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Energies and lifetimes (widths) of vibrational states above the lowest dissociation limit of 16O3 were determined
using a previously developed efficient approach, which combines hyperspherical coordinates and a complex
absorbing potential. The calculations are based on a recently computed potential energy surface of ozone
determined with a spectroscopic accuracy [Tyuterev et al., J. Chem. Phys. 139, 134307 (2013)]. The effect of
permutational symmetry on rovibrational dynamics and the density of resonance states in O3 is discussed in
detail. Correspondence between quantum numbers appropriate for short- and long-range parts of wave functions
of the rovibrational continuum is established. It is shown, by symmetry arguments, that the allowed purely
vibrational (J = 0) levels of 16O3 and 18O3, both made of bosons with zero nuclear spin, cannot dissociate on the
ground-state potential energy surface. Energies and wave functions of bound states of the ozone isotopologue 16O3

with rotational angular momentum J = 0 and 1 up to the dissociation threshold were also computed. For bound
levels, good agreement with experimental energies is found: The rms deviation between observed and calculated
vibrational energies is 1 cm−1. Rotational constants were determined and used for a simple identification of
vibrational modes of calculated levels.
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I. INTRODUCTION

Knowledge of quantum rovibrational states near the dis-
sociation threshold is mandatory for the understanding of the
molecular dynamics of formation and depletion processes. In
this respect the ozone molecule is a particularly interesting
subject for both fundamental molecular physics [1–10] and
various applications, owing to the well-known role that this
molecule plays in atmospheric physics and climate processes
[11,12]. Despite the significant progress made over past
decades in the study of ozone spectroscopy [8,13–18] and
dynamics [1–6,10,19–30], many aspects of this molecule as
well as of the O2 + O complex in high-energy states are not
yet fully understood. One of the major motivations for recent
investigations of excited ozone has been the discovery of
the mass-independent fractionation reported by Mauersberger
et al. [31–33], Thiemens and Heidenreich [34], and Hippler
et al. [35] in laboratory and atmospheric experiments: For most
molecules, the isotope enrichment scales according to relative
mass differences, but the case of ozone shows an extremely
marked deviation from this rule. This has been considered
as a “milestone in the study of isotope effects” [2] and a
“fascinating and surprising aspect ... of selective enrichment
of heavy ozone isotopomers” [30]. On the theoretical side,
many efforts have been devoted to the interpretation of these
findings, in the research groups of Gao and Marcus [20,21],
Troe et al. [35,36], Grebenshchikov and Schinke [29,37],
Babikov et al. [28,38], Dawes et al. [30] and in many other
studies; see [1–6,22–27,39–42] and references therein. Several
fundamental issues raised by the ozone studies could have
an impact on the understanding of important phenomena in

quantum molecular physics and of the complex energy transfer
dynamics near the dissociation threshold.

It has been recognized that a nontrivial account of the
symmetry properties [6,39], efficient variational methods
for the nuclear motion calculations, and an accurate de-
termination of the full-dimensional ozone potential energy
surfaces (PES) are prerequisites for an adequate description
of related quantum states and processes in the high-energy
range. The ozone molecule exhibits a complex electronic
structure and represents a challenge for accurate ab initio
calculations [7,9,43–48]. Earlier one-dimensional (1D) PES
studies predicted an “activation barrier” at the transition state
(TS) along the minimum energy path (MEP) [49–51]. Later
on more advanced electronic structure calculations have sug-
gested that the MEP shape could have a “reef”-like structure
[52–54] with a submerged barrier below the dissociation
limit. Following preliminary estimations of Fleurat-Lessard
et al. [54], this “reef” feature was incorporated into a so-
called “hybrid PES” by Babikov et al. [38] by introduc-
ing a 1D semiempirical correction to the three-dimensional
Siebert-Schinke-Bittererova (SSB) [44,45] PES with empirical
adjustments to match the experimental dissociation energy.
This modified SSB (mSSB) surface containing a shallow van
der Waals (vdW) minimum along the dissociation reaction
coordinate around r1 ∼ 4.5–5.0a0 has been used to study the
metastable states [38] and also suggested the existence of
van der Waals bound states [55–58]. A detailed review of
ozone investigations up to this stage has been presented in
Schinke et al. [1], which concluded that the calculated rate
constants were about 3–5 times smaller than the measured ones
and had a wrong temperature dependence. Recently, Dawes
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et al. [30,59] have argued that an accurate account of several
interacting electronic states in the TS region should result in
a ground-state potential function without the “reef” feature
found in previous ab initio calculations. Since this work,
and based on scattering studies [5,60,61], the “reef structure”
was considered a “deficiency” [62] of the SSB [44,45], the
mSSB and similar PES versions [38,63] and was thought to
be a plausible reason for the disagreement in rate constant
calculations [1,30]. Ndengué et al. [62] have reported energies
of J = 0 and J = 1 bound rovibrational ozone states below D0

