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Effects of radiation damping on photorecombination of C4+ ions for the KLL resonance
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A numerical method based on Zabaydullin and Dubau’s work [O. Zabaydullin and J. Dubau, J. Phys. B:
At. Mol. Opt. Phys. 45, 115002 (2012)] has been developed to calculate the Cauchy principal value integral
in scattering matrices and obtain photorecombination (PR) cross sections of low-lying resonances according
to Davies and Seaton’s theory [J. Phys. B 2, 757 (1969)], in which radiation damping is included. The Dirac
R-matrix method is employed to secure the dipole matrix. Using this method, PR cross sections of C4+ for the
KLL resonance are acquired, and compared with available experimental measurements and other close-coupling
theoretical results. It is shown that our damped cross sections reproduce the experimental data and are in
agreement with other theoretical results. Meanwhile, radiation damping can reduce the PR cross section for
the 1s2p2 2

P resonance (corresponding to two levels [(1s2p1/2)12p3/2]1/2 and [1s(2p2
3/2)2]3/2 by three orders

of magnitude. The unresolved and underestimated resonances 1s2p2 4
P , 1s2s2p 4

P , and 1s2p2 2
P in the

undamped Breit-Pauli R-matrix calculations [H. L. Zhang et al., J. Phys. B: At. Mol. Opt. Phys. 32, 1459 (1999)]
are corrected. Besides, dielectronic recombination cross sections of C4+ for the KLL resonance are also presented
for comparison using the relativistic configuration-interaction (RCI) method implemented in flexible atomic code
(FAC), which show radiation damping has pronounced influences on 1s2p2 2

P due to much larger radiative rates
compared with autoionization rates. Furthermore, radiative and autoionization rates for the intermediate states
[(1s2p1/2)12p3/2]1/2 and [1s(2p2

3/2)2]3/2 of the He-like ions with 6 � Z � 83 are calculated using FAC, scaling
laws of which are checked. Autoionization rates comply with the Z0

eff scaling law for Z � 32, which is caused
by relativistic effects.

DOI: 10.1103/PhysRevA.94.042702

I. INTRODUCTION

Photorecombination (PR) is an atomic process of ongoing
interest in applied and fundamental physics, due to its
importance in influencing the ionization balance in hot plasmas
and understanding the dynamics of the solar corona [1–5]. The
PR cross sections and rate coefficients are vital for simulations
of the radiative transfer and spectrum diagnosis in laboratory
and astrophysical plasmas [6,7]. The PR process can proceed
nonresonantly through radiative recombination (RR), which is
a direct transition from a free to a bound state with a photon
emitted. It can also proceed resonantly through dielectronic
recombination (DR), which is a two-step electron-ion collision
process, where at first a doubly excited intermediate state is
created by a resonant dielectronic capture, and subsequently
the intermediate state decays by photon emission. When both
the initial state and the final state including the emitted photons
are the same, RR and DR are indistinguishable, and the
interference effects between them can generate asymmetric
line profiles, as observed in storage-ring experiments [8,9],
predicted earlier by preliminary radiation-damped LS R-matrix
calculations [10], and further confirmed by multiconfiguration
Breit-Pauli (MCBP) calculations extended to include interfer-
ence effects [11,12].

To provide reliable PR data, in recent years an enormous
amount of progress has been made in theories including
perturbative and nonperturbative methods. The perturbative
methods generally adopt the independent-process and isolated-
resonance (IPIR) approximation [13,14], which treats RR and
DR separately and neglects quantum mechanical interferences

*Corresponding author: wang_jianguo@iapcm.ac.cn

between the two and between DR resonances. Methods of
this class are computationally more efficient and can include
radiation damping (RD) [15,16] straightforwardly. However,
they cannot be applied to theoretical modeling of asym-
metric features associated with resonance-background and/or
resonance-resonance interference effects, unless higher-order
perturbative approaches are employed [11,12]. Nonpertur-
bative approaches, like the close-coupling (CC) R-matrix
methods, can automatically involve all orders of interferences,
yet cannot take RD into account so easily as the perturbative
ones. Using Davies and Seaton’s (DS) [15] continuum-bound
transition theory for including RD, Zhao et al. [17] developed
a numerical method to calculate the low-lying resonance
PR by directly evaluating the Cauchy principal value of the
integral in scattering matrices, with the dipole matrix element
calculated by the nonrelativistic R-matrix approach [18,19]
in the LS coupling scheme. Robicheaux et al. [20] presented
a radiative optical-potential approach for containing RD in
the CC equations employing extensions of the R-matrix
computer program RMATRX1 [19], where relativistic effects
were included using the Breit-Pauli (BP) Hamiltonian. Based
on this approach, many detailed PR calculations involving RD
have been carried out for highly charged ions [21,22]. Also,
an independent theoretical formulation addressing PR was
developed by Zhang et al. [23,24], again using an extension of
RMATRX1 with relativistic effects incorporated through the BP
Hamiltonian. In their method, PR is divided into two groups:
the low-n n � n0 � 10 one and the high-n n0 � n � ∞ one.
For the low-n group, PR cross sections are derived from
photoionization cross sections through detailed balance (the
Milne relation) [25] in the absence of RD. To include RD, the
numerical scheme provided by Sakimoto et al. [26] should be
used, which entails fitting the dipole matrices. For the high-n
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group, the radiation-damped S matrix derived by Bell and
Seaton [27] is used in the analytic Gailitis averaging to secure
PR cross sections, neglecting long-range channel coupling
which may be important for getting the correct autoionization
widths. Relativistic radiatively damped R-matrix calculations
of electron-impact excitation were performed by Ballance and
Griffin [28] and by Griffin and Ballance [29], where relativistic
effects were incorporated using a modified parallel version
of the Dirac R-matrix program DARC [30]. Dirac R-matrix
PR calculations were carried out using the modified parallel
version of DARC [28] for W35+ [31] and DARC for C4+ [32],
respectively, in both of which PR cross sections were obtained
from photoionization cross sections via detailed balance with
RD neglected. To the authors’ knowledge, there have been no
other large-scale calculations of PR employing DARC.

