
PHYSICAL REVIEW A 94, 042708 (2016)

Determination of the exchange interaction energy from the polarization expansion
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The exchange contribution to the energy of the hydrogen atom interacting with a proton is calculated from the
polarization expansion of the wave function using the conventional surface-integral formula and two formulas
involving volume integrals: the formula of the symmetry-adapted perturbation theory (SAPT) and the variational
formula recommended by us. At large internuclear distances R, all three formulas yield the correct expression
−(2/e)Re−R , but they approximate it with very different convergence rates. In the case of the SAPT formula, the
convergence is geometric with the error falling as 3−K , where K is the order of the applied polarization expansion.
The error of the surface-integral formula decreases exponentially as aK/(K + 1)!, where a = ln 2 − 1

2 . The
variational formula performs best, its error decays as K1/2[aK/(K + 1)!]2. These convergence rates are much
faster than those resulting from approximating the wave function through the multipole expansion. This shows the
efficiency of the partial resummation of the multipole series effected by the polarization expansion. Our results
demonstrate also the benefits of incorporating the variational principle into the perturbation theory of molecular
interactions.
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It is impossible to understand the world without the
knowledge of intermolecular interactions [1]. Not only do they
govern the properties of gases [2], liquids [3], and solids [4],
but also they influence chemical reactivity [5] and determine
the structure of complex biological systems [6].

The current understanding of molecular interactions, based
on the decomposition of the interaction energy Eint into
electrostatic, induction, dispersion, and exchange components,
is provided by the symmetry-adapted perturbation theory
(SAPT) [7,8]. In this theory the molecular interaction is
treated by a perturbation procedure in which the proper
symmetry of the wave function is forced in each order [9,10]
and the noninteracting monomers are used at the zeroth-
order approximation. In contrast to the more conventional
supermolecular approach, in which Eint is calculated as (a
small) difference of large absolute energies, the perturbation
treatment of molecular interactions is free from basis-set
superposition error (BSSE) [11], does not rely on fortuitous
error cancellation of large numbers, and provides a clear
connection between monomer properties and the interaction
energy components. For further discussion of the merits and
applications of SAPT we refer the reader to recent reviews
[12,13].

The most straightforward perturbation treatment of molec-
ular interactions, known as the polarization approximation
[14] or polarization expansion, consists of an application of
the standard Rayleigh-Schrödinger perturbation theory, with
the zeroth-order Hamiltonian H0 taken as the sum of the
noninteracting monomer Hamiltonians, and the perturbation
V (the interaction operator) defined as V = H − H0, where
H is the electronic Hamiltonian of the system. Polarization
expansion provides the correct, valid for all intermolecular
distances R, definitions of the electrostatic, induction, and
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dispersion contributions to the interaction energy [7]. It is
well known, however, that in a practically computable finite
order, the polarization expansion for the energy is not able to
recover the exchange energy, the basic repulsive component
of the interaction potential that determines the structure of
molecular complexes and solids. It is also known [15,16] that
the polarization series provides the asymptotic expansion of
the primitive function � [14],

� = ϕ(0) + ϕ(1) + · · · + ϕ(K) + O(R−κ(K+1)), (1)

where ϕ(k) is the kth-order (in V ) polarization correction
to the wave function and κ = 3 for interactions of neutral
monomers, and κ = 2 when at least one of the monomers
is charged. Equation (1) represents the genuine primitive
function in the sense of Kutzelnigg [17], i.e., the function
which, after appropriate symmetry projections Aν , yields
correctly all asymptotically degenerate wave functions �ν of
the interacting system, Aν� = �ν , and which is localized in
the same way as the zeroth-order wave function ϕ(0). Using
the exact wave functions �ν , Eq. (1) can be written in an
equivalent, mathematically more precise form [16]

||�ν − Aν�
(K)|| = O(R−κ(K+1)), (2)

where �(K) = ϕ(0) + ϕ(1) + · · · + ϕ(K) is the polarization
function through the Kth order and || · || is the usual L2 norm.

