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Systematics of shape resonances in reactive collisions
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Wentzel-Kramers-Brillouin (WKB) methodology is used to undertake a systematic analysis of shape resonances
in exoergic reactive collisions at low energies E, and examples investigated are Li + H+, He(2 3S) + H, and
He(2 3S) + Mu (muonium). In so doing, the resonance positions should be measured by the tunneling parameter
α and not by E. The resonance peak height Pres of the reaction probability and the resonance width times
the vibrational period of the quasibound resonance state can be given by simple closed-form expressions
with two variables, α and P0, the latter of which is a reaction probability given at collision energies much
above a centrifugal barrier top and is determined by only short-range interactions. The resonance promotes
the reaction maximally (i.e., Pres = 1) when the resonance satisfies α = α0 = (2π )−1 ln[(1 − P0)/P0], in other
words, when the transmission coefficient of tunneling through the centrifugal barrier happens to be equal to P0

at the resonance energy. If α0 � 1, the reaction system is rich in tunneling resonances. If α0 � 0, the prominent
resonances are mostly an over-barrier type. The resonances occurring at α � α0 are of no significance in the
reaction.

DOI: 10.1103/PhysRevA.94.042701

I. INTRODUCTION

A centrifugal barrier plays a key role in low-energy atomic
collisions. Shape resonances in collisions are associated with
quasibound motion trapped behind the centrifugal barrier
and are characterized as a quantum-mechanical (QM) phe-
nomenon. The shape resonance can make a dramatic change
in the feature of reactive collisions as well as elastic and
inelastic collisions. Such effects have indeed been confirmed
in detailed experimental studies for various types of collision
processes [1–12]. In classical mechanics, only when the
collision energy E is higher than the centrifugal barrier can
the two colliding particles come sufficiently close to each
other. The frequency of such close encounters in collisions
is proportional to the cross section σ0 = πb2

0, with b0 being
the impact parameter at which the collision energy is equal
to the barrier height [13]. In the ion-molecule system, this
cross section is often replaced with the Langevin cross section
σL, obtained by assuming only the asymptotic polarization
interaction. If, further, the reaction is exoergic and occurs
only through short-range interactions inside the centrifugal
barrier, the classical cross section for reaction may be given by
σ = κσ0, where the reaction efficiency κ should be 0 � κ � 1.
Accordingly, if the collision system has very low reaction
efficiency (κ � 1), the reaction cross section remains always
much smaller than σ0 in the classical picture. However, the
QM phenomenon of the shape resonance especially due to
tunneling through the centrifugal barrier is able to bring about
a drastic increase in the reaction cross section from the classical
value.

An example of revealing very low reaction efficiency and
demonstrating the significance of shape resonances is found in
the radiative reaction (radiative charge transfer plus radiative
association) in Li + H+ collisions. Figure 1 shows the reaction
cross sections σ and the reaction probabilities P (0 � P � 1)
for each partial wave in Li + H+ at collision energies E =
0.001–0.1 eV. These results were obtained by carrying out
QM collision calculations in the present study (see later). The

cross section σ and the probability P are related by

σ (E) = π�
2

2mE

∑
L

(2L + 1)P (E,L), (1)

where m is the reduced mass of the collision system and L is
the total angular momentum quantum number of the collision
system. One can see plenty of shape resonances, which vary
widely in a profile. In the energy range shown in Fig. 1, the
resonances are observed for the partial waves L = 21–62.
It is found that the nonresonance part of the reaction cross
section is nicely estimated by κσL, with κ = 10−5, and
that the nonresonance reaction probabilities are P � 10−5.
Although this system reveals very low reaction efficiency,
interestingly, the reaction probabilities for several resonances
become considerably large (namely, very close to the upper
limit P = 1).

In view of these facts, the following issues may be raised for
exoergic reactive collisions. What conditions does the shape
resonance satisfy when the reaction probability can reach ∼1?
Is there any means or regularity for arranging a systematical
understanding of a vast variety of shape resonances? Usually,
the profile of the shape resonance in the reaction remains
unknown until a detailed QM calculation is carried out for
the collisions. Is it possible to measure the importance of each
resonance without such a collision calculation? For elastic
collisions, by introducing Wentzel-Kramers-Brillouin (WKB)
approximation and connection formulas, shape resonances
have been investigated [14–16], and an analytical formula
for the S matrix has been derived [17]. An elegant approach
has been developed for reactive collisions by using the idea
of quantum defect theory (QDT), and it has been applied
to ultracold collisions [18–20]. Systematic studies of shape
resonances with respect to molecular parameters have been
made [21,22]. As far as the present author knows, however, the
above issues concerning reactive collisions have not yet been
resolved satisfactorily. Very recently, on the basis of the WKB
approximation, the present author [23] obtained a versatile
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FIG. 1. (a) Reaction cross sections σ (E) and (b) reaction proba-
bilities P (E,L) in Li + H+ collisions, obtained with the present QM
calculation, are shown at collision energies E = 0.001–0.1 eV. In
(a), the solid line is the QM result, and the dashed line indicates κσL,
where σL is the Langevin cross section and κ = 10−5 is the reaction
efficiency. In (b), the QM results are shown only for odd L between
15 and 61 for brevity.

formula for the reaction probability including a complete
expression of a resonance profile (this study is referred to
as paper I herein). This formula is expected to be useful for
examining the above issues.

