser with Rabi frequency �. For
our calculations, we have chosen an atomic cloud of rubidium (87Rb).

discarding dilution refrigerators and allows us to cool graphene
to the quantum limit starting from room temperatures. Also,
because it is nondestructive, it offers advantages with respect to
Ref. [36] as it allows the active cooling of graphene zero-point
motion to the quantum limit in steady state.

Our setup consists of a cold atomic gas confined in a
two-dimensional box potential, in such a way that its transverse
center-of-mass (phonon) modes are quantized (see Fig. 1),
placed near a suspended graphene sheet (for our numerical
calculations, we have chosen an atomic cloud of 87Rb [38]).
The phonons then couple to the flexural (out-of-plane) modes
of a graphene sheet via vacuum CP forces, and the cooling
laser drives D2

87Rb transition. The aim of the laser cooling
is to dissipate the atomic motion and, as a consequence,
sympathetically cool down the flexural modes of the graphene
sheet. In this paper, we will restrict our discussion to a single
phonon mode coupled to a single flexural mode.

The Hamiltonian of the system in Fig. 1 can be written as

Ĥ = Ĥat + Ĥph + Ĥflex + ĤL + Ĥat-graph. (1)

The first three terms are the energy of the electronic states of the
atoms, their quantized vibrational modes, and the fundamental
mode of the graphene sheet. Here, the cloud is composed of
atoms with ground state |g〉, excited state |e〉, and transition
frequency ωeg = ωe − ωg (see Fig. 1); ωph and ν are the center-
of-mass (phonon) excitation in the atomic cloud and the flexu-
ral mode energies, respectively. Then, we can explicitly write

Ĥat = �(ωe|e〉〈e| + ωg|g〉〈g|), (2)

Ĥph = �ωphâ
†â, (3)

Ĥflex = �νf̂ †f̂ , (4)

where â and f̂ are the phonon and the flexural bosonic
annihilation operators. The fourth term in Eq. (1) describes
the coupling between the laser and the center-of-mass motion
of the atoms [39], which can be written in the rotating wave
approximation (RWA) as

ĤL = �

2
�[σ−D̂(iη)eiωLt + H.c.], (5)

where ωL is the laser frequency and � = dge · εE0/� is the
Rabi frequency of the transition |g〉 → |e〉 (with E0 being
the electric field amplitude, dge being the dipole operator,
and ε being the laser polarization). We have introduced the
lowering and raising operators σ− = (σ+)† = |g〉〈e|, and the
displacement operator D̂(iη) ≡ e−iη(â†+â), with η = ωrec/ωph

denoting the Lamb-Dicke parameter and ωrec denoting the
recoil frequency. Taking advantage that the experimental
parameters �, ωph, and � = ωeg − ωL are much smaller than
the optical frequency, we can perform the atom-laser RWA
Hamiltonian as [40]

Ĥat + ĤL = ��σ+σ− + �

2
�(σ−D̂(iη) + H.c.). (6)

Finally, the last term in Eq. (1) is the Hamiltonian describing
the interaction between the atoms and the graphene sheet that
can be obtained by expanding the CP potential around the
equilibrium position at first order in the displacement operator
and averaging over the atomic density.

In general, the CP potential UCP for planar surfaces has
the form UCP(zA) = Cn

zn
A

(see Appendix A), with zA being
the vertical component of the atom-surface position RA =
(xA,yA,zA). Details about its derivation can also be found in
Refs. [41,42]. The potential for a very smooth surface can
be obtained from the planar case by merely taking the local
atom-surface distance

U (x,y,z) � U 0
CP(zA) − u(rA)

dU 0
CP(zA)

dzA

, (7)

with rA = (xA,yA). To obtain the interaction energy between
atoms in the atomic gas and the corrugated membrane, one
needs to sum the CP potential weighted by the atomic density
and over the area of the membrane [36], i.e., Ĥat-graph =∫

dR
V

∫
dR′ n̂(R′)U (R′ − R). It is more convenient to trans-

form it into the Fourier domain where it becomes a separable
sum of products of atomic and graphene variables. This yields