using the Dawes et al. [59] PES. Variational calculations of the
100 lowest bound vibrational states using that PES resulted in
observed minus calculated root-mean-square (obs-calc rms)
error [62] of ∼20 cm−1 with respect to the experimentally
observed band centers of (16O)3.

In 2013 Tyuterev et al. [64] proposed a new analytical
representation for the ozone PES accounting for its compli-
cated shape on the way towards the dissociation limit. They
constructed two PES versions based on extended ab initio
calculations. Both PESs were computed at a high level of
electronic structure theory with the largest basis sets ever
used for ozone. To this end the multi-reference configuration
interaction method with Davidson corrections (MRCI+Q) and
the full-valence active space was employed using augmented
valence atomic basis (AV5Z, AV6Z) followed by the extrapo-
lation to the complete basis set limit. The first PES, referred to
as R_PES (“reef_PES”), has been obtained, including a single
electronic state in the orbital optimization. It possesses the reef
TS feature, as most published potentials do. The second one
accounts for Dawes et al.’s correction [30], which considers
interaction with excited states. This latter potential is referred
to as NR_PES (“no_reef_PES”). Both PESs have very similar
equilibrium configurations in the bottom of the main C2v

potential well and give the same dissociation threshold, very
close to recent experimental value of Ruscic D0 = 8563 cm−1

[65,66] (as cited in Ref. [47]). Vibrational calculations, using
the NR_PES by Tyuterev et al. [64], of all (16O)3 band centers
observed in rotationally resolved spectroscopy experiments
have resulted in an (rms) obs-calc error of only ∼1 cm−1

without any empirical adjustment.
Metastable ozone states above the dissociation threshold are

expected to play a key role in the two-step Linderman mech-
anism [38] of ozone formation at low pressures. They have
been studied by Babikov et al. [38] and by Grebenshchikov
and Schinke [29,37] involving also lifetime calculations. Both
investigations are based on SSB or mSSB potential surfaces
[38] exhibiting the reef-structure features. Assignment of
recent very sensitive cavity-ring-down laser experiments in the
TS energy range (from 70% to 93% of D0) have been possible
[8,67–73] due to rovibrational predictions using the NR_PES
of Ref. [64] that changed the shape of the bottleneck range
along the MEP and transformed the reef into a kind of smooth
shoulder. The predictions of bound states with this latter PES in
the TS energy range (from 70% to 93% of D0) exhibit average
errors of only 1–2 cm−1 for six ozone isotopologues, 666, 668,
686, 868, 886, and 888 [74]. This clearly demonstrated [8] that
the NR_PES by Tyuterev et al. [64] is much more accurate than
other available surfaces for the description of all experimental
spectroscopic data, at least up to 8000 cm−1, that is, for bound
states up to at least 93% of the dissociation threshold. In

the original publication of Ref. [64], bound states have been
computed in the C2v symmetry of the main potential well.

In the present work we report calculations of resonance-
state energies, corresponding wave functions, and lifetimes
using this PES. Furthermore, bound states near the dissociation
threshold are investigated in full D3h symmetry, accounting for
possible permutation of identical nuclei over the three potential
wells.