While methods of calculating the large-R asymptotic
behavior of the polarization energies (electrostatics, induction,
dispersion) are well developed and there is a great deal of
information about the corresponding asymptotic constants
[7], very little is known about the asymptotic behavior of
exchange energy. Even the functional form of its asymptotic
decay for system as simple as two hydrogen atoms still stirs
controversy [18–20]. The reason for the difficulty is that the
exchange energy, as the result of the resonance tunneling of
the electrons between the Coulomb wells of the interacting
atoms, is sensitive to the wave-function values in the classically
forbidden region of multidimensional configuration space. The
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conventional, basis-set-based methods of electronic structure
theory are not well suited to accurately represent the wave
function in this region.

Only for the interaction of the hydrogen atom with a proton,
i.e., for the H+

2 system, the asymptotic expansion of the
exchange energy is known from the tour de force study of
Refs. [21,22]. For this system the exchange energy J (R) is
defined as

J (R) = 1
2 (Eg − Eu), (3)

where Eg and Eu are the energies of the lowest gerade
and ungerade states of the Hamiltonian H = −�/2 − r−1

a −
r−1
b + R−1, ra and rb being the distances of the electron to the

nuclei a and b. Using semiclassical methods the authors of
Refs. [21,22] found that for H+

2 the exchange energy has the
following asymptotic expansion:

J (R) ∼ (2/e) R e−R(j0 + j1 R−1 + j2 R−2 + · · · ), (4)

where j0= − 1,j1= − 1/2, etc. Atomic units � = me = e = 1
are used in Eq. (4) and throughout the paper.

In this work we shall consider three formulas expressing
J (R) in terms of �. The physical picture of electrons tunneling
from one potential well to the other is reflected by the surface-
integral formula [23–25]. Using the notation appropriate for
H+

2 this formula takes the form

Jsurf[�] =
∫
M

�∇�dS

〈�|�〉 − 2
∫

right �
2 dV

, (5)

where M is the plane perpendicular to the bond axis passing
through the center of the molecule and the volume integral
with subscript “right” is taken over that half of the space
restricted by M where the function � is not localized. Surface
integrals, which are cumbersome in the case of many-electron
systems, can be avoided if one uses volume-integral formulas:
the so-called SAPT formula [26], and the variational formula
recommended recently by the present authors [27]. In the
notation specified for H+

2 these formulas have the form

JSAPT[�] = 〈ϕ(0)|VP�〉〈ϕ(0)|�〉 − 〈ϕ(0)|V �〉〈ϕ(0)|P�〉
〈ϕ(0)|�〉2 − 〈ϕ(0)|P�〉2

,

(6)

Jvar[�] = 〈�|HP�〉〈�|�〉 − 〈�|H�〉〈�|P�〉
〈�|�〉2 − 〈�|P�〉2

, (7)

where P is the operator inverting the electron coordinates
with respect to the center of the molecule. Equation (6) is
obtained in the so-called symmetrized Rayleigh-Schrödinger
(SRS) perturbation theory [10,28,29] specified for H+

2 or H2.
Because of its simplicity the SRS theory is the only variant of
SAPT that is routinely applied to large many-electron systems
[12,13].

A direct calculation of the primitive function � without a
prior knowledge of �ν is very difficult. In principle � can
be obtained using the Hirschfelder-Silbey (HS) perturbation
expansion [30], which quickly converges for H+

2 [31] and leads
to very accurate values of the exchange energy when formulas
(5) and (6) are evaluated with the converged � [26]. However,

the HS theory is not feasible for many-electron systems and
we have at our disposal only asymptotic approximations to �,
given by the multipole series for the wave function [7,15] or
by the polarization expansion of Eq. (1). The analytic study
for H+

2 has shown [32] that the multipole expansion of �,
when inserted in Eqs. (5)–(7), predicts correctly the leading j0

term in Eq. (4) but the convergence to the exact result is slow
(harmonic) when the SAPT formula is used and geometric
with the ratio of 1/2 and 1/4 when the surface-integral and
variational formulas are used, respectively.

