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Core-polarization-corrected random-phase approximation with exact exchange for dipole surface
plasmons in silver clusters
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The surface plasmon in silver clusters is red shifted with respect to standard jellium random-phase
approximation (RPA) predictions that work well for simple metal clusters. The reason for the deviation arises
primarily from the non-negligible polarization interaction between the valence electrons and ionic cores. In order
to quantify this effect in the jellium approximation we introduce a modified RPAE (RPA with exact exchange).
The jellium background of Ag cores is treated as a polarizable sphere. This model predicts a dipole surface
resonance in excellent agreement with published experimental data. Moreover it yields the blue shift (red shift)
with decreasing sizes for cationic (anionic) Ag clusters as observed experimentally.
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I. INTRODUCTION

Quantum confinement in simple metallic nanoclusters leads
to an electronic shell filling similar to those of atoms or nuclei,
as evidenced in the historical mass-spectra experiment by
Knight [1], which showed that sodium atoms tend to aggregate
with magic numbers (N = 8, 20, 40, 58, 92, ...). Following
this discovery, much attention has been paid to alkali-metal
clusters, both experimentally and theoretically. In particular
optical absorption has been carefully studied as it reveals
collective dipole modes referred to as surface plasmon [2–10].
It is settled that the optical properties of small sodium clusters
with a magic number of valence electrons can be understood as
the quantum collective response of these electrons in an ionic
background which is approximated by a uniformly charged
sphere (jellium model [11–13]). Although the ionic structure is
completely neglected, the random-phase approximation (RPA)
description of this collective motion reproduces the position
of the surface plasmon and its red shift as the cluster size
decreases. Because the confining external potential deviates
from a harmonic oscillator potential only outside the jellium
core, one can appeal to the Kohn theorem for a zeroth-order
estimate. The Kohn theorem states that for a system with
interacting particles in a confining external harmonic oscillator
potential, a single state contains the whole dipole strength
[14,15]. The frequency of this collective mode is equal to that
of the confining potential, independently of the interaction
among the particles and of the number of particles. The
electron-ion potential inside the jellium sphere is a harmonic
oscillator with a frequency given by

ω2
ho = e2

4πε0mer
3
S

, (1)

where rS is the Wigner-Seitz radius. The measured red shift is
due to the finite size, through two separate mechanisms. One
is associated with the deviation of the electron-ion potential
outside the jellium sphere from the harmonic potential while
the other one is associated with a many-body effect which
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couples the center of mass of motion and the intrinsic electron
motions [16]. Note that there is a close connection between
these two contributions since both effects arise from the spill-
out electrons.

The RPA in the jellium model approximation captures the
main features of the collective dipole mode of simple metal
clusters. However, it works well only for sodium and potassium
clusters and fails to predict correctly the optical response of
lithium clusters. Nevertheless a good agreement between the
measured giant dipole resonance and a modified jellium model
could be achieved by correcting the electron-ion potential
by adding a nonlocal angular-momentum-dependent potential
that accounts for the expected fundamental difference between
s-wave and p-wave scattering by the lithium core which
has only s-core electrons. Within this physically sound and
relatively simple modification the theory could not only predict
the observed position but also explain the experimentally
reduced observed optical strength and yield a correct effective
mass due to the nonlocality of the background potential [17].

Can silver clusters with delocalized 5s-valence electrons
be reasonably well described within a jellium RPA approach?
Optical properties of quantum-sized silver clusters have been
studied extensively and general trends have emerged. Treating
a silver cluster as a classical dielectric sphere, the optical ab-
sorption cross section in the long wavelength can be written as

σ (ω) = 4πωR3

c
Im

ε(ω) − 1

ε(ω) + 2
. (2)

Inserting empirical bulk values of the dielectric function into
the above formula, one predicts a peak at 3.5 eV, which is
much lower than the value of 5.2 eV given by Eq. (1). In
the case of sodium, both values would agree, reflecting the
fact that sodium is well described in the Drude model. The
deviation between both values in the case of silver indicates
that it is no longer justified to neglect the polarization of other
electrons, namely, the filled d shell [18].