II. SYMMETRY CONSIDERATIONS:
STATIONARY APPROACH

In the electronic ground state, the ozone molecule has C2v

symmetry at equilibrium such that the global potential energy
surface has three relatively deep minima, corresponding to
three possible arrangements of the oxygen atoms known as
“open configurations.” As the barriers between two wells are
very high, low-lying rovibrational states of the homonuclear
ozone isotopologues, such as (16O)3, which we study in the
present article, may be characterized by irreducible representa-
tions (irreps) of the molecular symmetry group C2v(M), which
is isomorphic with the C2v point group. In the terminology of
Longuet-Higgins [75,76], transformations between the three
possible arrangements of three oxygen atoms in ozone are not
feasible at low energies.

For weakly bound rovibrational states, however, for which
tunneling of the barrier becomes noticeable, and for continuum
states of ozone above the barrier, the transformation between
arrangements becomes feasible: The description of the dy-
namics of such states cannot be restricted to one potential
well. In this situation, the complete molecular symmetry group
must be employed to classify nuclear motion. This group
is the three-particle permutation inversion group, S3 × I . It
is isomorphic with the point group D3h and hence may
also be designated D3h(M), where M stands for molecular
symmetry group [76]. Dissociation of the ozone molecule on
the electronic ground-state surface leads to an oxygen atom and
a dioxygen molecule, each in its electronic ground state, i.e.,
O(3

P ) + O2(X 3�−
g ). The symmetry group of the oxygen atom

is just the inversion group I , while that of the oxygen molecule
is the two-particle permutation inversion group S2 × I . The
latter may be designated D∞h(M) in order to retain the D∞h

nomenclature for the irreducible representations [77]. In the
asymptotic channel, exchange of identical nuclei between the
atom and the diatomic molecule becomes unfeasible as their
distance goes to infinity. It is clear from this discussion that
the molecular symmetry groups C2v(M) and D∞h(M) are
equivalent and just provide different sets of labels for the
four irreducible representations. They are two manifestations
of the S2 × I group. To make this paper self-contained, we
give the characters and symmetry labels in Table I. Of the
symmetry elements of the point group D∞h, only those are
retained for the molecular symmetry group D∞h(M) that
correspond to a permutation inversion operation. This excludes
symmetry elements such as 2C(φ), which leave all nuclei on
their place. The molecule is placed in the xz plane, which is
the convention normally used in ozone spectroscopy [78]. The
correspondence of the axes is thus (x → b, y → c, z → a).
The transformation properties of the p orbitals, which are
needed in the discussion of the asymptotic states, are indicated
in the last column of the table.
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TABLE I. Character table of the point groups C2v , D∞h (ex-
cerpts), and the permutation inversion group S2 × I using the nomen-
clatures of C2v(M) and D∞h(M) for the irreducible representations.

C2v E C2b σab σbc

D∞h E ∞C ′
2 ∞σv i

S2 × I E (12) E∗ (12)∗

C2v(M) D∞h(M)

A1 �+
g 1 1 1 1 pb (px)

B1 �+
u 1 −1 1 −1 pa (pz)

A2 �−
u 1 1 −1 −1

B2 �−
g 1 −1 −1 1 pc (py)

Classification of states in S2 × I is convenient for rovibra-
tional states situated deep in the wells, and for the dissociating
resonances. We now wish to relate them with the symmetry
species of the complete permutation inversion group S3 × I , or
D3h(M). These correlations are shown in Table II. In addition
to the symmetry elements of S2 × I , which are the identity,
E, the pair permutation, (12), the inversion of the spatial
coordinate system, E∗, and the combination (12)∗ = (12) ×
E∗ = E∗ × (12), a new class appears, the cyclic permutations,
{(123),(132)}, as well as the class built up by its combination
with the inversion of the coordinate system, {(123)∗,(132)∗}.
These new operations describe the exchange between the three
localized structures. The correlation presented in Table II is
obtained by matching the characters of the common operators,
i.e., the identity operation, pair permutations, and the inversion
of the coordinate system.