In this paper, we develop a numerical method based on
Zabaydullin and Dubau’s work [33,34] to calculate the Cauchy
principal value (PV) integral in the S matrix and obtain PR
cross sections of low-lying resonances according to the DS
theory, with RD included. A modified version of DARC [35]
is employed to secure the dipole matrix. Using this method,
PR cross sections of C4+ for the KLL resonance are acquired
and compared with earlier experimental measurements [36],
the nonrelativistic R-matrix results in LS coupling [17],
as well as the relativistic BP R-matrix results [23]. The
discrepancies between the undamped BP result and ours
are discussed. Besides, to account for the influence of RD
on the 1s2p2 2

P resonance (corresponding to two levels
[(1s2p1/2)12p3/2]1/2 and [1s(2p2

3/2)2]3/2, with the subscript
of the parenthesis representing the total angular momentum
j ), DR cross sections for the KLL resonance are given under
the IPIR approximation using the relativistic configuration-
interaction (RCI) method implemented in flexible atomic code
(FAC) [37–39]. Furthermore, radiative transition probabilities
Ar and autoionization rates Aa for the intermediate states
[(1s2p1/2)12p3/2]1/2 and [1s(2p2

3/2)2]3/2 of the He-like ions
with 6 � Z � 83 are calculated using FAC, the Z4

eff and Z0
eff

scaling laws of which are examined, and the influences of
relativistic effects and configuration interaction (CI) on Ar

and Aa are discussed.
The remainder of this paper is organized as follows. In

Sec. II, the theoretical methods employed in this study are
described briefly. In Sec. III, our PR cross sections of C4+
obtained from the Dirac R-matrix method and the DR cross
sections from the RCI method are presented and compared
with earlier experimental and theoretical results. Ar and Aa

for [(1s2p1/2)12p3/2]1/2 and [1s(2p2
3/2)2]3/2 of the He-like ions

with 6 � Z � 83 are also given. Finally in Sec. IV, concluding
remarks are drawn.

II. COMPUTATIONAL METHODS

A. DS theory

According to the DS theory [15], when interaction of
the radiation field with the electron-ion system is included,
a generalized electron-photon scattering matrix S may be
obtained as

S =
(

See Sep

Spe Spp

)
, (1)

with See the submatrix for electron scattering allowing for
radiative decays, Spe that for electron capture followed by the
emission of a photon, Sep that for photoionization, and Spp

that for photon-photon scattering. The PR submatrix Spe is
described as

Spe = −2πi(1 + L)−1D†, (2)

where D is the reduced dipole matrix in the form

Dγ J,γ ′ J′ (E) =
(

2ω3α3

3π

)1/2 〈γ JE‖R‖γ ′
J

′ 〉
(2J + 1)1/2

, (3)

and

L(E) = −iπ lim
τ→0

∫
D†(E

′
)D(E

′
)

E
′ − E − iτ

dE
′

= π2D†(E)D(E) − iπ

[
PV

∫
D†(E

′
)D(E

′
)

E
′ − E

dE
′
]
. (4)

In Eq. (3), the continuum and the bound states are represented
as γ JE and γ

′
J

′
, respectively, with J and J

′
the corresponding

total angular momenta, E the total energy of the continuum
state, α the fine-structure constant, and ω the photon energy in
units of hartrees. The wave function of the continuum electron
is normalized per hartree.

Based on Zabaydullin and Dubau’s work [33,34], the
imaginary part of L(E) can be further expressed as

LIm(E) = −π lim
R→∞

∫ E+R

E−R

D†(E
′
)D(E

′
) − D†(E)D(E)

E
′ − E

dE
′
,

(5)

with the PV integral carried out numerically. A simple
approximation of the DS theory called the ZD approximation
was also presented in their work, in which the imaginary part
of L(E) is neglected. The L matrix under this approximation
is denoted by

LZD(E) = π2D†(E)D(E). (6)

When D is small, i.e., L � 0, RD can be neglected and Spe is
approximated as

Spe = −2πiD†. (7)

The PR probability for a given incident open channel j is given
as

P PR
j = (1 − S†

eeSee)jj = (S†
peSpe)jj . (8)

The total PR cross section is related to the PR probability as

σ PR = π

2k2g

∑
j

gjP
PR
j , (9)

where k2 is the incident electron energy in units of Rydbergs;
g and gj are the statistical weights of the target and the
continuum states, respectively.