The present paper proposes a way of systematically looking
at the shape resonances in exoergic reactive collisions with
the help of the WKB methodology developed in paper I.
As examples, the shape resonances in two types of re-
action processes are comprehensively investigated. One is
the already-mentioned radiative reaction in the ion-molecule
system Li + H+, which has very low reaction efficiency
(κ = 10−5). The other is the autoionization reaction (leading
to Penning ionization and associative ionization) in the neutral
system He(2 3S) + H, which has high reaction efficiency
(κ ∼ 0.8), and in its isotope system He(2 3S) + Mu (κ ∼ 0.4),
with Mu being a muonium atom. The hypothetical system of
He(2 3S) + H, in which the reaction efficiency is adjusted to be
low (κ ∼ 0.01), is also considered. Of particular note is that
it has become possible to investigate the shape resonances
in experimental measurements for both radiative reaction

FIG. 2. A typical example of the interactions in atomic collisions.
The effective potential Veff (R) of the elastic channel, i.e., Eq. (4), is
shown. The reactive interaction U zone localized at distances R < A

is distinguished by gray shading. The barrier top located at R = RBT

is indicated by EBT. For the collision energy E < EBT, there can be
two classical turning points, R1 and R2. If |U | � |V |, the innermost
turning point R0 can be evaluated directly from Veff (R).

and Penning ionization [3–5,8,11]. These reaction processes
can be theoretically described by a local-complex-potential
model [24,25]. In the present study, a search for resonances
was made by carrying out the QM calculation of collisions
governed by the local complex potential, and an R-matrix
propagation method [26] was employed as a numerical
solution technique.

The present paper is organized as follows: Sec. II gives the
outline of the WKB method developed in paper I and reports
some additional developments which are necessary for the
present purpose. In Sec. III, the results of the QM collision
calculations are presented, and a systematic analysis of the
shape resonances found in the QM calculations is performed.
Finally, Sec. IV gives the summary of the present study.

II. WKB APPROACH

The interactions in the collision systems considered in this
study are schematically illustrated in Fig. 2. Let R be the radial
distance between the collision pair. The reactive interaction U

in the collision system is assumed to have a short range A.
Beyond this range (R > A), the relative motion of the collision
is assumed to be governed by only a spherically symmetric
local potential V (R), and hence, the radial wave function G(R)
for each partial wave L satisfies the following Schrödinger
equation:

[
d2

dR2
+ k2(R)

]
G(R) = 0, (2)

where

k2(R) = 2m

�2
[E − Veff(R)], (3)
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with

Veff(R) = L(L + 1)�2

2mR2
+ V (R). (4)

Unless L is too high, the effective potential Veff(R) has a barrier
top EBT at R = RBT. When the collision energy E is below
this barrier top, two classical turning points, R1 and R2, i.e.,
k(R1) = k(R2) = 0, can exist. In this study, it is reasonably
assumed that A < R1 < R2. Even if the energy is E > EBT,
one can introduce two complex-valued turning points R1 =
(R2)∗, which are the roots of k(R) = 0.

To take into account the centrifugal-barrier effects in a
manageable manner, the WKB approximation is employed for
the solution of Eq. (2). On the inside of the centrifugal barrier
(A < R � RBT), the wave function G(R) can be expressed in
terms of the WKB solutions [23]:

G(R) = C√
k(R)

exp

{
+i

[∫ R1

R

k(R′)dR′ + π

4

]}

−χ
C√
k(R)

exp

{
−i

[∫ R1

R

k(R′)dR′ + π

4

]}
, (5)

where C is a constant. The complex-valued coefficient χ

represents the collision information concerning the reactive
interaction zone (R < A). Since the reaction leads to the loss
of flux in the elastic channel, χ is not necessarily unitary (i.e.,
|χ |2 � 1) and can be generally written as

χ = e−η+iδ, (6)

where η � 0 and δ are real valued. As in paper I, it is useful to
define the reactivity P0 of the system for each partial wave L:

P0 = 1 − |χ |2 = 1 − e−2η, (7)

which has the range of 0 � P0 � 1. The reactivity is not
the reaction probability in the collision process but can be
considered the inherent reactive ability of the system, which
is determined by only the short-range interactions at R < A,
without including the centrifugal-barrier effect. (The relation
to the reaction efficiency κ will be discussed later.) Also, in the
QDT treatment, the reactivity is introduced as a short-range
parameter [18–20]. Especially if one can assume |U | � |V |
(or, equivalently, P0 � 1), the relative motion is practically
governed by V (R) at all distances R (even at R < A), and the
phase δ can be calculated by

δ = 2
∫ R1

R0

k(R)dR + π, (8)

where R0 is the innermost turning point other than R1 and R2,
i.e., k(R0) = 0 [23].

On the outside of the centrifugal barrier (i.e., R � RBT),
the wave function G(R) can be written as

G(R) = C ′
√

k(R)
exp

{
−i

[∫ R

R2

k(R′)dR′ + π

4

]}

− S
C ′

√
k(R)

exp

{
+i

[∫ R

R2

k(R′)dR′ + π

4

]}
, (9)

where C ′ is a constant. Since Eq. (9) is valid also in the
limit R → ∞, the coefficient S (without an unimportant phase
factor) can be regarded as the elastic part of the S matrix in

the collision process. Applying the connection formula based
on parabolic cylinder functions [16,27] to Eq. (5) and then
comparing the result with Eq. (9), paper I shows

S = eπα−iφ − χ
√

1 + e2πα

χeπα+iφ − √
1 + e2πα

, (10)

where

α = − i

π

∫ R2

R1

k(R)dR (11)

is the tunneling parameter [16,27], and

φ = arg 


(
1

2
+ iα

)
+ α(1 − ln |α|) (12)

represents the phase correction due to the centrifugal-barrier
effect. The parameters α, φ, and χ in Eq. (10) depend on the
collision energy E and also on L. The tunneling parameter
becomes α > 0 at E < EBT, α = 0 at E = EBT, and α < 0 at
E > EBT. The correction φ is not large and is always |φ| <

0.024.