In the early nineties, Tiggesbäumker et al. published a set of
photodepletion spectroscopy experiments which showed that
the absorption spectrum of Ag cationic clusters has a blue
shift from 3.8 to 4.4 eV as the number of atoms in cluster
decreases from 70 to 5 [19,20]. These authors also provided a
phenomenological model that explained that the observed shift
was due to a reduced s-d screening interaction in the surface
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region. Later, Tiggesbäumker et al. conducted the same type of
measurements for small negatively charged silver clusters [21]
and observed a red shift with decreasing size which they could
explain within the framework of the phenomenological model
used to account for the blue shift associated with cationic
clusters. The role of d electrons and the observed blue and
red shifts have also been discussed in the framework of a
two-region model by several authors [22,23].

On the theory side, a generalized time-dependent density
functional theory (TDDFT) was proposed by Serra and Rubio
to treat the effects of polarization of ionic cores on the optical
response of silver clusters [24]. This model was a finite system
extension of the work of Zaremba et al. [25,26]. As the induced
valence electron density polarizes the ionic cores, mainly
the 4d electrons, the effective potential felt by the valence
electrons includes a dipole core-polarization potential. Mean-
while, from a pure theoretical point of view, atomic packing
symmetry effects on the absorption spectrum of silver clusters
were studied by TDDFT calculation with an 11-electron pseu-
dopotential, and different exchange correlation functionals
were tested for use in TDDFT calculations [27–29].

The RPA response of a finite electron system to a weak
oscillating dipole field goes beyond the independent particle
response by adding consistently to the external potential the
potential that is induced by the density fluctuations. The
RPA can be formulated within two different representations.
In the time-dependent local-density approximation (TDLDA)
the density change is the key parameter and one solves the
self-consistent equation for the susceptibility [30–34] whereas
in the matrix formulation the configuration space is that of the
single orbitals [35]. The two methods are physically equiva-
lent. However, the TDLDA approach does not allow one to
treat a nonlocal exchange interaction but rather any interaction
which is the sum of the direct Coulomb interaction and any
local interaction deriving from a density-dependent potential.
The RPAE (RPA with exact exchange), which accounts for the
nonlocal exchange interaction, is thus necessarily formulated
in the matrix form, the residual two-body interaction from
Hartree-Fock (HF) theory being diagonalized in the space
of one-particle–one-hole excitations [36,37]. Matrix RPA and
TDLDA were compared numerically and shown to give similar
optical properties for Na clusters [38].

The present theoretical work treats the mutual interaction
between core- and valence-electron fluctuations within the
matrix formulation of RPAE. The model space is therefore
the Hartree-Fock model for the valence electrons with a
two-body interaction made of two contributions, namely, the
usual Coulomb interaction and the dipole core-polarization
interaction. The core-polarization interaction also generates
a one-body dipole polarization potential which adds to the
jellium Coulomb potential. The dipole vibrational modes are
readily obtained by solving the RPAE matrix equation, with
matrix elements of the core-polarization-modified residual
interaction between particle-hole excitations on one block
and ground-state and two-particle–two-hole interactions on
the other block; all these terms have a direct and an exchange
part. This approach differs from that of Ref. [24] by capturing
immediately at the level of the model space the exchange inter-
action exactly, both in the Coulomb and the core-polarization
terms. As in Ref. [24], the input parameter is the dipole

polarizability of the Ag+ ions. Whereas a free ion polarizability
value is assigned to ions lying on the surface of the cluster,
an estimated embedded polarizability value is assigned to
ions lying inside the cluster. Within these assumptions Serra
and Rubio explained the blue shift of the plasmon peak with
decreasing size by an increasing percentage of surface Ag+

ions with free ion polarizability. We shall see in our model that
the one-body attractive polarization potential also contributes
to the blue shift.

As has been discussed before, a pure jellium model fails
to predict the optical spectra of small Ag clusters. However,
we would like to keep the simplicity of the jellium model and
extend it to understand the s-d electron interaction in Ag clus-
ters. In the following section, we present a core-polarization-
corrected RPAE jellium model. Numerical calculations are
done for anionic, neutral, and cationic silver clusters with
closed-shell number of electrons (8, 20, 58, 92, 138, 198).
The effects of the one-body and two-body terms on the shift
of oscillator strength will be discussed. Comparison of our
calculations with experiment will be given and good agreement
is found. An atomic system of units (� = e = me = 4πε0 = 1)
is used throughout the paper.