B. Perturbative theory

Under the IPIR approximation, the DR cross section from
an initial state i can be expressed as

σ (ε) =
∑

d

SidLd (ε), (10)
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where

Sid = π2

ε

gd

2gi

Aa
di

∑
k Ar

dk∑
k

′ Ar

dk
′ + ∑

i
′ Aa

di
′
, (11)

and

Ld (ε) = (	a + 	r )/(2π )

(ε − Ed )2 + (	a + 	r )2/4
, (12)

with all quantities given in atomic units. In Eq. (10), Ld (ε)
is the Lorentzian line profile. In Eq. (11), ε is the incident
electron energy; gd and gi are the statistical weights of the
intermediate and the target states, respectively; Ar

dk
′ is the

radiative rate from the upper state d to the lower state k
′
; and

Aa

di
′ is the autoionization rate from the intermediate state d

of the recombined ion to the i
′

state of the recombining ion.
In Eq. (12), Ed is the resonance energy, and 	a + 	r is the
total width of the intermediate state d. When RD is small, the
total width is approximated by the autoionization width, also∑

k
′ Ar

dk
′ in Eq. (11) is omitted.

III. RESULTS

In this section, we first present the Dirac R-matrix and
RCI results of C4+ for the KLL resonance, and discuss
the influence of RD on the 1s2p2 2

P resonance. Second,
radiative and autoionization rates for [(1s2p1/2)12p3/2]1/2 and
[1s(2p2

3/2)2]3/2 of the He-like ions with 6 � Z � 83 are given,
scaling laws of which are examined.

A. Dirac R-matrix and RCI results of C4+

for the KLL resonance

The PR process of C4+ for the KLL resonance can be
described as

e− + C4+(1s2)

→
{

C3+(1s22l) + hν (RR),
C3+(1s2l2l

′
) → C3+(1s22l

′′
) + hν (DR).

(13)

The Dirac R-matrix calculations are performed using our
newly developed R-matrix programs [35], which comprise
the internal region portions of DARC [30] and the external
region parts of the traditional BP R-matrix code [19]. In
order to integrate these two sets of programs, the Hamiltonian
and the dipole matrix elements derived from the inner-region
DARC code for a given Jπ symmetry are reformatted to
match those in the BP R-matrix code. The C4+ target wave
functions are characterized by 16 orbitals consisting of nine
physical orbitals 1s, 2s, 2p1/2, 2p3/2, 3s, 3p1/2, 3p3/2, 3d3/2,
and 3d5/2, along with seven pseudo-orbitals 4s, 4p1/2, 4p3/2,
4d3/2, 4d5/2, 4f5/2, and 4f7/2. All these orbitals are yielded
by the relativistic self-consistent field (RSCF) calculation of
the multiconfiguration Dirac-Fock code GRASP2K [40] using
an extended optimized level (EOL) scheme for the lowest 17
levels, with the configuration bases arising from all the single
and double promotions from six reference configurations
including 1s2, 1s2s, 1s2p, 1s3s, 1s3p, and 1s3d to the n = 4
orbitals. In the scattering calculations, the lowest 17 levels of
C4+ are included in the close-coupling expansion, with the
same configuration bases as those in the RSCF calculations.

TABLE I. Lowest 17 energy levels of C4+ in Rydbergs. � denotes
the percentage difference between our result and the NIST value.

Level J This work NIST data �

1s2 0 0 0
1s2s 1 21.950 21.973 −0.11%
1s2s 0 22.356 22.372 −0.07%
1s2p1/2 1 22.350 22.373 −0.10%
1s2p1/2 0 22.349 22.373 −0.11%
1s2p3/2 2 22.351 22.374 −0.10%
1s2p3/2 1 22.610 22.630 −0.09%
1s3s 1 25.853 25.876 −0.09%
1s3s 0 25.964 25.982 −0.07%
1s3p1/2 1 25.960 25.984 −0.09%
1s3p1/2 0 25.960 25.984 −0.09%
1s3p3/2 2 25.961 25.984 −0.09%
1s3d3/2 1 26.014 26.038 −0.09%
1s3d3/2 2 26.014 26.038 −0.09%
1s3d5/2 3 26.014 26.038 −0.09%
1s3d5/2 2 26.016 26.040 −0.09%
1s3p3/2 1 26.035 26.056 −0.08%

Our calculated energy levels are in excellent agreement with
the NIST data [41] within ∼0.1% as listed in Table I.

All the scattering calculations are performed with 40
continuum basis functions and a boundary radius of 8.4
Bohr radii. The theoretical energies of C4+ are adjusted to
match experimental values in the diagonalization process of
the Hamiltonian matrix in order that the resonance positions
can be improved. To resolve narrow resonances, a suitably
chosen fine energy mesh of 5 μeV is employed. Since dipole
selection rules apply, the bound-free dipole matrices, Jπ =
1/2e → J

′π ′ = 1/2o,3/2o, Jπ = 1/2o → J
′π ′ = 1/2e,3/2e,

and Jπ = 3/2o → J
′π ′ = 1/2e,3/2e,5/2e are calculated to

obtain the associated PR submatrices via Eq. (2); subsequently
the total PR cross sections for the KLL resonance are derived
through Eq. (9).