A. Reaction probability

When χ is not unitary (η > 0), Eq. (10) is not unitary either,
i.e., |S|2 < 1. One can regard P = 1 − |S|2 precisely as the
reaction probability in the collision process. From Eqs. (6), (7),
and (10), the reaction probability for given E and L can be
expressed as

P (E,L) = F [α(E,L),θ (E,L),P0(E,L)], (13)

where

F (α,θ,P0)

= e−2παP0

2 + e−2πα − P0 − 2 cos θ
√

(1 + e−2πα)(1 − P0)
(14)

and a new parameter θ is defined by θ = δ + φ. A similar
WKB treatment was employed for reactive collisions by
Jachymski et al. [19]. However, the expressions for Eqs. (10)
and (14) were not derived there. The probability function
F (α,θ,P0) has explicit dependence neither on the other
system parameters (m, L, and E) nor on the details of the
interaction. Thus, all the possible profiles of the resonance
and nonresonance reaction probabilities are expressible for
an arbitrary reaction system by this simple universal formula
which has only three real-valued parameters (α,θ,P0). In the
limit α → −∞,

F (α,θ,P0) → P0. (15)

Namely, one can have P0(E,L) = P (E,L) at E � EBT. In
many cases, the reactivity P0(E,L) can be considered to
be actually independent of E and has a slight dependence
on L [18–20,23]. Figure 3 shows the L dependence of the
reactivity P0, which is calculated by assuming P0 = P (E,L)
at E = 0.1 eV in the present QM calculations of the Li + H+
and He(2 3S) + H systems (see below). Since the variation with
L is not so large in the related range of L, the reactivity may
be reasonably considered to be an L-independent parameter.
Then, one can postulate P0 
 κ [19,23], and the reactivity
P0 can be estimated experimentally because the nonresonance
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FIG. 3. L dependence of P0(L)/P0(L = 0) for the reactions in
Li + H+ (triangles) and He(2 3S) + H (circles), obtained with the
present QM calculation. Also shown is the result for the hypothetical
He(2 3S) + H system (crosses), in which the reactive interaction U is
replaced with 0.01U .

part of the reaction cross section is given by the classical cross
section κσ0 
 P0σ0. Hereafter, the probability function F is
defined as a two-independent-variable function, i.e., F (α,θ ),
with a constant parameter P0.

In paper I, the mathematical property of F (α,θ ) was
investigated by assuming that α and θ are independent
variables. This is very useful for understanding general char-
acteristics and any conceivable profiles of shape resonances.
The probability function F (α,θ ) forms a topographical map
on the α-θ plane. Figure 4(a) illustrates the contour plot of
F (α,θ ) for P0 = 10−5, which corresponds to the case of the
Li + H+ system. (It should be noted that α is arranged in
descending order if it is chosen as the horizontal axis.) In
this map, only the specific values of F (α,θ ) for the variables
satisfying (α,θ ) = [α(E,L),θ (E,L)], which form a route on
the topographical map in response to the energy variation
for each fixed L [23], are recognized as the actual reaction
probabilities P (E,L). For the Li + H+ collisions with L = 39,
the energy dependences α(E) and θ (E) are shown in Figs. 4(b)
and 4(c). (Hereafter, the L dependence is not specified
explicitly.) The corresponding route is drawn in Fig. 4(a). The
topographical map always shows a ridge along the line given
by cos θ = 1 irrespective of the value of 0 < P0 < 1. When the
energy-variation route [α(E),θ (E)] crosses over this ridge line,
the reaction probability exhibits a peak (or shoulder) structure,
which is due to a resonance. It should be noted that the shape
resonance always has an additive (not destructive) profile.
Figure 4(d) shows the reaction probability P (E) obtained with
the present QM calculation for the Li + H+ collisions with
L = 39. The positions of the resonance peaks almost coincide
with the energy corresponding to cos θ = 1 on the route. Thus,
the resonance peak position Eres can be set approximately
equal to the ridge position satisfying

θ (E) = 2nπ, (16)
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FIG. 4. (a) A contour plot of the probability function F (α,θ ) for
the reactivity P0 = 10−5. The variable θ is expressed by mod 2π .
Only the range −0.2 � θ/π � 0.2 is drawn because the ridge (θ =
0) is very narrow along θ . Dashed lines are the energy-variation
route [α(E),θ (E)/π ] for the Li + H+ collisions with L = 39. Circles
indicate the θ = 0 point on this route. (b) A plot of θ (E)/π (mod 2)
against E for Li + H+ with L = 39. (c) A plot of α(E) against E

for Li + H+ with L = 39. (d) Reaction probabilities P (E), obtained
with the present QM calculation, plotted against E for Li + H+ with
L = 39.

with n being an integer. In the special case of |U | � |V |, one
can use Eq. (8) and then obtain

∫ R1

R0

k(R)dR + φ

2
=

(
n + 1

2

)
π, (17)

which is the famous Bohr-Sommerfeld quantization rule
(including the centrifugal-barrier effect).

B. Resonance peak

Paper I took into account the height of the ridge, which is
given by

f (α) = F (α,θ =2nπ ) = e−2παP0

(
√

1 + e−2πα − √
1 − P0)2

. (18)

The probability peak height Pres of the resonance may
be set equal to the value of this height function
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FIG. 5. Height functions f (α) = F (α,θ =0), i.e., Eq. (18), in
the range of 5 � α � −1 for the reactivities P0 = 10−8–100. The
function f (α) takes the maximum value (=1) at α = (2π )−1 ln[(1 −
P0)/P0].

f (α) at α = αres = α(Eres). Figure 5 shows f (α) for various
reactivities P0. As long as P0 �= 0 (even for extremely low
P0 � 1), the height function always has the maximum value
of the upper limit (=1) when α becomes

α0 = 1

2π
ln

1 − P0

P0
, (19)

which is ≷ 0 corresponding to P0 ≶ 0.5. Equation (19) can be
rewritten as

P0 = 1

1 + e2πα0
. (20)

The right-hand side of Eq. (20) has the same form as the
transmission coefficient obtained by applying the connection
formula in the WKB method [27]. Therefore, it turns out that
the resonance promotes the reaction to the uppermost limit
if the transmission coefficient is accidentally equal to the
reactivity at the resonance energy. For the Li + H+ system
(P0 = 10−5), one has α0 = 1.832, and the QM calculation
[Fig. 4(d)] shows that the peak position of the tunneling
resonance is Eres = 0.01364 eV, which corresponds to αres =
1.831. Accordingly, it is understandable that Pres 
1 for
this resonance. The height function f (α) is monotonically
decreasing as α increases from α0, and the peak height
becomes Pres < P0 for α larger than

α1 = α0 + 1

2π
ln

4

P0
. (21)

In Fig. 5, the shape of f (α) around the maximum center α = α0

seems to be exactly the same, especially for small P0. In the
case of P0 � 1 and e−2πα � 1, the height function indeed
becomes

f (α) = 1

cosh2[π (α − α0)]
, (22)

which satisfies f (α0 ± �αN ) = f (α0)/N , with �αN =
π−1 ln(

√
N + √

N − 1).