In the present work we show the results that one obtains
using the polarization expansion for �, i.e., the results of
evaluating Eqs. (5)–(7) with the function �(K). Since the
perturbation V has the infinite multipole expansion, each
polarization correction ϕ(n) accounts for the interaction of
infinitely many multipoles. The polarization expansion not
only includes the charge-overlap effects [7] but also may be
viewed as a selective, infinite-order resummation of the mul-
tipole expansion. One can expect, then, that the polarization
expansion of the wave function can give better approximation
to the exchange energy than the multipole expansion.

I. WAVE-FUNCTION ASYMPTOTICS

The polarization corrections to the wave function, referred
to for brevity as polarization functions, are defined by the
recurrence relations

(H0 − E0)ϕ(k) = −V ϕ(k−1) +
k∑

m=1

E(m)ϕ(k−m), (8)

where E(k) = 〈ϕ(0)|V ϕ(k−1)〉 and the ground state of the
hydrogen atom a is taken as the zeroth-order approximation,
i.e., ϕ(0) = π−1/2e−ra , E0 = −1/2.

In our previous work [27], we showed that the asymptotics
of J (R), i.e., the value j0 of Eq. (4), when calculated from
Eqs. (5)–(7) depends only on the values of � on the line
joining the nuclei. Thus, if the polarization function ϕ(k) is
written as ϕ(0)f (k)(ra,θa), where θa is the angle at nucleus a

in the triangle formed by the nuclei and the electron, then the
angular dependence of f (k)(ra,θa) does not affect the value of
j0 and the function f (k)(ra,θa) can be replaced by its value
at θa = 0, i.e., by f (k)(ra,0). We have shown [32] that in the
large-R asymptotic expansion of f (k)(ra,0),

f (k)(ra,0) ∼
∑

n

R−n

n∑
m=0

t (k)
nm rm

a , (9)

only the dominant m = n terms contribute to the asymptotics
of J (R). Thus, in calculating this asymptotics, f (k)(ra,0) can
be replaced by the simpler function

f̃ (k)(ra) ∼
∑

n

t (k)
nn (ra/R)n. (10)

In Ref. [32] we have shown that the coefficients t (k)
n ≡ t (k)

nn in
Eq. (10) satisfy the recurrence relation

t (k)
n = 1

n

n−2∑
j=2k−2

t
(k−1)
j , (11)
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with the initial k = 0 values given by t (0)
n = δn0 (we assume

that a sum is zero when the lower summation limit exceeds
the upper one). Although the closed-form expression for t (k)

n is
unknown, we shall show that the series of Eq. (10) converges
for ra < R (hence on the line joining the nuclei) to the
expression

f̃ (k)(ra) = [−ra/R − ln(1 − ra/R)]k/k!. (12)

Equation (12) means that g(k)(z) = [−z − ln(1 − z)]k/k! is
the generating function of t (k)

n . To prove this it is sufficient to
note that g(k)(z) satisfies the equation

d

dz
g(k)(z) = z

1 − z
g(k−1)(z), (13)

expand both sides of Eq. (13) in powers of z, and compare
coefficients at zn. One may note that the functions f̃ (k)(ra)
form an exponential series, which is consistent with the
analysis of Ref. [33]. The series of functions f̃ (k)(ra) converges
to e−ra/R/(1 − ra/R), the function obtained earlier via the
WKB method [24,25] and shown to represent the dominant
contribution to the infinite-order polarization function [34].
Thus, our results agree with the findings of Ref. [34].