Comparison of our detailed PR cross sections for the KLL
resonance with other R-matrix results is presented in Fig. 1.
Figure 1(a) displays the nonrelativistic R-matrix results with
RD in LS coupling from Ref. [17], Fig. 1(b) displays the
BP R-matrix results with and without RD from Ref. [23],
and Fig. 1(c) displays our Dirac R-matrix results in length
formulations. Since our cross sections in length and velocity
formulations are in excellent agreement with each other,
only the length results are shown. Due to the conservation
of total spin angular momentum and lack of an even-parity
continuum state 2

P to interact with, DR via the 1s2s2p 4
P ,

1s2p2 4
P , and 1s2p2 2

P resonances is forbidden in LS
coupling, which should arise when relativistic effects are
included. However, only the 1s2p2 2

P resonance appears in the
BP R-matrix results, which is obviously underestimated in the
undamped result, due to the coarse energy mesh (in the order
of meV) adopted in their calculations. Our Dirac R-matrix
calculations show RD can reduce the PR cross section for
the 1s2p2 2

P resonance by three orders of magnitude. Also
shown in Fig. 1(c) is the PR cross section under the ZD
approximation [33,34]. It is shown that this approximation is
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FIG. 1. Comparison of our detailed PR cross sections for the KLL resonance of C4+ with other R-matrix results. (a) The nonrelativistic
R-matrix results with RD in LS coupling from Ref. [17]. (b) The BP R-matrix results with (red dotted curve) and without (black solid curve)
RD from Ref. [23]. (c) The Dirac R-matrix results with RD (green dashed curve), under the ZD approximation (red dotted curve), and without
RD (black solid curve). (d) The Dirac R-matrix results for the 1s2p2 2

P resonance appearing at about 243 eV in (c). Symbols in (d) have the
same meanings as those in (c).

reasonable and can include most of the RD effects, requiring
much less computation effort. In Fig. 1(d) our Dirac R-matrix
results for the 1s2p2 2

P resonance, appearing at about 243 eV
in Fig. 1(c), are shown separately to highlight the RD effect.

Comparison of our convolved PR cross sections for the KLL
resonance with other R-matrix results and the experimental
spectrum [36] is shown in Fig. 2. All the theoretical cross
sections have been convoluted with a Gaussian distribution
of 0.57 eV FWHM in order to compare directly with the
experimental measurements. Since relativistic effects are weak
for C4+ ions, the 1s2s2p 4

P , 1s2p2 4
P , and 1s2p2 2

P
resonances are too narrow to be resolved by the experiment,
the former two of which also disappear in our results. However,
in contrast to the BP results, the 1s2p2 2

P resonance should
appear in a relativistic undamped cross section and disappear
in a damped result due to RD, as shown in Fig. 2(c). In addition,
the resonance positions in our Dirac R-matrix results are in
better agreement with the experimental data than those in the
BP R-matrix results, indicating that the electron correlation
and interchannel coupling effects are treated appropriately.

Since the perturbative theoretical approach can incorporate
RD straightforwardly, the RCI DR cross sections for the
KLL resonance obtained using FAC are also given to account
for the influence of RD on the 1s2p2 2

P resonance, and
compared with the result derived using a revised simplified
relativistic configuration-interaction (SRCI) method [42] as
well as the experiment spectrum, as displayed in Fig. 3.
It should be pointed out that Bautista and Badnell made a
similar comparison to the same experiment in the perturbative

FIG. 2. Comparison of our convolved PR cross sections for
the KLL resonance of C4+ with other R-matrix results and the
experimental spectrum. (a) The nonrelativistic R-matrix results with
(red dashed curve) and without (black solid curve) RD in LS
coupling from Ref. [17]. (b) The BP R-matrix results with (red
dashed curve) and without (black solid curve) RD from Ref. [23].
(c) The Dirac R-matrix results with RD (red dashed curve), under
the ZD approximation (green dotted curve), and without RD (black
solid curve). (d) The experimental spectrum from Ref. [36]. All
the theoretical cross sections have been convoluted with a Gaussian
distribution of 0.57 eV FWHM.
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FIG. 3. Comparison of our RCI DR cross sections for the KLL
resonance of C4+ with the SRCI results from Ref. [42] and the
experimental spectrum from Ref. [36]. (a) Our detailed DR cross
sections with (red dotted curve) and without (black solid curve) RD.
(b) The DR cross sections convoluted with a Gaussian distribution
of 0.57 eV FWHM with (red dash dotted curve) and without (black
solid curve) RD. (c) Comparison of the convolved DR cross sections
including RD (red dash dotted curve) with the SRCI results (blue short
dotted curve) and the experimental spectrum (green solid curve).

AUTOSTRUCTURE calculations, and obtained good agreement
with the measurement [43]. Since DR rate coefficients instead
of cross sections for the KLL resonance were provided
in their work, their results are not shown here. In our
RCI calculations, CI within the same n complex is taken
into account, which is the same as that in Ref. [42]. For
[(1s2p1/2)12p3/2]1/2 and [1s(2p2

3/2)2]3/2, the calculated total
radiative rates 1.177 × 1012 and 1.176 × 1012 s−1 are much
larger than the corresponding autoionization rates 1.934 × 107

and 1.215 × 1011 s−1, which accounts for the pronounced
effect of RD on 1s2p2 2

P [see Figs. 3(a) and 3(b)]. In addition,
our RCI damped cross section is in reasonable agreement with
the SRCI result and the experimental spectrum [see Fig. 3(c)].