The degree of ridge-peak prominence (how high the peak
towers up along the θ direction) may be measured by

D(α) = F (α,θ =0)

F (α,θ =π )
=

(√
1 + e−2πα + √

1 − P0√
1 + e−2πα − √

1 − P0

)2

, (23)

which is �1. A larger value of D(α) means that the ridge peak
is more prominent. In the limit α → ∞, one has D(α) ∼1
for P0 ∼ 1 and D(α) = 16(P0)−2 � 1 for P0 � 1. For the
tunneling resonances occurring at Eres � EBT, one can thus
expect that the resonance profile becomes relatively much
more prominent as P0 decreases. It should be mentioned,
however, that D(α) is not the degree of resonance-peak
prominence because the resonance profile must actually be
defined along the energy-variation route [α(E),θ (E)]. In the
opposite limit α → −∞, one has F (α,θ ) → P0 irrespective
of θ , and naturally, D(α) → 1. It is fairly obvious that no peak
structure is observed at E � EBT. Figure 5 shows f (α) ∼ P0

even at α ∼ −1, and hence, one can expect that the over-barrier
resonances are prominent only for α � −1. If α1 < 0 [see
Eq. (21)], then the peak height always becomes Pres < P0 for
all the tunneling resonances, which means that the tunneling
resonances are insignificant in the first place. The condition
α1 < 0 gives P0 > 2(

√
2 − 1)=0.8284 (or α0 < −0.2506),

which was adopted in paper I as a criterion for judging that no
clear tunneling resonance can be observed in the reaction.

C. Resonance width

The resonance energy Eres and the resonance energy width

 are evaluated using the pole of the S matrix, i.e., S(Epol) =
∞, with Epol = Eres − i
/2. From Eq. (10), the pole satisfies

θ = 2nπ − i
[
η + 1

2 ln(1 + e−2πα)
]
. (24)

Krstić et al. [17] calculated numerically the energy poles from
Eq. (24) in the case of elastic collisions (η = 0). However,
such calculations cannot be performed without specifying the
collision system. Instead of the energy pole, the θ pole is
considered here, which is more appropriate for gaining general
information on the resonance irrespective of the specific
system. If 
 is very small, α may be assumed to be a real
number in Eq. (24). Then, the θ pole can be given by

θpol = θres − i�θ, (25)

where

θres = θ (Eres) = 2nπ, (26)

�θ = 1

2
ln

1 + e−2πα

1 − P0
. (27)

Equation (26) is identical to Eq. (16), and gives the ridge
position. In regard to Eq. (27), 2�θ may be interpreted as
the width of the ridge peak along the θ direction on the
topographical map F (α,θ ). One should define the actual ridge
width 2�θ by equating F (α,�θ ) = f (α)/2. Then, under the
assumption of cos(�θ ) = 1 − (�θ )2/2, one has

�θ =
√

1 + e−2πα − √
1 − P0

[(1 + e−2πα)(1 − P0)]1/4
, (28)
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which seems to be quite different from Eq. (27). However,
from the numerical comparison between Eqs. (27) and (28)
shown in Fig. 6, they turn out to be practically identical at
least for α > 0.

For a real collision problem, the resonance width must be
measured along the energy-variation route [α(E),θ (E)], which
is not necessarily perpendicular to the ridge line. However, if
P0 � 1 and α > (2π )−1, the ridge width 2�θ is very narrow,
as seen from Eq. (27) or (28), and then the peak width along the
route is almost identical to 2�θ unless the route is nearly par-
allel to the ridge line [see Fig. 4(a)]. Hence, for very sharp reso-
nances, it is expected that the energy width 
 is simply given by


 = 2
dE

dθ
�θ. (29)

If |U | � |V |, using Eq. (8) and neglecting φ yield

�
dθ

dE
= 2m

�

∫ R1

R0

dR

k(R)
, (30)

which is the classical period τ of the vibrational motion.
Finally, the energy width is expressed as


 = 2��θ

τ
. (31)

The appearance of the vibrational period τ is reasonable.
As τ becomes shorter, more frequently, the particle in the
quasibound state hits the centrifugal barrier at R = R1, or
it stays longer in the reactive interaction zone R < A. This
results in an increased incidence of barrier penetration or
reaction. Since Eq. (27) can be written as

�θ = �θbar + �θrea, (32)

where

�θbar = 1
2 ln(1 + e−2πα),

(33)
�θrea = 1

2

∣∣ln(1 − P0)
∣∣,

one can partition the resonance width 
 into two physically
important terms, i.e.,


 = 
bar + 
rea, (34)

where 
bar = 2��θbar/τ is the width due to only the
fragmentation through the (long-range) centrifugal potential
and 
rea = 2��θrea/τ is due to only the reactive decay caused
by the (short-range) interaction. The resonance width can be
given analytically in terms of the QDT parameters for elastic
collisions [18]. Compared to the QDT treatment, the present
expression for the resonance width properly includes the
effect of reactive channels and has a clear physical meaning
also in appearance.