II. CORE-POLARIZATION-MODIFIED RPAE FOR
JELLIUM SILVER CLUSTERS

In the simple jellium model, a closed-shell neutral cluster of
N simple metal atoms is treated as a system of N electrons (one
valence electron per atom) confined by a uniformly charged
spherical background. The Hamiltonian for this N -electron
system is given by

H =
∑

i

(
−1

2
∇2

i

)
+

∑
i

VJM(ri) +
∑
i<j

1

|ri − rj | , (3)

where

VJM(r) =
{

− N
2RJ

(
3 − (

r
RJ

)2)
if r < RJ ,

−N
r

if r > RJ ,

where RJ = N1/3rS is the cluster radius and VJM is the jellium
background potential. This model implicitly assumes that the
valence electrons are well separated from the core electrons.
Since there is a large overlap between 5s and 4d electron wave
functions in Ag atom, the jellium model for silver clusters
needs to be modified. The assumption underlying the present
model is that the jellium background is no longer rigid but
polarizable. Any delocalized 5s electron induces a dipole
into the jellium core which in turn interacts with another 5s

electron; thus core polarization leads to the addition to the
above Hamiltonian of both a one-body potential Vcp and a
two-body interaction ucp; see the Appendix for the derivation
of these polarization terms entering the polarization-corrected
jellium Hamiltonian:

H =
∑

i

(
− 1

2
∇2

i

)
+

∑
i

VJM(ri) +
∑

i

Vcp(ri)

+
∑
i<j

1

|ri − rj | +
∑
i<j

ucp(ri ,rj ). (4)
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The relevant parameter to measure the strength of both
core-polarization terms is the dipole polarizability of the
Ag+ ions that constitute the jellium core. Relativistic RPAE
calculations for free silver cations predict a value α

f

d = 8.82a3
0

[39]. However, one needs to estimate the polarizability of
a Ag+ ion which is embedded into the jellium. Following
Refs. [25,26] we add to the central nuclear potential the
electrostatic potential associated with a uniformly distributed
Wigner-Seitz sphere of one negative charge with the silver
density parameter rs = 3.02a0. Within this model for an
embedded ion, our atomic nonrelativistic RPAE calculation
gives an embedded polarizability αe

d = 11.27a3
0 .

As argued by Serra and Rubio [24], the polarizability of
Ag+ on the surface of the cluster should be assigned its free ion
value. To account for this difference, we separate a surface shell
containing Nf ions with free polarizability from the inner bulk
containing Ne ions with embedded polarizability. For small
clusters AgN with N � 21, all the silver ions are considered
as staying on the surface. For Ag58 and Ag+

59 the number of
embedded silver cores is obtained by using the atomic structure
given in Ref. [40] with Ne = 13. In the same way, for Ag138
and Ag+

139 the number of embedded silver ions is 55. For Ag198
we assume that the surface shell has the same thickness as that
of Ag138 to yield Ne = 89.

Since our purpose is to investigate small-amplitude dipole
vibration modes, we need to consider in the linear response
only the dipole term of the multipole decomposition of the
residual interaction. Actually, other multipoles contribute to
the RPAE matrix elements defined below in Eqs. (13)–(15);
they are fully taken into account in the Coulomb interaction but
neglected in the core-polarization residual interaction because
they are much smaller. Within these assumptions and as can be
seen in the Appendix, the two-body core-polarization dipole
interaction is separable and can be written as

ucp(ri ,rj ) = −Nαf (ri)f (rj), (5)

where Nα = Nf α
f

d + Neα
e
d and the interaction form factor is

f (r) =
{ r

R3
J

if r < RJ ,
r
r3 if r > RJ ,

while the one-body term reads

Vcp(r) = − 1
2Nαf 2(r). (6)

The many-body Hamiltonian of Eq. (4) is separated into a
model independent-particle Hamiltonian H0 and the residual
two-body interaction Vr :

H = H0 + Vr, (7)

where

H0 =
N∑
i

h0(ri), (8)

h0(r) = − 1
2∇2 + VJM(r) + Vcp(r) + U (r), (9)

Vr = 1

2

∑
i,j

[
1

|ri − rj | − Nαf (ri)f (rj)

]
−

∑
i

U (ri). (10)

In the present work the potential U is the nonlocal Hartree-
Fock (HF) potential as

Uφa(r) = −
∑

b

∫
dr′

(
1

|r − r′| − Nαf (r)f (r′)
)

× [φ†
b(r′)φb(r′)φa(r) − φ

†
b(r′)φa(r′)φb(r)], (11)

where the φ’s are the single-particle wave functions and the
summation extends over occupied states. Restricting to closed-
shell systems, we are led to solve radial HF equations for the
occupied orbitals. The next step is to construct the many-body
dipole modes, which is done by solving the RPAE matrix
equation (