The rovibrational states of ozone may now be classified in
the D3h(M) group, allowing for tunneling between the three
wells. They can be considered superpositions of the three states
localized in their wells, which give rise to a one-dimensional
representation and a two-dimensional representation, just
as in the case of triplet H3

+, which has been discussed
before [79]. The energy difference between the one- and the
two-dimensional representations is called tunneling splitting.
Purely vibrational states have positive parity, i.e., belong to
either A′

1, A′
2, or E′, while both prime and double-prime states

exist for rotationally excited states. The localized vibrational
states to be superimposed may be classified in C2v(M) by
the approximate normal mode quantum numbers |v1 v2 v3〉 of
the symmetric stretching vibration, v1, the bending vibration,
v2, and the antisymmetric stretching vibration, v3. Since these
transform as A1, A1, and B1, respectively, the symmetry of

|v1 v2 v3〉 is A1 for v3 even and B1 for v3 odd. In D3h(M), they
give rise to the pairs (A′

1,E
′), (A′

1,E
′), and (A′

2,E
′), referring

to the one- and two-dimensional representations.
Only those vibrational states that have A′

1 symmetry are
allowed for the isotopologue (16O)3, as can be seen from the
following analysis. The 16O isotope is a boson, with zero
nuclear spin; i.e., the total wave function of (16O)3 must
be symmetric under exchange of any two 16O nuclei and
transform as A′

1 or A′′
1 in D3h(M). The nuclear spin function

transforms as A′
1. Likewise, the electronic wave function

of the ground state, X 1
A1 in spectroscopic notation, since

the open structure minima have C2v symmetry, is totally
symmetric with respect to all nuclear permutations. It means
that the rovibrational part of (16O)3 should also be symmetric
under an exchange of any two oxygen nuclei, i.e., should
transform as the A′

1 or the A′′
1 irreducible representation. Purely

vibrational states have positive parity and thus symmetry
A′

1; the other symmetry species are not allowed. We note
in particular that the degenerate tunneling component has
zero statistical weight, giving rise to “missing levels” in
spectroscopic language. As a consequence, tunneling splitting
of the purely vibrational states cannot be observed.

The calculations of the present article were performed in
hyperspherical coordinates, as they permit straightforward
implementation of the full permutation inversion symmetry.
The rovibrational wave function �Jm

v of tunneling ozone can
be written as an expansion over products of rotationalRJkm(�)
and vibrational factors ψJk

v (Q),

�Jm
v (�,Q) =

∑
k

RJkm(�)ψJk
v (Q), (1)

where RJkm(�) are symmetric top rotational wave functions
proportional to the Wigner functions DJ

mk

RJkm(�) =
√

2J + 1

8π2

[
DJ

mk(�)
]∗

, (2)

and depending on the three Euler angles �. The vibrational
part of the wave function depends on the internal projection k

of the angular momentum onto the axis perpendicular to the
molecular plane, denoted the y axis in Table I. Note that no
decomposition is made here in terms of the C2v(M) normal
modes, which would be an approximation.

Each product in expansion (1) should have the same
symmetry in the D3h(M) group as the total rovibrational
wave function, i.e., A′

1 or A′′
1. The symmetry 	r of the

rotational functions RJkm(�) in D3h(M) is well known (see,

TABLE II. Character table of the group S3 × I and the relation with the irreducible representations of the group S2 × I using the
nomenclatures C2v(M) and D∞h(M).

S3 × I E {(123), (132)} {(12), (23), (13)} E∗ {(123)∗, (132)∗} {(12)∗, (23)∗, (13)∗} S2 × I

D3h(M) C2v(M) D∞h(M)

A′
1 1 1 1 1 1 1 A1 �+

g

A′
2 1 1 −1 1 1 −1 B1 �+

u

E′ 2 −1 0 2 −1 0 A1 + B1 �+
g + �+

u

A′′
1 1 1 1 −1 −1 −1 A2 �−

u

A′′
2 1 1 −1 −1 −1 1 B2 �−

g

E′′ 2 −1 0 −2 1 0 A2 + B2 �−
u + �−

g
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TABLE III. Allowed combinations of irreducible representations
of the rotational and vibrational factors in the expansion of Eq. (1).a