Figure 6 shows the width function �θ (α) for various
reactivities P0. In the limit α → ∞, the function �θ (α)
becomes �θrea (or P0/2 for P0 � 1), which is independent
of α. In other words, when the resonance energy is far below
EBT, the resonance energy width in collisions is determined
by only the reactive decay (i.e., 
 = 
rea). With decreasing
α, the width function �θ is monotonically increasing from
�θrea, in accordance with the fact that the barrier penetration
occurs more frequently. When α = α0 (i.e., Pres = 1), one has
�θbar = �θrea and hence �θ = | ln(1 − P0)| (or �θ = P0 for
P0 � 1): the two energy widths due to the barrier penetration
and due to the reactive decay just coincide (
bar = 
rea). In
the limit α → −∞, the function �θ (α) becomes π |α|, which
is independent of P0, although Eq. (29) may not be valid for
α < 0. In actual cases, the over-barrier resonances are usually
very broad, and their widths are ill defined [see Fig. 4(d)].

D. Reaction rate constant

The reaction rate constant γ is given by

γ (T ) = 〈vσ 〉, (35)

where T is the temperature, v is the initial velocity of the
relative motion, and 〈·〉 represents thermal averaging. In
calculating the rate constant theoretically, one must take into
account the resonance contribution, which sometimes makes
a significant increment. However, when the resonance width
is very narrow as in the case of the tunneling resonances,
a search for such resonances becomes laborious in collision
calculations. Therefore, it would be very useful if one could
measure the importance of each resonance in the rate constant
before carrying out collision calculations.

For the tunneling resonance occurring at E = Eres � EBT,
the contribution of the resonance to the cross section can be
estimated in the form

σ (i)
res(E) =

(
π�

2

2mE

)
(2L + 1)P (i)

res [
(i)/2]2

[
E − E

(i)
res

]2 + [
(i)/2]2
, (36)

where i denotes each resonance. If the resonance is sufficiently
sharp (i.e., 
 � Eres), the resonance part of the rate constant
becomes

γres(T ) = �
2

√
2

(
π

mkBT

)3/2

×
∑

i

(2L + 1)P (i)
res


(i) exp

[
− E(i)

res

kBT

]
, (37)
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for the reactivities P0 = 10−7–10−1.

where kB is the Boltzmann constant. Equation (37) suggests
that the resonance contribution appears to be the product Pres
,
namely, f (αres)�θ (αres)/τ . Therefore, the importance of each
resonance in the rate constant may be quickly measured by the
magnitude of the universal quantity f (αres)�θ (αres) without
performing detailed QM collision calculations. Figure 7 shows
Q(α) = f (α)�θ (α)/P0 as a function of α/α0 for several
reactivities P0. Especially in the system with low reactivity,
since the function Q(α) drops rapidly at α/α0 > 1, it turns out
that the resonances located at α � α0 cannot contribute to a
notable increment in the reaction rate constant.

Jachymski et al. [19] derived the effective reaction proba-
bility in which the increment due to the shape resonances is
taken into account in an average sense. Following Jachymski
et al. [19], the effective probability P̄ (E,L) is given by
averaging the probability function F (α,θ,P0) over θ :

P̄ (E,L) = 1

2π

∫ π

−π

F (α,θ,P0)dθ = P0

1 + e2παP0
. (38)

The nonresonance part of the reaction probability may be given
by [19,23,27]

Pnon(E,L) = P0

1 + e2πα
. (39)

Then, the resonance contribution to the rate constant can be
estimated by

γ̄res(T ) = 〈vσ̄res〉, (40)

where

σ̄res(E) = π�
2

2mE

∑
L

(2L + 1)[P̄ (E,L) − Pnon(E,L)]. (41)

This expression is convenient because there is no need to
identify each resonance.

III. SHAPE RESONANCES

A. Li + H+ collisions

As a first example, the reaction processes in the Li + H+
system are considered. In low-energy collisions of Li + H+,

nonradiative charge transfer becomes negligible, and notable
reactive channels are radiative charge transfer and radiative
association [28–30]:

Li + H+ → Li+ + H + hν

→ LiH+ + hν. (42)

The chemistry of lithium is very important in the early
universe [31–33], and the Li + H+ collisions were investigated
theoretically by several groups [28–30,34,35]. For this system,
the potential curves of the relevant electronic states and the
dipole moments are given in [29,36]. In the present study,
the QM collision calculation has been carried out for energies
E = 0.001–0.1 eV. The aim of the present paper is to perform
a comprehensive analysis of shape resonances and to promote
a better understanding of their systematics. Therefore, all the
resonances over the reported energy range are, as a group,
a matter of interest, and the results are offered only for the
total radiative reaction (the branching ratio between the two
radiative channels is not taken into account).

When the resonance occurs at an energy far below the
barrier top EBT, its peak width becomes very narrow, so that
the resonance search cannot be made easily in the collision
calculation. In the Li + H+ system, the relative motion can
be assumed to be substantially governed by only the local
potential V (R) because of |U | � |V | [29,36]. In the present
study, accordingly, a bound state, which is supported by the
potential V (R) plus an infinite wall artificially set at R = RBT,
was calculated quantum mechanically (referred to as the BS
calculation), and its energy level (E > 0) was used as a guess at
the peak position of the tunneling resonance. When E ∼ EBT

or E > EBT, the resonance becomes broad, and its search
can be made without any difficulty. The reaction probabilities
P (E,L) for each partial wave L and the reaction cross
sections σ (E) are presented in Fig. 1. About 120 resonances
are associated with the related energy range. As mentioned
previously, the QM calculation shows that the Li + H+ system
has very low reactivity, which is set to be P0 = κ = 10−5.
The topographical map of F (α,θ ) for P0 = 10−5 is drawn in
Fig. 4(a).