A B

B∗ A∗

)(
Xk

Y k

)
= ωk

(
Xk

−Y k

)
. (12)

The matrix A contains matrix elements of the Coulomb
plus core-polarization interaction between particle-hole exci-
tations, whereas the matrix B is composed of matrix elements
of that interaction between the ground state and two-particle–
two-hole excitations:

Ama,nb = (εm − εa)δabδmn + 〈mb|Vr |an〉, (13)

Bma,nb = 〈mn|Vr |ab〉, (14)

〈ij |Vr |kl〉 =
〈
ij | 1

|r − r′| − Nαf (r)f (r′)|kl

〉

−
〈
ij | 1

|r − r′| − Nαf (r)f (r′)|lk
〉
. (15)

The indices a,b (n,m) refer to the hole (particle) states. The
positive eigenvalues ωk of Eq. (12) are the excitation energies
of the system. The corresponding eigenvectors representing the
physical states are linear combinations of the forward-going
and backward-going amplitudes Xk

ma and Y k
ma that satisfy the

normalization equation∑
a,m

(∣∣Xk
ma

∣∣2 − ∣∣Y k
ma

∣∣2) = 1. (16)

The dipole transition amplitude from the ground state to the kth
excited state is expressed in terms of reduced matrix elements
of the dipole operator d as

qk =
∑
a,m

(
Xk

ma − Y k
ma

)〈φm||d||φa〉, (17)

and the corresponding oscillator strength is given by

fk = 4
3ωkq

2
k . (18)

The numerical solution of the eigenvalue problem follows
exactly the procedure used in Ref. [37] where the needed
complete set of single-article states is obtained by confining
the cluster in a large cavity and expanding the HF orbitals
in terms of a finite number of B splines. The accuracy of
the method can be checked by the Thomas-Reiche-Kuhn f

sum rule
∑

k fk = N being satisfied to better than one part
in 104. The theory produces a discrete spectrum of oscillator
strengths fk from which one can express the photoabsorption
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cross section

σ (E) = 2π2 e2
�

mc

∑
k

fkδ(E − �ωk). (19)

III. RESULTS AND DISCUSSION

In the present paper we shall consider only free silver
clusters in vacuum, notwithstanding that most of the exper-
iments have been performed with clusters embedded into a
weakly interacting rare-gas matrix [41–43] or deposited on a
surface [44,45]. The effect of the surrounding medium will be
discussed in a subsequent paper.

Tiggesbäumker et al. [19,20] published high-quality
photofragmentation cross sections of free Ag clusters Ag+

9 ,
Ag+

21, Ag+
50±3, and Ag+

70±5 using ion beam deletion spec-
troscopy. These data which precisely reflect photoabsorption
cross sections are shown in Fig. 1. Ag+

9 and Ag+
21 are closed-

shell clusters with 8 and 20 delocalized, respectively, as evi-

FIG. 1. Photoabsorption cross section (Å
2
) of free cationic silver

clusters as function of dipole transition energy (eV). The scattered
circles with error bars are experiment results [20]. The solid vertical
lines give the discrete oscillator strength distribution calculated
by RPAE with the core-polarization-modified jellium model. The
continuous line is a Lorentzian shape convolution (γ = 0.065ωk) of
the oscillator strength distribution. Note that the Lorentzian shape
convolution of Ag+

59 is rescaled by a factor of 50/58 to compare with
experimental data for Ag+

50±3.

denced experimentally both by the observed single resonance
of Lorentzian shape and ionization potential measurements
[46]. As our model assumes that clusters are spherical, only
closed-shell systems are considered and the experimental data
of Ag+

50±3 will be compared with our prediction for Ag+
58

properly rescaled.
To compare with experimental absorption spectrum results,

we make a Lorentzian shape convolution for the oscillator
strength such as

fk = fk

π

γ

γ 2 + (E − ωk)2
, (20)

namely, we replace each line by a Lorentzian distribution of
arbitrarily fixed width γ = 0.065ωk . As shown in Fig. 1, the
theoretical and experimental photoabsorption spectra of Ag+

9
and Ag+

21 are in excellent agreement both as to the position
of the resonances and the absolute value of the cross section;
however, the absolute cross sections are measured within un
uncertainty of about 50%. The theoretical spectrum of Ag+

59 is
rescaled to compare with the experimental spectrum of Ag+

50±3
and a good agreement is observed too.