II. SURFACE-INTEGRAL FORMULA

We shall denote by j surf
0 [�(K)], jSAPT

0 [�(K)], and j var
0 [�(K)]

the approximations to j0 obtained when the polarization func-
tion �(K) is used in the surface-integral, SAPT, and variational
formulas, Eqs. (5)–(7), respectively. Tang et al. [35] showed
that the asymptotics of Jsurf[�] can be determined from
the expression −R e−R[F (R/2,0)]2/2, where the function
F (ra,θa) is defined by the factorization � = ϕ(0)F (ra,θa).
Approximating F (ra,0) by the asymptotics of its Kth-order
polarization expansion we find

j surf
0 [�(K)] = − e

4

[
K∑

k=0

f̃ (k)

(
R

2

)]2

= − e

4

(
K∑

k=0

ak

k!

)2

,

(14)
where

a = ln 2 − 1
2 ≈ 0.19. (15)

Equation (14) has been obtained in Ref. [35] using a different
derivation. The correct value of j0 is recovered by the K → ∞
limit of j surf

0 [�(K)] equal to −e2a+1/4 = −1. Furthermore, the
error of j surf

0 [�(K)] decreases rapidly, as

j0 − j surf
0 [�(K)] = −√

e
aK+1

(K + 1)!
+ O

(
aK+2

(K + 2)!

)
, (16)

in the same way as the truncation error of the exponential
series. Figure 1 shows the accuracy of Eq. (16).

III. VARIATIONAL FORMULA

Since 〈�(K)|�(K)〉 = 1 + O(R−4) and 〈�(K)|H�(K)〉 =
E0 + O(R−4), the coefficient j var

0 [�(K)] can be extracted from
the expression

J ∗
var[�

(K)] = 〈�(K)|(H − E0)P�(K)〉. (17)
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FIG. 1. Logarithms of errors of j0 calculated using the variational,
SAPT, and surface-integral formulas. Dots are the calculated values;
solid lines, the error estimates of Eqs. (16), (38), and (43).

Writing �(K) = ϕ(0)F (K) one can show that j var
0 [�(K)] can be

obtained from an even simpler formula:

J ∗∗
var[�

(K)] =
〈
Pϕ(0)F (K)

∣∣∣∣ϕ(0)

(
∂

∂ra

F (K) + V F (K)

)〉
, (18)

in which the Laplacian of F (K) was neglected since it does not
contribute to j var

0 [�(K)].
Approximating F (K) by F̃ (K) = f̃ (0) + f̃ (1) + · · · + f̃ (K)

and noting that ∂F̃ (k)/∂ra + V F̃ (K) = f̃ (K), cf. Eq. (13), one
can represent the asymptotics of J ∗∗

var[�
(K)] in terms of integrals

〈Pϕ(0)f̃ (k1)|V ϕ(0)f̃ (k2)〉 = − R e−R

4k1! k2!
L(k1,k2)

[
1 + O

(
1

R

)]
,

(19)

where

L(k1,k2) =
∫ 1

−1
dη (1 + η)2[γ (η)]k1 [γ (−η)]k2, (20)

and γ (η) = (η − 1)/2 + ln 2 − ln(η + 1). Equations (19) and
(20) follow from the integration in the elliptic coordinates,
ξ = (ra + rb)/R, η = (ra − rb)/R, and the integration by parts
procedure of Eq. (29) in Ref. [27].

Using Eqs. (18) and (19) one obtains

2

e
j var

0 [�(K)] = − 1

4K!

K∑
k=0

L(k,K)

k!
. (21)

For K = 1 one finds

2

e
j var

0 [�(1)] = −1

4

[
L(0,1) + L(1,1)

] = −989

540
+ π2

9
, (22)

in agreement with Ref. [36]. For arbitrary K Eq. (21) can be
rewritten as

2

e
j var

0 [�(K)] = − 1

4K!