In Fig. 8(a), the heights Pres of the resonance peaks in
P (E,L) obtained by the QM calculation are plotted against
the peak energy position Eres. The peak height undergoes
very extensive changes from <10−9 to ∼1. It seems that
regularity can hardly be found in this diagram. In Fig. 8(b),
the peak heights are plotted against the tunneling parameter
αres = α(Eres) of the peak position. In this plot, all the peaks
with heights with extremely different orders of magnitudes
are beautifully arranged, and their heights lie nicely on a
simple smooth curve, which is just the height function f (α)
with P0 = 10−5. Thus, it has been demonstrated that the peak
heights of the resonance probabilities in the QM calculation
can be predicted by the simple closed-form expression derived
from the WKB approximation. As seen in Fig. 8(b), several
resonances occur at αres ∼ α0 =1.832, and accordingly, they
have peak heights Pres ∼ 1. When αres < 6, one can always
find a clear peak structure in P (E,L) corresponding to the level
obtained by the BS calculation. This is probably true even for
much larger αres because the ridge in the topographical map re-
mains prominent [i.e., D(α) ∼ 16(P0)−2] in the limit α → ∞.
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FIG. 8. Peak heights Pres of the resonances in the Li + H+

reaction, obtained with the QM calculation, plotted (a) against the
collision energy Eres of the resonance peak position and (b) against
the tunneling parameter αres of the resonance peak position. Circles
indicate the tunneling resonances (αres > 0). Triangles indicate the
over-barrier resonances (αres < 0). The height function f (α), i.e.,
Eq. (18), for the reactivity P0 = 10−5 is shown by the solid line
in (b).

However, the resonances located at αres > 6 (compare with
α1 = 3.885) have too low peak heights Pres < 10−9 � P0

and are discarded here. For over-barrier resonances located
at αres < −0.5, the peak height becomes only slightly larger
than the background probability P 
 P0 = 10−5. The peak
structure of such resonances would be obscure. Therefore, the
over-barrier resonances would be prominent only for αres ∼ 0,
and the resonance search was not made for αres < −0.5 in this
study.

By assuming that the resonance profile has a Lorentz
shape, one can derive the resonance energy width 
 from the
reaction probabilities P (E,L) in the QM calculation. When
αres ∼ 0, however, it is not easy to obtain the resonance width
unambiguously because the nonresonance part of P (E,L)
exhibits an abrupt change versus energy variation. In this study,
the widths of the resonances located at αres < 0.1 were not
calculated. Figure 9(a) shows the QM results of the resonance
widths 
 in the Li + H+ reaction plotted against αres. The
widths shown in Fig. 9(a) undergo changes from ∼10−9 eV to

FIG. 9. (a) Energy widths 
 and (b) 
 times τ/2 (τ is the
vibrational period) of the resonances in the Li + H+ reaction,
obtained with the QM calculation (circles), plotted against the
tunneling parameter αres of the resonance peak position. The width
function �θ (α), i.e., Eq. (27), for the reactivity P0 = 10−5 is shown
by the solid line in the (b). The insert in (b) is the linear-scale plot for
αres � 2.

∼10−4 eV. It can be seen that 
 and αres have a high correlation,
and hence, the plot of 
 versus αres is again right on target.
Equation (31) further suggests that 
 times τ/(2�) yields a
universal quantity (i.e., �θ ) which is a function of only α for a
given P0. In Fig. 9(b), the products 
τ/2 obtained in the QM
calculation are plotted, and it is seen that the width function
�θ (α) can mostly reproduce them. (The notable exception is
the resonance at αres = 4.068, and the reason is unknown.)
When αres > 2, as mentioned previously, the resonance width
is determined by only the reactive (radiative) decay, and it
seems that 
τ/2 in the QM calculation becomes independent
of αres.

Figure 7 suggests that the resonances located at αres �
α0 =1.832 would be negligible in calculating the rate constant
γ (T ) of the Li + H+ reaction. Figure 10 shows the resonance
part of the reaction rate constant calculated using Eq. (37)
where the summation is taken over the resonances with 0.1 <

α(i)
res < αc: The convergence of the rate constant with respect

to the cutoff parameter αc is investigated. The fact that the
choice of αc = 2.5 = 1.36α0 is sufficient for evaluating the
resonance contribution is in accordance with the findings in
Fig. 7. The nonresonance part of the reaction rate constant
for Li + H+ is roughly given by κγL = 1.22 × 10−13 cm3/s,
with γL being the Langevin rate constant. Therefore, owing
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in Li + H+ as a function of the temperature T . The cutoff parameter
αc is varied between 0.5 and 3.0. Resonance contributions γ̄res(T )
obtained using Eq. (38) of Jachymski et al. [19] are also shown.

to the effect of the tunneling resonances, the rate constant
increases by 10%–20% at the temperatures shown in Fig. 10.
About half of the resonances treated in the present calculation
have αres < 1.36α0 and contribute to such increments. The
resonance contribution γ̄res(T ) obtained using Eq. (41) with
α > 0 is also plotted in Fig. 10, and good agreement is obtained
with the present directly calculated result except at very low
temperatures. Since the number of resonances contributing to
the rate constant is smaller at lower temperatures, the averaging
over θ in Eq. (38) is not appropriate for a reliable estimate at
very low temperatures.

B. He(2 3S) + H collisions

A second example is the He(2 3S) + H system, which
has two autoionization channels of Penning ionization and
associative ionization:

He(2 3S) + H → He + H+ + e

→ HeH+ + e.
(43)

This is the simplest and most fundamental among the various
systems bringing about Penning ionization and was hence
intensively investigated both theoretically and experimen-
tally [25,37–42]. In the present study, by using the latest
version of the complex potential energy curve of He(2 3S) +
H [42], the QM collision calculation was carried out for
energies E = 0.005–0.1 eV. As in Sec. III A, the results are
presented only for the total autoionization reaction.