B. Radiative and autoionization rates for [(1s2 p1/2)12 p3/2]1/2

and [1s(2 p2
3/2)2]3/2 of the He-like ions with 6 � Z � 83

Radiative and autoionization rates for [(1s2p1/2)12p3/2]1/2

and [1s(2p2
3/2)2]3/2 of the He-like ions with 6 � Z � 83 are

presented in Fig. 4. It is shown that radiative rates are orders
of magnitude larger than the corresponding autoionization
rates along the isoelectronic sequence. Autoionization rates
scale as Z0

eff rigorously for hydrogenic ions, which is ap-
proximately true even for multielectron ions [25]. However,
in this isoelectronic sequence, autoionization rates for both
[(1s2p1/2)12p3/2]1/2 and [1s(2p2

3/2)2]3/2 rise considerably up
to orders of magnitude till Z = 32 (the corresponding element
symbol Ge is marked), then keep a nearly constant value with
increasing Z. Due to lack of an even-parity continuum state 2

P
to interact with, autoionization from 1s2p2 2

P is forbidden
in LS coupling, which induces the small autoionization rates

FIG. 4. Autoionization and total radiative rates for
[(1s2p1/2)12p3/2]1/2 and [1s(2p2

3/2)2]3/2 of the He-like ions
with 6 � Z � 83.

for the low-Z ions. As relativistic effects increase with Z, LS
coupling is no longer appropriate and the coupling conditions
approach pure jj coupling, then autoionization rates become
independent of Zeff .

Radiative rates divided by Z4
eff for [(1s2p1/2)12p3/2]1/2

and [1s(2p2
3/2)2]3/2 of the He-like ions with 6 � Z � 83

are exhibited in Fig. 5. Radiative rates for �n 
= 0 transi-
tions scale as Z4

eff in the hydrogenic approximation [25].
The maxima of radiative rates divided by Z4

eff for the
[(1s2p1/2)12p3/2]1/2 − 1s22p1/2 and [(1s2p1/2)12p3/2]1/2 −
1s22p3/2 transitions are around 3 times the minima in the
isoelectronic sequence. Thus the radiative rates for these two
transitions and the total radiative rates for [(1s2p1/2)12p3/2]1/2

scale as Z4
eff approximately [see Fig. 5(a)]. Radiative rates

for the [1s(2p2
3/2)2]3/2 − 1s22p3/2 transition also scale as Z4

eff

approximately. But those for the [1s(2p2
3/2)2]3/2 − 1s22p1/2

transition decrease rapidly with increasing Z, and violate the
Z4

eff scaling law [see Fig. 5(b)], which is caused by relativistic
effects and CI. The coupling condition for the [1s(2p2

3/2)2]3/2

state changes from LS coupling at low Z to nearly pure
jj coupling at high Z, due to the Z-scaling competition
between the Coulombic coupling between electrons and the
spin-orbit coupling. At large Z, the spin-orbit interactions
dominate and relativistic effects become significant. Figure 6
exhibits the square of the mixing coefficient for each basis
of [1s(2p2

3/2)2]3/2 along the isoelectronic sequence calculated
using FAC to indicate the change of the coupling scheme.
The two bases [(1s2p1/2)02p3/2]3/2 and [(1s2p1/2)12p3/2]3/2

contribute to the [1s(2p2
3/2)2]3/2 − 1s22p1/2 transition, which

is permitted with CI included. The squares of the mixing

FIG. 5. Ar/Z4
eff for (a) [(1s2p1/2)12p3/2]1/2 and (b)

[1s(2p2
3/2)2]3/2 of the He-like ions with 6 � Z � 83.
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FIG. 6. Square of the mixing coefficient for each basis of
[1s(2p2

3/2)2]3/2 of the He-like ions with 6 � Z � 83.

coefficients for the two bases, which represent the percentages
of the bases involved in the intermediate state, diminish rapidly
to zero with increasing Z, leading to the decrease in radiative
rates.

IV. CONCLUSIONS

To summarize, we have developed a numerical method
based on Zabaydullin and Dubau’s work in combination with
the DS theory to calculate the PV integral in scattering matrices
and obtain PR cross sections of low-lying resonances, with the
dipole matrix secured using the Dirac R-matrix code. This
method can naturally involve RD as well as the resonance-
background and/or resonance-resonance interference effects.

Besides, the Dirac R-matrix method can include more detailed
resonant structures compared to the nonrelativistic R-matrix
approach. Using this method, PR cross sections of C4+ for
the KLL resonance are acquired. Comparison of the present
damped results with available experimental and theoretical
results demonstrates the reliability of our method. Also, the
ZD approximation is evaluated and proves to be reasonable.
It is shown that RD can reduce the PR cross section for the
1s2p2 2

P resonance by three orders of magnitude. The RCI re-
sults show that RD has a pronounced influence on the 1s2p2 2

P
resonance due to much larger radiative rates compared with
autoionization rates. Furthermore, radiative and autoionization
rates for [(1s2p1/2)12p3/2]1/2 and [1s(2p2

3/2)2]3/2 of the He-
like ions with 6 � Z � 83 are calculated using FAC. It is noted
that autoionization rates comply with the Z0

eff scaling law for
Z � 32, which is caused by relativistic effects.
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D. Bernhardt, M. Grieser, M. Hahn, R. Repnow, D. W. Savin,
A. Wolf, A. Müller, and S. Schippers, Phys. Rev. A 90, 032715
(2014).