Ĥat-graph =
∑

q

â†â U 0
q + i

∑
q

â†â q · ûqU
0
q

≡ �

∑
q

wqâ
†â(1 + iq · ûq), (8)

where Uq is the Fourier transform of the potential U
|g〉
CP , wq ≡

Uq/�
√
V , and the phonon operator is expressed in the form

ûq = 1√
2

∑
σ φq,σ (r)eσ (f̂σ + f̂ †

σ ) with two polarizations σ =
(x,y), and the normalization condition 〈φq,φq′ 〉 = �/(Mν)δqq′

is satisfied, where M is the membrane mass [37]. In our setup,
we need to account for both electronic states |g〉 and |e〉 of
the trapped particle, such that â†â → â†â|e〉〈e| + â†â|g〉|g〉.
Moreover, we restrict our discussion to the fundamental mode
q0 ≡ 2π/L, with L representing the size of the graphene
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sheet (here considered squared for definiteness; also see
all the properties considered in Appendix B). After these
considerations, the interaction Hamiltonian becomes

Ĥat-graph = �(ω|e〉|e〉〈e| + ω|g〉|g〉〈g|)â†âT̂ . (9)

Here, ω|i〉 is the Fourier transform of the CP potential of the
electronic state |i〉, and T̂ ≡ 1 + i2q0

√
�/(2mν)(f̂ + f̂ †) is

the translation operator.

A. Adiabatic elimination of the electronic states

In what follows, we assume that the detuning �

is much larger than all other system parameters, � 

�,ωph,ν, ω|i〉, �. Under such conditions, we are able to
adiabatically eliminate the electronic states from the time
evolution and obtain an effective master equation which
reduces the evolution to the ground-state dynamics [43]. We
assume the dynamics of the system to be Markovian, such
that the time evolution density matrix ρ can be described by a
master equation of Lindblad form,

ρ̇ = − i

�
[Ĥ ,ρ] +

[
L̂ρL̂† − 1

2
(L̂†L̂ρ + ρL̂†L̂)

]
, (10)

where L̂ is the jump operator (to be specified below)
accounting for the spontaneous decay of the electronic states.
Following Ref. [43], by combining the perturbation theory of
the density operator and adiabatic elimination of the excited
state, we reduce the dynamics to an effective master equation
involving only the ground-state manifold. The corresponding
effective Hamiltonian and Lindblad operators are given by

Ĥeff = −1

2
V̂−

[
Ĥ−1

NH + (
Ĥ−1

NH

)†]
V̂+ + Hg, (11)

L̂eff = L̂Ĥ−1
NHV+, (12)

where V̂+ (V̂−) is the perturbative excitation (deexcitation)
operator of the system and Ĥg is the ground-state Hamiltonian.
We have also introduced the non-Hermitian Hamiltonian of the
quantum jump formalism as

ĤNH = Ĥe − i

2
L̂†L̂, (13)

where Ĥe is the Hamiltonian in the excited manifold. The total
Hamiltonian of the system can be explicitly written as

Ĥ = Ĥg + Ĥe, (14)

Ĥg = �ωâ†â + �νf̂ †f̂ + �ω|g〉|g〉〈g|â†âT̂ , (15)

Ĥe = ��|e〉〈e| + �
�

2
[|g〉〈e|D̂(iη) + |e〉〈g|D̂†(iη)]

+ �ω|e〉|e〉〈e|â†âT̂ , (16)

and the raising and lowering can be written as

V̂+ = �
�

2
|e〉〈g|D̂†(iη), V̂− = �

�

2
|g〉〈e|D̂(iη). (17)

We further assume that the atoms are cooled enough to be in
the Lamb-Dicke regime. In that case, we may write D̂†(iη) �
1 + iη(â† + â). Spontaneous emission from the excited to the

ground state at a rate � is represented by the Lindblad operator
L̂ = √

�|g〉〈e|. Consequently, the non-Hermitian Hamiltonian
is found to be

ĤNH = �

(
� − i

�

2
+ ω|e〉â†âT̂

)
|e〉〈e|

+ �
�

2
[|g〉〈e|D̂(iη) + |e〉〈g|D̂†(iη)]. (18)

Finally, by combining the approximations above, Eqs. (11)
and (12), we obtain the effective Hamiltonian and Lindblad
operators as

Ĥeff = �ωâ†â + �νf̂ †f̂ + i�g â†â(f̂ † + f̂ ) + i�ξ (â† + â),

(19)

Leff(Ô) = γ

2
{2â†Ôâ − Ôâ†â − â†âÔ}. (20)

Here, we have defined the reduced quantities ω = ωph −
η2

��2�/(4�2 + �2) + ω|g〉, ξ = η��2�(4�2 + �2), g =
2q0

√
�/(2mν)n0ω

|g〉, with n0 being the atomic density, and
γ = �η2�2/(� + 4�2), with � denoting the atomic sponta-
neous emission rate.