Figure 11 shows the reaction cross sections σ (E) in
He(2 3S) + H and also in its isotope systems He(2 3S) + Mu
and He(2 3S) + T. It is seen that the reaction cross section
becomes larger for heavier reduced mass m. This fact is
clearly reflected in the classical reaction cross section κσ0:
The reaction efficiency is κ = 0.40,0.75 and 0.88 for Mu,
H, and T, respectively, whereas σ0 is independent of m.
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FIG. 11. Reaction cross sections σ (E) in collisions of He(2 3S)
with Mu, H, and T, obtained with the QM calculation. Also shown
is the result for the hypothetical He(2 3S) + H system, in which the
reactive interaction U is replaced with 0.01U . Dashed lines indicate
the classical reaction cross sections κσ0, with κ = 0.75 for He + H
and with κ = 0.40 for He + Mu.

The mass dependence may be explained by a semiclassical
method [37]; namely, κ 
 P0 ∼ 1 − exp(−c

√
m), where c

is a constant independent of m. The He(2 3S) + H system
is an example with high reaction efficiency, and the isotope
He(2 3S) + Mu system can offer lower reaction efficiency.
Compared to those of the Li + H+ system, the cross sections
have a much less complicated energy dependence and show a
structure like undulation (rather than peaks) due to resonances.
It is expected that no notable tunneling resonances occur for
P0 > 2(

√
2 − 1)=0.8284 [23]. The He(2 3S) + T system is

such a case. Another similar example is the exotic reaction p̄ +
H → p̄p + e (P0 
 0.9), with p̄ being an antiproton, which
was studied in [43]. For both p̄ + H [43] and He(2 3S) + T,
the QM calculations show indeed that no clear peak structure
to be attributed to the tunneling resonance is found. In the
He(2 3S) + H and He(2 3S) + Mu systems, since κ < 2(

√
2 −

1), a certain number of tunneling resonances are expected to be
observable. The present study considers these two systems and
additionally the hypothetical He(2 3S) + H system which has
κ = 0.012 by replacing the reactive interaction U with 0.01U .
The reactivity is set to be P0 = κ also in these systems. (See
Fig. 3 for the L dependence.) Topographical maps of F (α,θ )
similar to the present cases of not too low reactivities are drawn
in paper I and would be of some help.

Figure 12 shows the reaction probabilities P (E,L) in
He(2 3S) + H for all the partial waves L associated with the
collision energies 0.005 � E � 0.1 eV. Although the reduced
masses of He(2 3S) + H and Li + H+ are mostly the same,
fewer partial waves contribute to the He(2 3S) + H reaction
because the long-range attractive force is much weaker in
He(2 3S) + H. In Fig. 13, the heights of the resonance peaks
observed in Fig. 12 are plotted against the tunneling parameter
αres of the peak position. The data are, overall, reproduced
by the height function f (α) with P0 = 0.75, which has
a maximum (f = 1) at α = α0 =−0.1749 < 0. (The peak
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sions for L = 0–38, obtained with the present QM calculation, are
shown at collision energies E = 0.005–0.1 eV.

heights in Fig. 13 are plotted in a linear scale, whereas those
in Fig. 8 are in a log scale.) In contrast to the Li + H+
case (P0 � 1), the QM calculation shows that only a few
resonance peaks can be observed for αres > 0. This can be
directly attributed to negative α0: the peak height becomes
extremely small (Pres � P0) for the resonances occurring at
αres � α0 (compare with α1 = 0.09157). Of course, the most
prominent resonances that have peak heights Pres ∼ 1 are the
over-barrier type in He(2 3S) + H. Thus, it can be concluded
that the over-barrier type is a dominant resonance process if
the reaction system has α0 < 0. Incidentally, the He(2 3S) + T
system has α0 = −0.3171 and α1 = −0.07612.
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FIG. 13. Peak heights Pres of the resonances in the reaction
obtained with the QM calculation (circles) for the He(2 3S) + H
system. The resonances appearing as a shoulder structure are not
shown. The height function f (α), i.e., Eq. (18), for the reactivity
P0 = 0.75 is shown by the solid line.
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obtained with the QM calculation (circles) for the He(2 3S) + Mu
system. The height function f (α), i.e., Eq. (18), for the reactivity
P0 = 0.40 is shown by the solid line.

As a trial, the BS calculation was carried out for the
investigation of the tunneling resonances (αres > 0) also in the
He(2 3S) + H collisions. It should be remembered, however,
that the local potential V (R) might not be valid for the relative
motion at R < A unless P0 � 1. The BS calculation offers in
total 31 quasibound levels at energies 0.005 � E � 0.1 eV. Of
these, two levels located at α < 0.5 are found to correspond to
peaks (αres = 0.1158 and 0.2294) in P (E,L), and ten levels at
α � 1.5 are found to be associated with shoulders in P (E,L)
(see Fig. 12). Unfortunately, the shoulder structure is less
remarkable for resonance effects, and the heights of shoulders
are ill defined. Accordingly, the shoulder data are not added in
Fig. 13. All the other levels in the BS calculation have α � 1.5,
and no signs of being resonances can be practically discovered
in P (E,L) corresponding to these BS levels. It is expected
that any distinctive appearance of the resonance effect will be
missing for large α if P0 is smaller than but comparable to
2(

√
2 − 1).

Figure 13 shows that two peaks are located at αres =
0.02930 and 0.06201, which cannot be predicted by the
BS calculation. They might be considered to be due to
orbiting resonances because αres ∼ 0 [17]. (The same sit-
uation arises also in the Li + H+ reaction; three peaks at
αres = 0.002224,0.02990, and 0.03883 should be identified
as orbiting resonances.) It is a delicate point whether the
BS calculation is functional for the prediction of orbiting
resonances. However, the orbiting resonance is usually broad,
and its search is not very difficult in the collision calculation.