[4] U. I. Safronova, A. S. Safronova, and P. Beiersdorfer, Phys. Rev.
A 91, 062507 (2015).

[5] V. V. Flambaum, M. G. Kozlov, and G. F. Gribakin, Phys. Rev.
A 91, 052704 (2015).

[6] R. K. Janev, L. P. Presnyakov, and V. P. Shevelko, Physics of
Highly Charged Ions (Springer, Berlin, 1985).

[7] H. P. Summers, Adv. At. Mol. Opt. Phys. 33, 275 (1994).
[8] S. Schippers, T. Bartsch, C. Brandau, G. Gwinner, J. Linkemann,

A. Muller, A. A. Saghiri, and A. Wolf, J. Phys. B: At. Mol. Opt.
Phys. 31, 4873 (1998).

[9] S. Schippers, S. Kieslich, A. Muller, G. Gwinner, M. Schnell,
A. Wolf, A. Covington, M. E. Bannister, and L.-B. Zhao, Phys.
Rev. A 65, 042723 (2002).

[10] T. W. Gorczyca, M. S. Pindzola, F. Robicheaux, and N. R.
Badnell, Phys. Rev. A 56, 4742 (1997).

[11] D. Nikolic, T. W. Gorczyca, and N. R. Badnell, Phys. Rev. A
79, 012703 (2009).

[12] D. Nikolic, T. W. Gorczyca, and N. R. Badnell, Phys. Rev. A
81, 030501 (2010).

[13] M. S. Pindzola, N. R. Badnell, and D. C. Griffin, Phys. Rev. A
46, 5725 (1992).

[14] D. H. Kwon and D. W. Savin, Astrophys. J. 734, 2 (2011).
[15] P. C. W. Davies and M. J. Seaton, J. Phys. B 2, 757

(1969).
[16] N. R. Badnell, T. W. Gorczyca, and A. D. Price, J. Phys. B: At.

Mol. Opt. Phys. 31, L239 (1998).
[17] L.-B. Zhao, A. Ichihara, and T. Shirai, Phys. Rev. A 62, 022706

(2000).
[18] P. G. Burke, A. Hibbert, and W. D. Robb, J. Phys. B 4, 153

(1971).
[19] K. A. Berrington, W. B. Eissner, and P. H. Norrington, Comput.

Phys. Commun. 92, 290 (1995).
[20] F. Robicheaux, T. W. Gorczyca, M. S. Pindzola, and N. R.

Badnell, Phys. Rev. A 52, 1319 (1995).
[21] T. W. Gorczyca, F. Robicheaux, M. S. Pindzola, and N. R.

Badnell, Phys. Rev. A 54, 2107 (1996).
[22] T. W. Gorczyca, N. R. Badnell, and D. W. Savin, Phys. Rev. A

65, 062707 (2002).
[23] H. L. Zhang, S. N. Nahar, and A. K. Pradhan, J. Phys. B: At.

Mol. Opt. Phys. 32, 1459 (1999).
[24] H. L. Zhang, S. N. Nahar, and A. K. Pradhan, Phys. Rev. A 64,

032719 (2001).
[25] R. D. Cowan, Atomic Structure and Spectra (University of

California, Los Angeles, 1981).
[26] K. Sakimoto, M. Terao, and K. A. Berrington, Phys. Rev. A 42,

291 (1990).
[27] R. H. Bell and M. J. Seaton, J. Phys. B 18, 1589 (1985).
[28] C. P. Ballance and D. C. Griffin, J. Phys. B: At., Mol. Opt. Phys.

39, 3617 (2006).