B. Linearization procedure

The effective Hamiltonian (19) is nonlinear in the phonon
operator â, which makes the handling of the equations of
motion unpractical. Linearization of the Heisenberg-Langevin
equations can be done in two ways [44]: the Hamiltonian
linearization method, often used in optomechanics, and the
equation linearization method, used in the semiclassical limit.
Below we will perform the first. For that task, we make a
displacement on the phonon operator around its average value
α, â → α + δâ, with 〈δâ〉 = 0, such that the total phonon
number is given by |α|2 + 〈δâ†δâ〉. Following [11], we start
by considering the Hamiltonian without interactions Ĥ =
�ωâ†â + �νf̂ †f̂ + i�ξ (â† + â). By applying a displacement
operator D̂ = eα∗δâ−αδâ†

to a state vector |ψ̃〉 = D̂|ψ〉, we
can derive the transformed Hamiltonian H̃ by expanding the

Schrödinger equation i�∂t |ψ̃〉 = (i� ˙̂D + D̂Ĥeff)|ψ〉, which
yields

H̃ = i�(α̇∗δâ − α̇δâ†) + D̂ĤeffD̂†. (21)

Having in mind the property D̂G(â,â†)D̂† = G(δâ
+ α,δâ† + α∗), we find

H̃ = �ωδâ†δâ + �ω|α|2 + �νf̂ †f̂ − i�ξ (α∗ − α).

Similarly, we update the CP coupling and write

Ĥat-graph = i�gδâ†δâ(f̂ † + f̂ ) + i�g|α|2(f̂ † + f̂ )

+ i�g(αδâ† + α∗δâ)(f̂ † + f̂ ), (22)
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where the first term corresponds to the three-wave mixing
process and describes the intrinsic nonlinear process of our
system; if we assume 〈δâ〉 � α, we can ignore this term
and obtain the linearized Hamiltonian. The last term is
the average CP coupling, with g|α|2 denoting the coupling
strength. Finally, we obtain the linearized Hamiltonian and
jump operators

H̃ = �ωδâ†δâ + �ω|α|2 + �νf̂ †f̂ + i�g |α|2(f̂ † + f̂ )

+ i�g (δâ†α + δâα∗)(f̂ † + f̂ ) − i�ξ (α∗ − α), (23)

L̃(Ô) = γ

2
{2δâ†Ôδâ − Ôδâ†δâ − δâ†δâÔ}

+ γ

2
(α[δâ†,Ô] + α∗[Ô,δâ]). (24)

III. ANALYSIS OF THE COOLING PROCESS

We now solve the master equation to obtain the average
number of phonons n = 〈n̂〉 and flexurons m = 〈f̂ †f̂ 〉 and the
corresponding effective cooling rate γeff. Making use of the
property 〈Ȯ〉 = Tr [Ôρ̇], Eq. (10) simply yields

〈Ȯ〉 = − i

�
〈[Ô, ˆ̃H ]〉 + 1

2
γ 〈2â†Ôâ − Ôâ†â − â†âÔ〉

+ 1

2
γ 〈α[â†,Ô] + α∗[Ô,â]〉. (25)

Applying this equation to the mean flexural number
m(t), the mean phonon number n(t), and the
coherences k̂1 = i(f̂ † + f̂ ), k̂2 = f̂ † − f̂ , k̂3 = αâ† + α∗â,
k̂4 = i(αâ† − α∗â), k̂5 = i(αâ† + α∗â)(f̂ † + f̂ ),
k̂6 = (αâ† + α∗â)(f̂ † − f̂ ), k̂7 = (αâ† − α∗â)(f̂ † + f̂ ), k̂8 =
i(αâ† − α∗â)(f̂ † − f̂ ), k̂9 = f̂ †2 + f̂ 2, k̂10 = i(f̂ †2 − f̂ 2),

k̂11 = (αâ†)
2 + (α∗â)2, and k̂12 = i[(αâ†)