The He(2 3S) + Mu system (P0 = 0.40) has α0 = 0.06453.
Figure 14 shows the peak heights of the resonance probabilities
in this isotope system. Because of light reduced mass, only a
small number of resonances can be observed in total. The
peak heights of these resonances can be reproduced by f (α)
with P0 = 0.40. The BS calculation predicts nine tunneling
resonances at energies 0.005 � E � 0.1 eV. Actually, three
levels in the BS calculation are associated with one shoulder
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FIG. 15. Peak heights Pres of the resonances in the reaction
obtained with the QM calculation (circles) for the hypothetical
He(2 3S) + H system, in which the reactive interaction U is replaced
with 0.01U . The height function f (α), i.e., Eq. (18), for the reactivity
P0 = 0.012 is shown by the solid line.

and two peaks (αres = 0.5034 and 0.7801) in P (E,L). For the
other BS levels, which are located at α > 2 (i.e., α � α1 =
0.4310), the resonances are practically negligible (although
shoulder structures with P � 10−5 can be found). The peak
at αres = 0.07019 is not predicted by the BS calculation and
should be regarded as the orbiting resonance. Since α0 > 0 in
the He(2 3S) + Mu system, the relative ratio of the identified
tunneling resonances is larger than that in He(2 3S) + H.
Furthermore, since α0 ∼ 0, only the orbiting resonance can
satisfy αres 
 α0, and hence, Pres 
 1.

The hypothetical He(2 3S) + H system (P0 = 0.012) has
α0 = 0.7020. Figure 15 shows the peak heights of the
resonance probabilities, which can be reproduced by f (α)
with P0 = 0.012. Since P0 � 1 and α0 
 1, a lot more
tunneling resonances appear to be prominent than in the
original He(2 3S) + H system. As in the case of Li + H+, all
the resonances with Pres ∼ 1 are the tunneling type, and the
peak structure is clearly observed even when Pres becomes
very small. Probably, all the BS levels could be associated
with peaks in P (E,L): The ridge in the topographical
map is sufficiently steep even for large α. When α > 3.5
(compare with α1 = 1.627), however, the corresponding peaks
have Pres < 10−7 � P0, and such resonances are practically
negligible in the reaction process. For the resonances with
αres > 0, only the peak at αres = 0.01852 cannot be predicted
by the BS calculation. In Fig. 15, there are two peaks located
at negative values of αres ∼ 0 (i.e., αres = −0.002578 and
−0.03413); it may be allowable to identify these resonances
as the orbiting (rather than over-barrier) type. Considering the
previous results reported in this paper, it seems feasible that the
resonances located at |αres| � 0.1 are classified as the orbiting
type.

In the case of P0 � 1, the energy width of the tunneling
resonance should be estimated by Eq. (31). Figure 16 shows

τ/2 in the hypothetical He(2 3S) + H system. The width

FIG. 16. Energy widths 
 times τ/2 of the resonances in
the reaction obtained with the QM calculation (circles) for the
hypothetical He(2 3S) + H system, in which the reactive interaction
U is replaced with 0.01U . The width function �θ (α), i.e., Eq. (27),
for the reactivity P0 = 0.012 is shown by the solid line.

function �θ (α) with P0 = 0.012 is also plotted. The agreement
between the QM results and �θ (α) seems to be not as good as
for Li + H+. This is probably because the variation rate of P0

with L is more rapid for hypothetical He(2 3S) + H than for
Li + H+ (see Fig. 3) or because the reactivity P0 = 0.012 may
not be sufficiently small to assume Eq. (29). Nevertheless, an
overall picture of the αres dependence can be explained by the
width function �θ (α). For αres > 1, the product 
τ/2 becomes
roughly independent of αres in the hypothetical He(2 3S) + H
system.

IV. SUMMARY AND CONCLUSION

A comprehensive way of looking at the vast variety of
shape resonances in low-energy exoergic reactive collisions
and how to arrange them properly have been proposed. The
reaction systems investigated as examples were He(2 3S) + H,
He(2 3S) + Mu, hypothetical He(2 3S) + H, and Li + H+. The
related processes are the autoionization reaction in the first
three systems and the radiative reaction in the last system. The
reaction processes are characterized by the reactivity P0, which
can be mostly set to be identical to the reaction efficiency κ .
These systems have the reactivities P0 = 0.75, 0.40, 0.012,
and 10−5, respectively.

The shape resonances should be arranged according to the
magnitude of the tunneling parameter α. The resonances might
be classified as a tunneling type if α � 0.1, an orbiting type if
|α| � 0.1, and an over-barrier type if α � −0.1.

Simple universal formulas, which can be derived from
the WKB approximation, are found to be beneficial to the
systematical understanding of the shape resonances. The
probability peak heights of the resonances and the energy
widths of the tunneling resonances can be predicted by the
height function f (α) and the width function �θ (α), which are
dependent only on α for a given reactivity P0. The resonance
width can be expressed as the sum of the barrier penetration
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and reactive decay widths, and this explains the α dependence
of the width.

The reaction probability at a resonance energy always be-
comes P 
 1 when the tunneling parameter corresponding to
this energy is α 
 α0 = (2π )−1 ln[(1 − P0)/P0]. The physical
meaning of this condition is that the transmission coefficient
is nearly equal to the reactivity P0 at this energy or, for
the tunneling resonance, that the barrier penetration width is
nearly the same as the reactive decay width. This conclusion
is always true no matter how low the reactivity P0 is. The
resonance occurring at α � α0 has a negligible profile or a
very small peak height (Pres � P0) and actually plays no role
in the reaction process. The over-barrier resonance becomes
less important at |α| > 1.

In the reaction system, the relative importance between the
over-barrier and the tunneling resonances changes according
to the reactivity P0 (or α0). In the system with P0 � 0.5 (i.e.,

α0 � 0), the over-barrier resonances play a major role. In the
system with P0 � 1 (or α0 � 1), the tunneling resonances
occur overwhelmingly.

For application, knowing to what extent the shape reso-
nances should be taken into account in the calculation of the
reaction rate constants is of great interest. The contribution of
the resonance is proportional to the peak height times the peak
width, which can be evaluated from the product f (α)�θ (α)
without carrying out detailed collision calculations. The
present study indicates that only the resonances located at
α � α0 are important in the calculation of the rate constants if
the system has P0 � 1.
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