[
M(K) −

∞∑
p=1

T K
p

]
, (23)

where

T K
p = L(K + p,K)/(K + p)!, (24)
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and

M(K) =
∞∑

k=0

L(k,K)

k!
. (25)

Changing the order of summation and integration, collapsing
the exponential series, and using the variable change x =
γ (−η) we obtain

M(K) = 8

e

∫ ∞

0
xKe−x dx = 8K!

e
. (26)

Since the second term in the square brackets on the right-hand
side of Eq. (23) vanishes when K → ∞, cf. Eqs. (37) and (28),
we see that j var

0 [�(K)] converges to the correct value j0 = −1.

IV. VARIATIONAL FORMULA—THE CONVERGENCE
RATE

We shall show that the residual series in Eq. (23) can be
estimated (at large K) by its first term, T K

1 . For large K

and p = 1,2 the integrals L(K + p,K) of Eq. (24) can be
approximated using the Laplace method [37]. To this end we
rewrite them as

L(K + p,K) =
∫ 1

−1
(1 + η)2[γ (η)]peKλ(η) dη, (27)

where λ(η) = ln [γ (η)γ (−η)]. As λ(η) has a single maximum
at η = 0, for large K only η ∈ [−ε,ε] with a small ε contribute
significantly to Eq. (27). Approximating λ(η) for |η| < ε

by the Taylor expansion, λ(η) = λ0 + λ2η
2 + O(η3) converts

Eq. (27) into the Gaussian integral (see Ref. [37] for details),

L(K + p,K) =
√

π/(K|λ2|) a2K+p[1 + O(K−1)], (28)

where λ2 = (4a − 1)/(4a2). We use Eq. (28) to estimate p = 1
and p = 2 terms in the residual series in Eq. (23). Equation
(28) is not valid for large p so to estimate the p > 2 terms we
use the Schwartz inequality

L(K + p,K) � (P2pQ2K )1/2, (29)

where

Qm =
∫ 1

−1
emλ(η)dη, (30)

and

Pm =
∫ 1

−1
(1 + η)4[γ (η)]mdη. (31)

Using the Laplace method once more we have

Qm =
√

π/(m|λ2|) a2m

[
1 + O

(
1

m

)]
. (32)

The variable change t = ln 2 − ln(η + 1) shows that

Pm = 32
∫ ∞

0
e−5t [e−t + t − 1]mdt. (33)

Since e−t + t − 1 � t for t � 0, it follows that P (m) �
(32/5)m!/5m, so that T K

p � T̃ K
p , where

T̃ K
p = 4

[
2
5 (2p)!Q2K

]1/2
5−p/(K + p)!. (34)

It can be shown that T̃ K
p+1/T̃

K
p � 2/5, so that the infinite sum

of T̃ K
p , and consequently T K

p , can be bounded by the geometric
series with the ratio equal to 2/5,

∞∑
p=3

T K
p �

∞∑
p=3

T̃ K
p �

∞∑
p=3

T̃ K
3

(
2

5

)p−3

= 5

3
T̃ K

3 . (35)

Using Eqs. (35), (34), and (28), we find that

1

T K
1

∞∑
p=3

T K
p � D K1/4

(K + 2)(K + 3)
[1 + O(K−1)], (36)

where D = 16[(1 − 4a)/(2π )]1/4/(25a3/2). Therefore, the
p � 3 contributions to the series on the right-hand side of
Eq. (23) are negligible in comparison with the p = 1 term.
In view of Eq. (28), T K

2 ∼ a2K+2/(K + 2)!, hence the term
with p = 2 on the right-hand side of Eq. (23) is also negligible
when compared to the p = 1 term. Finally

∞∑
p=1

T K
p = T K

1 [1 + O(K−1)]. (37)

Thus, the error of j var
0 [�(K)] is dominated by the p = 1 term

in the sum in Eq. (23),

j0 − j var
0 [�(K)] = − A a2K+2

√
KK!(K + 1)!

[1 + O(K−1)], (38)

where A = e
√

π/(4
√

1 − 4a). The rapid fall-off of the error
of j var

0 [�(K)] can be seen in Fig. 1.