042702-6

http://dx.doi.org/10.1086/147813
http://dx.doi.org/10.1086/147813
http://dx.doi.org/10.1086/147813
http://dx.doi.org/10.1086/147813
http://dx.doi.org/10.1103/PhysRevA.85.052716
http://dx.doi.org/10.1103/PhysRevA.85.052716
http://dx.doi.org/10.1103/PhysRevA.85.052716
http://dx.doi.org/10.1103/PhysRevA.85.052716
http://dx.doi.org/10.1103/PhysRevA.90.032715
http://dx.doi.org/10.1103/PhysRevA.90.032715
http://dx.doi.org/10.1103/PhysRevA.90.032715
http://dx.doi.org/10.1103/PhysRevA.90.032715
http://dx.doi.org/10.1103/PhysRevA.91.062507
http://dx.doi.org/10.1103/PhysRevA.91.062507
http://dx.doi.org/10.1103/PhysRevA.91.062507
http://dx.doi.org/10.1103/PhysRevA.91.062507
http://dx.doi.org/10.1103/PhysRevA.91.052704
http://dx.doi.org/10.1103/PhysRevA.91.052704
http://dx.doi.org/10.1103/PhysRevA.91.052704
http://dx.doi.org/10.1103/PhysRevA.91.052704
http://dx.doi.org/10.1016/S1049-250X(08)60039-7
http://dx.doi.org/10.1016/S1049-250X(08)60039-7
http://dx.doi.org/10.1016/S1049-250X(08)60039-7
http://dx.doi.org/10.1016/S1049-250X(08)60039-7
http://dx.doi.org/10.1088/0953-4075/31/21/017
http://dx.doi.org/10.1088/0953-4075/31/21/017
http://dx.doi.org/10.1088/0953-4075/31/21/017
http://dx.doi.org/10.1088/0953-4075/31/21/017
http://dx.doi.org/10.1103/PhysRevA.65.042723
http://dx.doi.org/10.1103/PhysRevA.65.042723
http://dx.doi.org/10.1103/PhysRevA.65.042723
http://dx.doi.org/10.1103/PhysRevA.65.042723
http://dx.doi.org/10.1103/PhysRevA.56.4742
http://dx.doi.org/10.1103/PhysRevA.56.4742
http://dx.doi.org/10.1103/PhysRevA.56.4742
http://dx.doi.org/10.1103/PhysRevA.56.4742
http://dx.doi.org/10.1103/PhysRevA.79.012703
http://dx.doi.org/10.1103/PhysRevA.79.012703
http://dx.doi.org/10.1103/PhysRevA.79.012703
http://dx.doi.org/10.1103/PhysRevA.79.012703
http://dx.doi.org/10.1103/PhysRevA.81.030501
http://dx.doi.org/10.1103/PhysRevA.81.030501
http://dx.doi.org/10.1103/PhysRevA.81.030501
http://dx.doi.org/10.1103/PhysRevA.81.030501
http://dx.doi.org/10.1103/PhysRevA.46.5725
http://dx.doi.org/10.1103/PhysRevA.46.5725
http://dx.doi.org/10.1103/PhysRevA.46.5725
http://dx.doi.org/10.1103/PhysRevA.46.5725
http://dx.doi.org/10.1088/0004-637X/734/1/2
http://dx.doi.org/10.1088/0004-637X/734/1/2
http://dx.doi.org/10.1088/0004-637X/734/1/2
http://dx.doi.org/10.1088/0004-637X/734/1/2
http://dx.doi.org/10.1088/0022-3700/2/7/304
http://dx.doi.org/10.1088/0022-3700/2/7/304
http://dx.doi.org/10.1088/0022-3700/2/7/304
http://dx.doi.org/10.1088/0022-3700/2/7/304
http://dx.doi.org/10.1088/0953-4075/31/5/005
http://dx.doi.org/10.1088/0953-4075/31/5/005
http://dx.doi.org/10.1088/0953-4075/31/5/005
http://dx.doi.org/10.1088/0953-4075/31/5/005
http://dx.doi.org/10.1103/PhysRevA.62.022706
http://dx.doi.org/10.1103/PhysRevA.62.022706
http://dx.doi.org/10.1103/PhysRevA.62.022706
http://dx.doi.org/10.1103/PhysRevA.62.022706
http://dx.doi.org/10.1088/0022-3700/4/2/002
http://dx.doi.org/10.1088/0022-3700/4/2/002
http://dx.doi.org/10.1088/0022-3700/4/2/002
http://dx.doi.org/10.1088/0022-3700/4/2/002
http://dx.doi.org/10.1016/0010-4655(95)00123-8
http://dx.doi.org/10.1016/0010-4655(95)00123-8
http://dx.doi.org/10.1016/0010-4655(95)00123-8
http://dx.doi.org/10.1016/0010-4655(95)00123-8
http://dx.doi.org/10.1103/PhysRevA.52.1319
http://dx.doi.org/10.1103/PhysRevA.52.1319
http://dx.doi.org/10.1103/PhysRevA.52.1319
http://dx.doi.org/10.1103/PhysRevA.52.1319
http://dx.doi.org/10.1103/PhysRevA.54.2107
http://dx.doi.org/10.1103/PhysRevA.54.2107
http://dx.doi.org/10.1103/PhysRevA.54.2107
http://dx.doi.org/10.1103/PhysRevA.54.2107
http://dx.doi.org/10.1103/PhysRevA.65.062707
http://dx.doi.org/10.1103/PhysRevA.65.062707
http://dx.doi.org/10.1103/PhysRevA.65.062707
http://dx.doi.org/10.1103/PhysRevA.65.062707
http://dx.doi.org/10.1088/0953-4075/32/6/010
http://dx.doi.org/10.1088/0953-4075/32/6/010
http://dx.doi.org/10.1088/0953-4075/32/6/010
http://dx.doi.org/10.1088/0953-4075/32/6/010
http://dx.doi.org/10.1103/PhysRevA.64.032719
http://dx.doi.org/10.1103/PhysRevA.64.032719
http://dx.doi.org/10.1103/PhysRevA.64.032719
http://dx.doi.org/10.1103/PhysRevA.64.032719
http://dx.doi.org/10.1103/PhysRevA.42.291
http://dx.doi.org/10.1103/PhysRevA.42.291
http://dx.doi.org/10.1103/PhysRevA.42.291
http://dx.doi.org/10.1103/PhysRevA.42.291
http://dx.doi.org/10.1088/0022-3700/18/8/016
http://dx.doi.org/10.1088/0022-3700/18/8/016
http://dx.doi.org/10.1088/0022-3700/18/8/016
http://dx.doi.org/10.1088/0022-3700/18/8/016
http://dx.doi.org/10.1088/0953-4075/39/17/017
http://dx.doi.org/10.1088/0953-4075/39/17/017
http://dx.doi.org/10.1088/0953-4075/39/17/017
http://dx.doi.org/10.1088/0953-4075/39/17/017


EFFECTS OF RADIATION DAMPING ON . . . PHYSICAL REVIEW A 94, 042702 (2016)

[29] D. C. Griffin and C. P. Ballance, J. Phys. B: At., Mol. Opt. Phys.
42, 235201 (2009).