J 0 1 1 2 2 2 3 3 3 3

k 0 0 ±1 0 ±1 ±2 0 ±1 ±2 ±3∗

	r A′
1 A′

2 E′′ A′
1 E′′ E′ A′

2 E′′ E′ A′′
1, A′′

2

	v A′
1 A′

2 E′ A′
1 E′′ E′ A′

2 E′ E′ A′
1, A′

2

	r × 	v A′
1 A′

1 A′′
1 A′

1 A′
1 A′

1 A′
1 A′′

1 A′
1 A′′

1, A′′
1

aThe symmetrized combinations of functions with k = ±3 transform
as the A′′

1 and A′′
2 representations in D3h(M). The direct products,

	r × 	v , of two E representations yield A1 + A2 + E and contain
the A1 representation. Only the latter is listed in the last line of the
table. The parity is given by the usual rule ′×′ =′, ′′×′′ =′, ′×′′ =′′,
′′×′ =′′.

for example, [76,80]). It imposes restrictions on the possible
irreducible representations of the vibrational factors ψJk

v (Q):
The rotational and vibrational wave functions should be of
the same species, both A1, or both A2, or both E. Parities
of the wave functions are not restricted. The parity of the
vibrational functions is always positive; the parity of the
rotational function is positive for even k and negative for odd
k. Examples of the irreducible representations of rotational
and vibrational functions are given in Table III for J � 3.

Let us now turn to the symmetry classification of the
wave functions of the decaying resonance states. The lowest
dissociation limit of ozone produces the oxygen atom, O(3

P ),
and the oxygen molecule, O2(X 3�−

g ), in their electronic
ground states. The orbital degeneracy of the atomic P state
is three. One orbital is oriented perpendicular to the plane
spanned by the three nuclei, denoted as pc in Table I.
According to Table II, it transforms as A′′

2 in D3h(M). The
two in-plane orbitals transform as E′. On the other hand,
the electronic symmetry of the dioxygen molecule is �−

g in
D∞h(M) or A′′

2 in D3h(M). At large distances, the electronic
ground state, X 1

A1, of ozone correlates with the perpendicular
(pc) component of the atomic P state plus the diatomic �−

g

state, each of which has A′′
2 symmetry in D3h(M) such that

their product is indeed A′
1.

The electronic ground state of O2 is antisymmetric with
respect to an exchange of the two nuclei. Since the vibra-
tional states of O2 are totally symmetric, this implies that
the rotational functions must be antisymmetric to yield a
symmetric nuclear wave function. The rotational functions
of O2 transform as �+

g for even values of j and as �−
g for

odd values. Rotational states of 16O2 must therefore have odd
rotational angular momentum, j , and the lowest rovibrational
state is (v = 0,j = 1).

Let us now analyze the asymptotic wave function in the exit
channel κ with κ = 1,2,3. It can be expanded as

�Jm
κvdj l(�rκ , �Rκ ) ≈ 1

rκRκ

ϕel
a ϕel

d χvdj (rκ )YJm
jl (r̂κ ,R̂κ )ei(kRκ−lπ/2),

(3)

where exp[i(kRκ − lπ/2)] is the scattering function of the
outgoing wave and χvdj (rκ ) the vibrational wave function of
the O2 molecule; rκ and Rκ are the true, not mass-scaled,
distances in the Jacobi coordinate system κ . r̂ denotes the
two angles that describe the rotation of the O2 molecule in the

laboratory coordinate system, and R̂ the angles of the direction,
with respect to the laboratory coordinate system, of the out-
going oxygen atom. Functions ϕel

a and ϕel
d represent electronic

states of the O(P ) atom and the O2(X3�+
g ) molecule. Angular

momenta of the atom-diatom relative motion, l, and of the
rotation of the oxygen molecule, j , must be coupled to yield
the total angular momentum, J , which is taken care of by the
bipolar harmonics, YJm

jl . They are defined as

YJm
jl (r̂κ ,R̂κ ) =

∑
ml,mj

CJm
jmj lml

Yjmj
(r̂κ )Ylml

(R̂κ ), (4)

where the Y are spherical harmonics and C are Clebsch-
Gordan coefficients. The scattering function in Eq. (3) is
not symmetric with respect to permutation of three bosonic
nuclei and, therefore, cannot be correlated in this form with
the short-distance form of Eq. (1), which does have correct
symmetry behavior (for the combinations of quantum numbers
given in Table III). To bring the function of Eq. (3) to the form
satisfying the permutational symmetry of three bosons, in the
language of group theory, one has to apply projectors of the
D3h(M) group of the two allowed irreducible representations,
A′