2 − (α∗â)]
2
, we

obtain a closed set of differential equations,

ṅ = gk̂7 − γ n̂ − γ

2
k̂3,

ṁ = g|α|2k̂2 + gk̂6,

k̇1 = −νk̂2,

k̇2 = νk̂1 − 2g|α|2 − 2gk̂3,

k̇3 = ωk̂4 − γ |α|2 − γ

2
k̂3,

k̇4 = −ωk̂3 − 2g|α|2k̂1 − γ

2
k̂4,

k̇5 = −νk̂6 − ωk̂7 − γ

2
k̂5 − γ |α|2k̂1,

k̇6 = νk̂5 − 2g|α|2k̂3 − 2gk̂11 − 4g|α|2n̂ − 2g|α|2

+ ωk̂8 − γ

2
k̂6 − γ |α|2k̂2,

k̇7 = νk̂8 + ωk̂5 − 2g|α|2k̂9 − 4g|α|2m̂
− 2g|α|2 − γ

2
k̂7,

k̇8 = −νk̂7 − 2g|α|2k̂4 − 2gk̂12 − ωk̂6

− 2g|α|2k̂10 − γ

2
k̂8,

k̇9 = νk̂10 − 2g|α|2k̂2 − 2gk̂6,

k̇10 = −νk̂9 − 2g|α|2k̂1 − 2gk̂5,

k̇11 = ωk̂12 − 2g|α|2k̂7 − γ k̂11 − γ |α|2k̂3,

k̇12 = −ωk̂11 − 2g|α|2k̂5 − γ k̂12 − γ |α|2k̂4.

In order to calculate the stationary flexural number mSS, we
set all of the above equations to zero. This gives a set of
14 equations which can be readily solved to find mSS, nSS,
and kSS

i . Defining the cubic frequencies μ3 = ν(γ 2 + 4ω2) +
16g2ω|α|2 and λ3 = ν(γ 2 + ω2) + 9g2ω|α|2, we obtain

nSS = −−2γ 4ν2ω|α|2 − 2γ 2ν2ω3|α|2 − 16γ 2g4ω|α|6 + 16γ 2g4ω|α|4 − 64g4ω3|α|6
2ωλ3μ3

− 16g4ω3|α|4 + γ 4g2ν|α|2 − 36γ 2g2νω2|α|4 + 5γ 2g2νω2|α|2 + 4g2νω4|α|2
2ωλ3μ3

, (26)

mSS = − (γ 2 + ω2)(−48g2ω|α|2 − 3γ 2ν + 4ν3 − 12νω2)

48νωλ3
+ 3ω − 2ν

6ω

+ |α|2(16γ 2g2ω|α|2 + 48g2ν2ω|α|2 − 32g2ω3|α|2 + γ 4ν + 4γ 2ν3 + 2γ 2νω2 + 8ν3ω2 − 8νω4)

32νωλ3

+ (γ 2g|α|2 − 4gω2|α|2)(−192g4ω2|α|4 + 16g2ν3ω|α|2 − γ 4ν2 − 4γ 2ν4 + 18γ 2ν2ω2 + 8ν4ω2 − 8ν2ω4)

32gνωλ3μ3
. (27)

We are especially interested in seeing how mSS evolves with
the parameters of the experiment g, �, and �, which we
can tune by changing the atom-surface distance and during
the cooling process. The evolution of the stationary-state
number of the flexural modes is shown in Figs. 2(a) and 2(b);

one can see that mSS decreases by increasing the coupling
strength g and Rabi frequency �. With an appropriate choice
of �, �, and g, it is shown to be possible to have steady
states with a low number of flexural modes (�10), which
corresponds to temperatures below millikelvins. For the set
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FIG. 2. Density plot of the stationary-state flexural mode number (a) and (b) mSS and (c) nSS for the parameters η = 0.25, � =
6.07 MHz, ν = 2.7 MHz, ωph = 477 Hz, where in (a) and (c) � = 10 MHz and in (b) g = −47.7 kHz. The red point in (b) marks the
coordinate g = −47.7 kHz and � = 36 MHz, where mSS ∼ 0.15, for which the time evolution in Fig. 3 is calculated and corresponds to
nSS ≈ [exp [�ωph/(kBTatoms)] − 1]−1 ∼ 24, for which the temperature is Tatoms = 560 nK.

of parameters chosen, η = 0.25, � = 6.07 MHz, ν = 2.7
MHz, � = 10 MHz, ωph = 477 Hz, g = −47.7 kHz, and
� = 36 MHz [corresponding to the red point depicted in
Fig. 2(b)], we obtain mSS ∼ 0.15, which corresponds to a
temperature of Tgraph � 60 μK. Correspondingly, the atomic
motion is limited to nSS ∼ 24 [see Fig. 2(c)], for which we
find Tatoms = 560 nK. This is consistent with the Lamb-Dicke
approximation for a two-dimensional gas confined in a box
potential of frequency ωz of the order of a few kilohertz
[45,46]. Although the atoms and the graphene sheet dynamics
reach the steady state, we remark that the system is not
in thermal equilibrium. Therefore, the temperatures Tatoms

and Tgraph are merely effective and not necessarily equal.
Indeed, the effective temperatures after the cooling process are
obtained by fitting the corresponding steady-state occupations
nSS and mSS with Bose-Einstein statistics.