V. SAPT FORMULA

To obtain jSAPT
0 [�(K)] it is sufficient to consider the

following approximation to JSAPT[�(K)]:

J ∗
SAPT[�(K)] = 〈ϕ(0)|VPϕ(0)F (K)〉. (39)

Approximating F (K) by the sum of functions f̃ (k)(ra)
one can represent j var

0 [�(K)] in terms of integrals
〈ϕ(0)|VPϕ(0)f̃ (k)(ra)〉. Using Eq. (19) one obtains

2

e
jSAPT

0 [�(K)] = −1

4

K∑
k=0

L(k)

k!
, (40)

with L(k) = L(k,0). When K → ∞, the sum on the right-hand
side is equal to M(0), so in view of Eq. (25), jSAPT

0 [�(K)]
converges to the correct value j0 = −1.

To calculate the error of jSAPT
0 [�(K)] we need the integrals

L(k) = 8
∫ ∞

0
e−3t [e−t + t − 1]kdt (41)

obtained from Eq. (20) using the variable change t = ln 2 −
ln(η + 1). Repeated application of the binomial theorem yields

L(k) =
k∑

l=0

8k!ek−l(−l − 3)

l!(l + 3)k−l+1
, (42)

where en(x) is the exponential sum function, i.e., the series of
ex truncated after the xn/n! term. The large-k asymptotics of
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L(k) is given by the first l = 0 term in the sum in Eq. (42). It
follows that

j0 − jSAPT
0 [�(K)] = − 1

6e2
3−K + O(4−K ). (43)

The error of jSAPT
0 [�(K)] can be compared to the errors of the

other two formulas in Fig. 1.

VI. SUMMARY AND CONCLUSIONS

By solving analytically the model system of the hydrogen
atom interacting with a proton we found that all three exchange
energy formulas considered by us correctly predict the large-R
behavior of the exchange energy if the primitive function is
approximated by the standard polarization expansion. The
correct limit is, however, approached with very different
convergence rates. In the case of the SAPT formula, the
convergence is geometric with the error decaying as 1/3K ,
where K is the order of the applied polarization theory. The
convergence of the surface-integral formula is exponential,
with the error decreasing as aK/(K + 1)!, where a = ln 2 −
1/2. The best convergence occurs for the variational formula,
for which the error falls off as K1/2[aK/(K + 1)!]2. The
observed convergence rates are significantly faster than those
resulting from approximating the primitive function through
the multipole expansion [27,32]. To make a meaningful
comparison, cf. Table I, we note that �(K) and the sum of the
multipole expansion through the (2K)th order in 1/R, denoted
by �2K , are both accurate through the (2K)th order in 1/R.
However, �(K), unlike �2K , includes a selective infinite-order

TABLE I. Decay rate of the error of the leading term of exchange
energy calculated using truncated multipole �2K (Ref. [32]) and
polarization �(K) series. a = ln 2 − 1

2 ≈ 1/5.

� = �2K � = �(K)

j surf
0 [�]

1

4K

aK

(K + 1)!

jSAPT
0 [�]

1

K2

1

3K

j var
0 [�]

1

16K

a2K

K!(K + 1)!
√

K

summation of higher R−k , k > 2K terms. The inspection of
Table I shows that this infinite-order selective summation is
very effective in computing the exchange energy, indepen-
dently of the exchange energy expression employed.

The main conclusion of our investigation is that the ex-
change energy, an electron tunneling effect, can be determined
from the knowledge of the wave function which reflects only
the polarization mechanism of interatomic interaction. We
have shown that this determination is particularly effective
when the variational principle is employed in the perturbation
treatment of molecular interactions. We expect that this
conclusion is general and applies also to interactions of larger
systems.
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[29] T. Ćwiok, B. Jeziorski, W. Kołos, R. Moszyński, and K.
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