1 or A′′
1. An efficient way to perform it is to use a general

approach of Ref. [81] applicable to a three-body system with
arbitrary total nuclear spin. Equations (19) of that reference
do not take into account the electronic part of the total wave
function. The electronic wave function of the dioxygen ϕel

d

changes sign under permutation of the two atoms and under
the inversion operation, and the atomic ϕel

a changes sign under
the inversion only. Therefore, Eqs. (19) of Ref. [81] take the
following form for the present case:

(12)�Jm
κvdj l(�rκ , �Rκ ) = (−1)j+1�Jm

κvdj l(�rκ , �Rκ ),

E∗�Jm
κvdj l(�rκ, �Rκ ) = (−1)l+j�Jm

κvdj l(�rκ , �Rκ ). (5)

With these properties, the projectors P	 take the form (see
Eqs. (20) of Ref. [81])

P	�Jm
κvdj l(�rκ , �Rκ )

= [
1 + χ	

23(23) + χ	
31(31)

][
1 + (−1)j+1χ	

12

]
× [

1 + (−1)l+jχ	
E∗

]
�Jm

κvdj l(�rκ , �Rκ ), (6)

for any of the D3h(M) representations. Here χ	 are characters
of the representation 	 given in Table II. From the expression in
the second parentheses on the right side of the equation above,
it is clear that for the allowed representations A′

1 and A′′
1, if j

is even, the projectors are identically zero: PA′
1
= 0, PA′′

1
= 0.

This simply means that a free molecule 16O2(X 3�+
g ) can only

have odd rotational angular momentum j . The expression in
the third parentheses means that if the quantum numbers l and
j have different parity, the projectors again give identically
zero for A′

1 (but not for A′′
1). In particular, it implies that

dissociative states of 16O3 with rotational angular momentum
J = 0 do not exist within the adiabatic approximation.

III. NUCLEAR DYNAMICS

The present, stationary theoretical approach to describe
nuclear dynamics was developed previously by Kokoouline
et al. [79,82–84]. It is based on the two-step procedure of
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solving the stationary Schrödinger equation in hyperspherical
coordinates [85–87]. Although the method was previously
applied to several three-body problems, it has never been
applied to a system with large masses of the three particles
and so many bound states: In Ref. [83] the method was
developed and tested on a benchmark system of a three-boson
nucleus with a very shallow potential supporting only one
bound state and one resonance. In Ref. [84], the method
was employed to calculate resonances in three-body collisions
of hydrogen atoms. The lowest H3 potential energy surface
has two coupled sheets without any bound state but with
many resonances. The method was also routinely used to
represent the vibrational continuum in studies of dissociate
recombination of isotopologues of H3

+ [88,89]. An important
difference of the present study with the previous ones is that the
number of bound states is large, which requires a significantly
larger basis to represent the vibrational dynamics near and
above the dissociation.

We briefly summarize the main elements of the approach.
To solve the Schrödinger equation

[T (ρ,θ,φ) + V (ρ,θ,φ)]�v(ρ,θ,φ) = Ev�v(ρ,θ,φ) (7)

for three particles interacting through the potential V (ρ,θ,φ)
in the hyperspherical coordinates ρ, θ , and φ, first, the
adiabatic hyperspherical curves Ua(ρ) and the corresponding
hyperangular eigenstates ϕa(ρi ; θ,φ) [hyperspherical adiabatic
states (HSAs)] are obtained by solving the equation in the
two-dimensional space of the hyperangles θ and φ for several
fixed values of the hyperradius ρj (j = 1,2, . . .); i.e., the
following equation is solved:[

�
2 �2 + 15

4

2μρ2
j

+ V (ρi ; θ,φ)

]
ϕa(ρj ; θ,φ) = Ua(ρi)ϕa(ρj ; θ,φ).