For comparison, let us look at conventional cryogenic
refrigeration processes that can be used to cool a vibrational
mode of a mechanical resonator to its quantum ground state.
In Ref. [47], this is done by using a microwave-frequency
mechanical oscillator coupled to a quantum bit. In this
cooling process, the maximum number of phonons obtained in
the relevant mechanical mode is mmax < 0.07. Laser-cooling
techniques can also provide a general and flexible method of
preparing macroscopic objects in their motional ground state
where the strong coupling allows for the coherent exchange of
photons and mechanical flexural modes; for these techniques, it
is possible to obtain m = 0.3–0.8, [7,48,49]. Laser techniques
can also be used to cool a vibrational mode in graphene or to
power a graphene-based tunable frequency oscillator [26]. In
Ref. [27], it is shown to be possible to cool down graphene to
60 mK, corresponding to an occupation number of 50, nearly
three orders of magnitude lower than what has been recorded
with different techniques. For the parameters chosen, our result
lies at least two orders of magnitude below this experimental
record, but other parameters may lead to even lower occupation
numbers.

A. Cooling dynamics

For an analytical estimate of the effective cooling rate γeff,
we use the fact that the mean flexural mode number m evolves

on a relatively slow time scale compared to that of all other
variables, the dynamics of which can be adiabatically elimi-
nated by setting 〈k̇i〉 = 0 and 〈ṅ〉 = 0. We find the expressions
k̂2 = 0 and k̂6 = F(m(t)); that is, k̂6 is a function of the mean
flexural number. Substituting these in ˙̂m(t) = g|α|2k̂2 + gk̂6,
we obtain an expression where ˙̂m(t) = gF(m(t)). Solving this
equation yields finding m(t) = aeγefft + mSS with mSS given
by Eq. (27),

a =
(

1

νω
{32g4ω2|α|8[γ 2 + 4(3ν2 + ω2)].

+ 16g2ω|α|6[γ 4ν + 2γ 2(8g2ω + 2ν3 + νω2)

− 8ω(g2{−6ν2 + 9ν[2m(0) + 1]ω − 2ω2} − ν3ω

+ νω3)] + |α|2ν2(γ 2 + ω2)(γ 2 + 4ω2)(γ 2 + 4{ν2 − 2ν

× [2m(0) + 1]ω + ω2})2νω|α|4[γ 2νω(7γ 2 + 12ν2

− 20ω2) + 4g2(4γ 4 + γ 2{14ν2 − 25[2m(0) + 1]νω

+ 20ω2} + 4ω2{8ν2 − 13[2m(0) + 1]νω + 4ω2})]}
)

÷{16[g2ω|α|4(25γ 2ν + 144|α|2g2ω + 52νω2)

+ |α|2ν2(γ 2 + ω2)(γ 2 + 4ω2)]}, (28)

where m(0) = [exp ( �ν
kBTgraph

) − 1]
−1

is the occupation number
calculated at t = 0 and initial temperature Tgraph, and the
cooling rate given by

γeff = {64γg2λ3ν2ω|α|2}
÷ (32g2ω|α|2{8g2ω|α|2(γ 2 − 3ν2 + ω2)

+ ν[γ 4 + 5ω2(γ 2 − 2ν2) − γ 2ν2 + 4ν4 + 4ω4]}
+ ν2(γ 2 + ω2)[γ 4 + 8γ 2(ν2 + ω2) + 16(ν2 − ω2)2]).