[30] P. H. Norrington, http://www.am.qub.ac.uk/darc.
[31] C. P. Ballance, S. D. Loch, M. S. Pindzola, and D. C. Griffin, J.

Phys. B: At. Mol. Opt. Phys. 43, 205201 (2010).
[32] K. Ma, L.-Y. Xie, D.-H. Zhang, and C.-Z. Dong, Chin. Phys. B

24, 073402 (2015).
[33] O. Zabaydullin and J. Dubau, J. Phys. B: At. Mol. Opt. Phys.

45, 115002 (2012).
[34] O. Zabaydullin and J. Dubau, J. Phys. B: At. Mol. Opt. Phys.

46, 075005 (2013).
[35] C.-Y. Li, X.-Y. Han, J.-G. Wang, and Y.-Z. Qu, Chin. Phys. B

22, 123201 (2013).

[36] S. Mannervik, S. Asp, L. Brostrom, D. R. DeWitt, J. Lidberg,
R. Schuch, and K. T. Chung, Phys. Rev. A 55, 1810 (1997).

[37] M. F. Gu, Astrophys. J. 582, 1241 (2003).
[38] M. F. Gu, Astrophys. J. 589, 1085 (2003).
[39] M. F. Gu, Astrophys. J. 590, 1131 (2003).
[40] P. Jonsson, X. He, C. Froese Fischer, and I. P. Grant, Comput.

Phys. Commun. 177, 597 (2007).
[41] A. Kramida, Y. Ralchenko, J. Reader, and N. A. Team, NIST

Atomic Spectra Database, Ver. 5.2, 2014.
[42] Y.-Q. Xu, Y.-Z. Qu, X.-H. Zhang, and J.-M. Li, Phys. Rev. A

62, 022715 (2000).
[43] M. A. Bautista and N. R. Badnell, Astron. Astrophys. 466, 755

(2007).

042702-7

http://dx.doi.org/10.1088/0953-4075/42/23/235201
http://dx.doi.org/10.1088/0953-4075/42/23/235201
http://dx.doi.org/10.1088/0953-4075/42/23/235201
http://dx.doi.org/10.1088/0953-4075/42/23/235201
http://www.am.qub.ac.uk/darc
http://dx.doi.org/10.1088/0953-4075/43/20/205201
http://dx.doi.org/10.1088/0953-4075/43/20/205201
http://dx.doi.org/10.1088/0953-4075/43/20/205201
http://dx.doi.org/10.1088/0953-4075/43/20/205201
http://dx.doi.org/10.1088/1674-1056/24/7/073402
http://dx.doi.org/10.1088/1674-1056/24/7/073402
http://dx.doi.org/10.1088/1674-1056/24/7/073402
http://dx.doi.org/10.1088/1674-1056/24/7/073402
http://dx.doi.org/10.1088/0953-4075/45/11/115002
http://dx.doi.org/10.1088/0953-4075/45/11/115002
http://dx.doi.org/10.1088/0953-4075/45/11/115002
http://dx.doi.org/10.1088/0953-4075/45/11/115002
http://dx.doi.org/10.1088/0953-4075/46/7/075005
http://dx.doi.org/10.1088/0953-4075/46/7/075005
http://dx.doi.org/10.1088/0953-4075/46/7/075005
http://dx.doi.org/10.1088/0953-4075/46/7/075005
http://dx.doi.org/10.1088/1674-1056/22/12/123201
http://dx.doi.org/10.1088/1674-1056/22/12/123201
http://dx.doi.org/10.1088/1674-1056/22/12/123201
http://dx.doi.org/10.1088/1674-1056/22/12/123201
http://dx.doi.org/10.1103/PhysRevA.55.1810
http://dx.doi.org/10.1103/PhysRevA.55.1810
http://dx.doi.org/10.1103/PhysRevA.55.1810
http://dx.doi.org/10.1103/PhysRevA.55.1810
http://dx.doi.org/10.1086/344745
http://dx.doi.org/10.1086/344745
http://dx.doi.org/10.1086/344745
http://dx.doi.org/10.1086/344745
http://dx.doi.org/10.1086/374796
http://dx.doi.org/10.1086/374796
http://dx.doi.org/10.1086/374796
http://dx.doi.org/10.1086/374796
http://dx.doi.org/10.1086/375135
http://dx.doi.org/10.1086/375135
http://dx.doi.org/10.1086/375135
http://dx.doi.org/10.1086/375135
http://dx.doi.org/10.1016/j.cpc.2007.06.002
http://dx.doi.org/10.1016/j.cpc.2007.06.002
http://dx.doi.org/10.1016/j.cpc.2007.06.002
http://dx.doi.org/10.1016/j.cpc.2007.06.002
http://dx.doi.org/10.1103/PhysRevA.62.022715
http://dx.doi.org/10.1103/PhysRevA.62.022715
http://dx.doi.org/10.1103/PhysRevA.62.022715
http://dx.doi.org/10.1103/PhysRevA.62.022715
http://dx.doi.org/10.1051/0004-6361:20077056
http://dx.doi.org/10.1051/0004-6361:20077056
http://dx.doi.org/10.1051/0004-6361:20077056
http://dx.doi.org/10.1051/0004-6361:20077056