Figure 2 shows that the present theoretical predictions agree
nicely with the experimental photodestruction (interpreted as
photoabsorption) spectra of closed-shell negatively charged
clusters (Ag−

7 and Ag−
19) [21]. However, whereas the peak

positions are in excellent agreement, the model yields a
broadening of the optical absorption spectrum larger than
experimentally measured, which we explain as a limitation

FIG. 2. Photoabsorption cross section (Å
2
) of free anionic silver

clusters as a function of dipole transition energy (eV). The scattered
circles with error bars are experiment results [21]. The solid vertical
lines give the discrete oscillator strength distribution calculated
by RPAE with the core-polarization-modified jellium model. The
continuous line is a Lorentzian shape convolution (γ = 0.065ωk) of
the oscillator strength distribution.
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of the jellium assumption. Indeed the model assumes no
relaxation of the ionic core distribution to adjust to the
excess electron. Consequently the larger fragmentation of
the collective dipole excitation which is expected from the
larger spill out as compared with a neutral or cationic cluster
is possibly overestimated. One sees that polarizable jellium
RPAE model is able to explain the observed trends for the few
data available. The theoretical predictions can be understood
qualitatively as follows. The main contribution to the dipole
strength redistribution arises from the the dipole component
of the residual interaction which contains the Coulomb term
and the core-polarization term:

V L=1
r (r,r′) =

(
r<

r2
>

− Nαf (r)f (r ′)
)

cos(θr,r′), (21)

where r< and r> are the smallest and largest of the two electron
radial positions. It can be written as

V L=1
r = βV L=1

Coulomb. (22)

where the screening factor β is

β = 1 − α

r3
s

R3
J

r2
>

r<

f (r<)f (r>). (23)

As the dipole transition density is peaked at the surface, one
can write down the following approximations:

β ≈

⎧⎪⎪⎨
⎪⎪⎩

1 − α
r3
s

R3
J

r3
<

if RJ < r<,

1 − α
r3
s

if r< < RJ < r>,

1 − α
r3
s

r3
>

R3
J

if r> < RJ .

In the large size limit, the effective screened electron charge
is about e∗ =

√
1 − α

r3
s

which in the Drude model would

lead to a red shift of the Mie resonance [Eq. (1)] from 5.2
to 3.9 eV to compare with the empirical value of 3.5 eV
[Eq. (2)]. In this limit, the one-body core-polarization potential
of Eq. (6) does not contribute. However, it has a size
dependence which yields a blue shift of the plasmon frequency
with decreasing cluster size. This is readily seen as the
attractive jellium background potential is strengthened in the
surface region and consequently the Mie frequency of Eq. (1)
is blue shifted by a size-dependent multiplying factor of about
(1 + α

2Nr3
s
). Moreover, the increasing fraction of lower surface

polarizability as discussed in previous papers [20,24] also
contributes to this blue shift.

However, the size-dependent blue shift arising from one-
body core polarization is competing with the size-dependent
red shift due to electron spill out. This competition leads to
an overall size dependence which changes sign as the total
electrical charge of silver clusters changes from positive to
negative. In cationic clusters with an extra positive charge in
the jellium background, the relatively weak electron spill out
cannot beat the core-polarization effect, and the overall size
dependence predicted by the model and observed experimen-
tally is a blue shift, see Figs. 3 and 6. In anionic clusters
with an extra negative charge in the jellium background, the
relatively large electron spill out beats the core-polarization
effect, and the overall size dependence predicted by the model
and observed experimentally is a red shift, see Figs. 4 and 6.

FIG. 3. Photoabsorption cross section (Å
2
) of free cationic silver

clusters as a function of dipole transition energy (eV). Dashed
vertical lines are oscillator strengths calculated by RPAE within a
pure jellium model. Red solid vertical lines are oscillator strengths
calculated by RPAE within a core-polarization-modified jellium
model. The continuous solid and dashed lines are Lorentzian shape
convolutions (γ = 0.065ωk) of the corresponding oscillator strength
distributions.

For neutral clusters the competition between electron spill
out and core polarization is more balanced leading to an
slightly red-shifted size-dependent surface plasmon frequency,
as shown in Fig. 5. Let us recall that there are no experimental
data on free neutral clusters and the experimentally observed
blue shifts concern silver clusters placed on a substrate for
which the effects of the latter need to be considered [44,45,47].