(29)

In the parameter regions for which the cooling is stable
(i.e., for which the rate γeff is positive, corresponding to the
shaded regions in Fig. 2), cooling is possible independent
of the initial graphene temperature. Figure 3 compares the
sympathetic graphene laser-cooling dynamics for different
initial occupation numbers m(0). The exponential reduction
of the occupation flexural number only slows downs until
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FIG. 3. Logarithmic plot of the time evolution of the mean
flexural mode number m for the same parameters as in Fig. 2(b),
but with g = −47.7 kHz and � = 36 MHz. The different lines
represent different starting temperatures, from bottom to top, T =
0.01, 1, 70, 300 K. For these parameter the mSS = 0.15, which
corresponds to a final temperature of Tgraph = 60 μK. The inset shows
a contour plot of γeff as a function of g and � for the same parameters
as in Fig. 2(b).

m reaches its stationary state value and γeff ≈ 2.87 Hz.
Even starting from room temperature, the stationary state is
reached within an experimentally reasonable time scale (τeff �
0.35 s). In a recent work [29], sympathetic cooling via dipo-
lar interactions between particles with permanent electrical
dipoles was proposed (please note that in our proposal the
interaction is between well-separated neutral objects with
no permanent dipoles). Although we cannot quantitatively
compare the steady-state particle number results, the time
evolution to reach thermal equilibrium between the dipolar
gases separated by a few micrometers is less than tens of
milliseconds. For the most widely used cooling scheme,
sideband cooling, the cooling rate γcool and, conversely, the
time required to approach the ground state of a mechanical
resonator are inherently limited by the mechanical frequency,
γcool < ν. However, techniques such as the pulsed-cooling
method for mechanical oscillators are expected to surpass this
intrinsic limit [11].

B. Effects of temperature and the g coupling parameter

It is important to keep in mind the experimental limitations
to the cooling protocol. First, due to the difference in tempera-
tures between the two media, our calculations of the CP poten-
tial would, in principle, require out-of-equilibrium corrections.
For the general case, Tatoms �= Tgraph, the nonequilibrium CP
energy can be written as the sum of two contributions [50,51],

E
neq
th (Tatoms,Tgraph,zA) = E

eq
th (zA)

+ Eneq(Tatoms,Tgraph,zA).

Accounting for out-of-equilibrium corrections could lead to
different distance power laws or a change in the nature
of the CP force from attractive to repulsive [51]. Having
those eventual limitations in mind, we have fixed the value
g = −47.7 kHz to illustrate and better compare the cooling

dynamics in Fig. 3. The coupling strength, defined by

g = 2q0

√
�

2mν
n0ω

|g〉,

can be experimentally adjusted by tuning the atom-surface
distance, temperature, and atomic density.

There are two different limits for the CP interaction [35]. In
the retarded limit, when the atom-surface distance zA is large
compared to the effective transition wavelength, zA 
 c/ωeg,
the CP potential is given by U

|g〉
CP = C4/z

4
A, where one finds

C4 = 14.26 Hz μm4 for graphene interfacing with 87Rb in the
ground state at T = 0. Moreover,

�ω|g〉 = πC4q0
K1(q0zA)

zA

is the Fourier transform of the CP potential U
|g〉
CP , with K1(x)

denoting the modified Bessel function of the second kind [37].
In the nonretarded limit, zA � c/ωeg, U |g〉

CP = C3/z
3
A, one finds

C3 = 215.65 Hz μm3, and the Fourier transform becomes

�ω|gt〉 = 2πC3
e−q0zA

zA

.

For the numerical calculations, we tried to choose parameters
close to real experimental setups; as such, the coupling chosen,
g = −47.7 kHz, can be obtained at zA ≈ 0.2 μm, considering
a density n0 ≈ 1018 atoms/cm3 and a squared graphene with
size Lgraph = 5 μm and ν = 2.7 MHz. The same order of
magnitude values could be obtained for other experimental
situations (even if the scaling law is different). However, we
would like to remark that our analysis is still valid for smaller
values of g (up to one order of magnitude smaller), leading to
cooling times of the order of tens of seconds, still compatible
with state-of-the-art trap lifetimes.

Also, at higher temperatures, it may happen that we would
need to include the effect of excited mechanical modes.
The zero-mode cooling would therefore depend upon the
difference between two (or more) consecutive modes. When
this difference is larger than the effective damping of the
excited mode, we expect the cooling process not to be affected
[52]. However, for the sake of simplicity, we can assume that
a potential experiment with cold atoms could be performed
at sufficiently low temperatures for both graphene and the
atomic cloud for thermal excitations to only play a secondary
role; thus, such corrections are negligible for the atomic
temperatures, and deviations from the zero-temperature result
are not in order. Second, blackbody radiation effects could also
lead to additional heating of the atoms [53]. In a separate study,
we have shown that this effect is not relevant for distances of
a few micrometers [37].