IV. CONCLUSION

The average dipole vibration mode of small closed-shell sil-
ver clusters (assuming that 5s electrons are fully delocalized)
can be nicely described by a random-phase approximation with
exact exchange (equivalent to a time-dependent Hartree-Fock
model) within a polarizable jellium model. The polarizability
of the jellium core implies that the jellium Hamiltonian
needs to be modified both in the one-body potential and
in the two-body electron-electron interaction. Jellium core
polarization leads to a screening of dipole component of
the Coulomb interaction in both the direct and exchange
terms. The only parameter which enters the present model
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FIG. 4. Same as Fig. 3, but for free anionic silver clusters.

is the dipole polarizability of silver cations that constitute the
jellium; this parameter can be calculated in a fully independent
atomic model. The red and blue shifts of the surface plasmon
peak as the cluster size varies, which has been extensively
discussed in the literature results from a subtle interplay
between core-polarization screening and spill-out effect. The
present model explains well the observed blue shift with
decreasing cluster size for cationic silver clusters as well as
the red shift for anionic clusters. The next challenge will be to
adapt a jellium approach for gold clusters where relativistic
effects are important. It should be borne in mind that the
present approach does not claim to compete with full ab initio
calculations such as real time TDDFT, but to provide an insight
on the dominating phenomena that control the physics under
study; it has the advantage of allowing calculations for large
clusters which are prohibitive for ab initio calculations and
allowing linkage with classical calculations.
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FIG. 5. Same as Fig. 3, but for free neutral silver clusters.

APPENDIX: JELLIUM POLARIZATION INTERACTION

Let N silver cations and N electrons form a bound system.
The electric field E(Ra) on the site of a silver cation a located
at position Ra , generated by the other silver cations at positions

FIG. 6. Theoretical evolution of the surface plasmon peak as a
function of the inverse radius of silver clusters: cationic clusters
(blue circles), anionic clusters (red diamonds), neutral clusters (green
squares). The black line of 3.95 eV shows the large cluster limit
predicted by our model.
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Rj and the valence electrons at positions ri , is

E(Ra) =
∑

j

Ra − Rj

|Ra − Rj |3 −
∑

i

Ra − ri

|Ra − ri |3 . (A1)

Let α be the atomic dipole polarizability of a single silver
cation. The induced polarization leads to a polarization energy

Vp = −1

2
α

∑
a

|E(Ra)|2. (A2)

Within the spherical jellium approximation, we average
the core-polarization energy over the cation distribution of
constant number density ni as nion(R) = niθ (RJ − |R|) =

3
4πr3

S

θ (RJ − |R|), where θ (x) is the step function equal to 1

for x > 0 and to 0 for x < 0 and RJ the jellium radius. This
gives

Vp = −1

2
αni

∫ RJ

0
dR|E(R)|2. (A3)

Only the part depending on the electron position enters the
jellium Hamiltonian [Eq. (4)]. Therefore the core-polarization
potential in this Hamiltonian has two terms, namely, a one-
electron term Vcp and a two-electron term ucp. Expanding

Eq. (A2), the one-body term reads

Vcp(ri) = 1

2
αni

∫ RJ

0
dR

∑
I

2
R − RI

|R − RI |3
R − ri

|R − ri |3

−
(

R − ri

|R − ri |3
)2

, (A4)

and the two-body term as

ucp(ri ,rj ) = −αni

∫ RJ

0
dR

R − ri

|R − ri |3
R − rj

|R − rj |3 . (A5)

Dealing with dipole transitions only, we only pick up the dipole
component of the core-polarization two-body interaction.
Other multipoles may contribute to the exchange RPAE matrix
elements but they are much smaller and can be neglected with
regard to the set of approximations underlying the jellium
approximation. Expanding the functions 1

|R−r| in Legendre
polynomials, it is clearly seen that the dipole term reduces to

uL=1
cp (ri ,rj ) ≈ −αni

∫ RJ

0
dR

ri · rj

r3
>ir

3
>j

≈ −αN
ri · rj

r3
>ir

3
>j

, (A6)

where r>i denotes the largest of ri and RJ as explicit in Eq. (5).
As for the one-body potential of Eq. (A4), which enters the

jellium Hamiltonian, we need to retain the monopole leading
contribution only; it clearly is

V L=0
cp (ri) = −1

2
αni

∫ RJ

0
dR

r2
i

r6
>i

= −1

2
αN

r2
i

r6
>i

. (A7)
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