C. Experimental limitations

We would also like to make a few comments regarding
the experimental realization of such a proposal setup that will
require placing and controlling an atomic gas very close to
a surface. Controlling the atoms so close to a surface is an
ambitious task since the CP forces are comparable with the
typical trapping forces for cold atoms. Using magnetic traps,
it has been shown that it is possible to stably trap atomic
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clouds at distances of 500 nm [13,54]. Other techniques,
such as using optical dipole traps based on evanescent waves,
allows one to reach distances of 215 nm [55,56] or to achieve
distances of 100 nm by using tightly focused optical tweezers
[57]. Finally, the laser light used to cool (and eventually trap)
the atoms could induce some additional heating to graphene.
Fortunately, two-dimensional, pancakelike clouds of atoms
of thickness Lz ∼ 0.3–0.6 μm are experimentally accessible
[46], therefore minimizing physical contact between the laser
and the membrane.

IV. CONCLUSION

In conclusion, we have shown that is possible, via the CP
interactions between an atomic gas and a graphene sheet, to
cool the mechanical out-of-plane vibrations by laser cooling
the phonon excitations in the quantum gas. Sympathetic laser
cooling via the vacuum forces is shown to reach temperatures
of ∼60 μK, about 100 times cooler than the temperature
reached by the usual optomechanical methods (∼60 mK).
Cooling a membrane to its ground state creates a path
to new hybrid systems where the motion of mechanical
resonators can be coupled with other quantum systems. One
can imagine that the membrane could act as a transducer
providing coupling between, for instance, photons or spins.
Such transducers could play an important role in quantum
networks. For the condensed-matter physics point of view,
the interest lies in cooling the mechanical modes of graphene
and, consequently, controlling the transport properties. Since
the mobility of carriers in graphene membranes is extremely
sensitive to temperature, flexural phonons are the leading
scattering mechanism for temperatures higher than few kelvin;
by cooling the mechanical modes of a graphene membrane
it would then be possible to decrease the resistivity of the
membrane.
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APPENDIX A: CASIMIR-POLDER PHYSICS

For planar structures, the CP potential of an atom in the
ground state at a distance zA away from the macroscopic body
with permittivity ε(ω) can be written as [35]

U
|g〉
CP (zA) = �μ0

8π2

∫ ∞

0
dξξ 2αat (iξ )

∫ ∞

0
dk‖

e−2k‖γ0zzA

γ0z

×
[

RTE + RTM

(
1 − 2k2

‖γ
2
0zc

2

ξ 2

)]
, (A1)

and for an atom in an energy eigenstate |n〉 it can be written as

U
|n〉
CP (zA) = �μ0

8π2

∫ ∞

0
dξ ξ 2αn(iξ )

∫ ∞

0
dk‖

e−2k‖γ0zzA

γ0z

×
[

RTE + RTM

(
1 − 2k2

‖γ
2
0zc

2

ξ 2

)]

+ μ0

4π

∑
k �=n

ω2
nkdnk · dkn

∫ ∞

0
dκ0ze

−2κ0zzA

× Re

[
RTE + RTM

(
1 + 2κ2

0zc
2

ω2

)]
, (A2)

where γiz =
√

1 + εi(iξ )ξ 2/(c2k2
‖), κ0z =

√
k2
‖ + ω2/c2,

ωij (dij ) is the transition frequency (dipole moment), and
αn(ω) is the atomic polarizability defined by

αn(ω) = lim
ε→0

2

�

∑
k �=n

ωkndnk · dkn

ω2
kn − ω2 − iωε

. (A3)

The first term in Eq. (A2) describes the nonresonant part
of the CP potential, recognizable by the integration along
the imaginary frequency axis, ω = iξ , whereas the second
term is related to resonant photon exchange between the atom
and the graphene sheet. Equations (A1) and (A2) are strictly
valid only at zero temperature. We are assuming potential
experimental setups that could be performed at sufficiently low
temperatures for thermal excitations to only play a subordinant
role; in addition, the distance between the atoms and the
graphene sheet is assumed to be much smaller than the
thermal wavelength λT = hc/(kBT ). In situations in which
either assumption fails to hold, a replacement of the frequency
integral by a Matsubara sum,

�

π

∫ ∞

0
dξ f (iξ ) �→ 2kBT

∞∑
n=0

(
1 − 1

2
δ0n

)
f (iξn) , (A4)

with Matsubara frequencies ξn = 2πkBT n/� [58], has to be
employed. Thermal corrections become important only for
kBT � �, where � is the gap parameter of quasiparticle
excitations [59]. At finite temperature, the potential is well ap-
proximated by inserting the temperature-dependent reflection
coefficients in the lowest term in the Matsubara sum (j = 0)
while keeping the zero-temperature coefficients for all higher
Matsubara terms [60,61].

Due to graphene’s unique electronic structure, a full
calculation of its electromagnetic reflection coefficients is, in
fact, possible from first principles. Using the Dirac model for
the description of the dynamics of quasiparticles in graphene at
zero temperature in external electromagnetic fields, one can,
by imposing appropriate boundary conditions to the fields,
find the reflection coefficients for given values of the mass
gap m and chemical potential μ. For simplicity, we will
set m = μ = 0 (perfect Dirac cone) for which the difference
between this approximation for suspended graphene samples
(m,μ ∼ 0.01 eV) is less than 1% [62]. One then arrives at
the reflection coefficients of a free-standing graphene sheet in
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vacuum as

RTM =
4πα

√
k2

0 + k2
‖

4πα

√
k2

0 + k2
‖ + 8

√
k2

0 + ṽ2k2
‖
, (A5)

RTE = −
4πα

√
k2

0 + ṽ2k2
‖

4πα

√
k2

0 + ṽ2k2
‖ + 8

√
k2

0 + k2
‖
, (A6)

where we define k2
0 = ξ 2/c2 and ṽ = (300)−1 and α = 1/137

is the fine-structure constant.

APPENDIX B: GRAPHENE PROPERTIES

It is well known that a free-floating graphene sheet will
always crumple at room temperature; hence, to perform our
setup there is a need to support the graphene sheet on a trench.
Measurements on layered graphene sheets with a thickness
between 2 and 8 nm have provided spring constants that scale
as expected with the dimensions of the suspended section

and range from 1 to 5 N/m [63]. Other experiments studied
the fundamental resonant frequencies from electromechanical
resonators made of graphene sheets [64]. For mechanical
resonators under tension T , the fundamental resonance mode
f0 is given by

f0 = 2π

{[
A

√
E

ρ

t

L2

]2

+ A20.57
T

ρL2wt

}1/2

, (B1)

where E is Young’s modulus; ρ is the mass density; t, w,L

are the thickness, width, and length of the suspended graphene
sheet; and A is a clamping coefficient (A is equal to 1.03 for
doubly clamped beams and 0.162 for cantilevers). We assume a
doubly clamped sheet with a finite value for the tension T = 1
nN. Tension between graphene and trenches depends on the
fabrication technique, but the interaction with the substrate is
generally quite difficult to control [64]. For our purposes, we
have used the known values for bulk graphite ρ = 2200 kg/m3

and E = 1.0 TPa for a doubly clamped graphene sheet with
t = 0.3 nm, L = 5 μm, and w = 5 μm.
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Walser, Phys. Rev. A 88, 043623 (2013).

[37] H. Terças, S. Ribeiro, and J. T. Mendonça, J. Phys. Condens.
Matter 27, 214011 (2015).

[38] Daniel A. Steck, Rubidium 87 D Line Data (revision 2.1.5, 13
January 2015), http://steck.us/alkalidata.

[39] S. Stenholm, Rev. Mod. Phys. 58, 699 (1986).
[40] T. Blake, A. Kurcz, and A. Beige, J. Mod. Opt. 58, 1317

(2011).
[41] D. A. R. Dalvit, P. A. Maia Neto, A. Lambrecht, and S. Reynaud,

Phys. Rev. Lett. 100, 040405 (2008).
[42] D. A. R. Dalvit, P. A. Maia Neto, A. Lambrecht, and S. Reynaud,

J. Phys. A 41, 164028 (2008).
[43] F. Reiter and A. S. Sørensen, Phys. Rev. A 85, 032111

(2012).
[44] X. Hao, S. LiuGang, L. V. XinYou, Y. XiaoXue, and W. Ying,

Sci. China Phys. Mech. Astron. 58, 050302 (2015).
[45] A. L. Gaunt, T. F. Schmidutz, I. Gotlibovych, R. P. Smith, and

Z. Hadzibabic, Phys. Rev. Lett. 110, 200406 (2013).
[46] L. Chomaz, L. Corman, T. Bienaimé, R. Desbuquois, C.
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Pototschnig, T. Thiele, N. P. Stern, and H. J. Kimble, Phys. Rev.
Lett. 109, 033603 (2012).

[57] J. D. Thompson, T. G. Tiecke, N. P. de Leon, J. Feist, A. V.
Akimov, M. Gullans, A. S. Zibrov, V. Vuletić, and M. D. Lukin,
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