(8)

In the above equation, �2 is the grand angular momentum
squared [87,90] and μ is the three-particle reduced mass: For
identical oxygen atoms with mass mO , one has μ = mO/

√
3.

The equation is solved using the approach described in
Ref. [91]. The solution of Eq. (8) yields adiabatic curves Ua(ρ)
and eigenfunctions ϕa(ρ; θ,φ), defining a set of HSA channels
a. The HSA states are then used to expand the wave function
�v in Eq. (7)

�v(Q) =
∑

a

ψa(ρj )ϕa(ρj ; θ,φ). (9)

The expansion coefficients ψa(ρi) depend on hyperradius ρ.
Following the original idea of Ref. [92] the hyperradial wave
functions ψa(ρi) are then expanded in the discrete variable
representation (DVR) basis πj (ρ)

ψa(ρ) =
∑

j

cj,aπj (ρ). (10)

Inserting the two above expansions into the initial Schrödinger
equation (7), one obtains∑

j ′,a′

[
〈πj ′ | − �

2

2μ

d2

dρ2
|πj 〉Oj ′a′,ja + Ua(ρj )δj ′,j δa′a

]
cj ′a′

= E
∑
a′

Oja′,jacja′ , (11)

with

Oj ′a′,ja = 〈ϕa′(ρj ′ ; θ,φ)|ϕa(ρj ; θ,φ)〉. (12)

In the above equation, the matrix elements of the second-order
derivative with respect to ρ is calculated analytically (see, for
example, [93,94] and references therein).

The described approach of solving the Schrödinger equa-
tion using the adiabatic (HSA) basis replaces the usual
form of nonadiabatic couplings in terms of derivatives with
respect to ρ with overlaps between adiabatic states ϕa(ρ,θ,φ)
evaluated at different values of ρ. The approach is particularly
advantageous here, since the adiabaticity of the hyperradial
motion, when separated from hyperangular motion, is not
satisfactory, so that multiple avoided crossings between HSA
energies Ua(ρ) occur. This is the usual situation in three-body
dynamics. Representing nonadiabatic couplings by derivatives
〈ϕa′ |∂/∂ρ|ϕa〉 and 〈ϕa′ |∂2/∂ρ2|ϕa〉 near the avoided crossings
would require a very small grid step in ρ. The use of overlaps
between HSA states reduces significantly the number of
grid points along ρ required for accurate representation of
vibrational dynamics.

In Ref. [64], the main features of the PES were demon-
strated in internal coordinates. In the present study, the
NR_PES of Ref. [64], which had been originally defined in the
C2v wells, was symmetrized according to the nuclear permuta-
tions and converted in the hyperspherical coordinates [85–87].
Figure 1 shows the PES as a function of the two hyperangles
for several values of the hyperradius. As evident from the plot
at ρ = 5.4 bohrs the potential barrier between the wells is situ-
ated at energies 9000 cm−1, i.e., very close to the dissociation
threshold. The passage between the wells occurs at geometries
beyond the “shoulder” of the ozone potential. Therefore, one
expects weakly bound low-energy resonances delocalized be-
tween the three potential wells. To represent nuclear dynamics
of such near-dissociation levels, one needs to take into account

FIG. 1. Ozone potential energy surface (NR_PES of Ref. [64]) as
a function of the two hyperangles for several values of the hyperradius.
In the plots, the hyperangles are represented in a polar coordinate
system (see Fig. 6 of Ref. [80]): θ increases from the center of each
plot to its edge; φ is a cyclic variable (polar angle) changing from 0
to 2π . The minimum of PES, situated near ρ = 4.2a0, is chosen as
the origin. The electronic energy of dissociation to the atom and the
diatomic molecule at equilibrium is at 9164 cm−1.
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FIG. 2. Hyperspherical adiabatic curves Ua(ρ) of the A1 ir-
reducible representation and J = 0 as a function of hyperradius
obtained for 16O3. In this figure, the energy origin is chosen at
the ground vibrational level of 16O3, situated 1443.524 cm−1 above
the PES minimum. The vd = 0,1,2 labels indicate energies of the
O + O2 (vd ) asymptotic vibrational channels. Multiple HSA curves
between the vibrational channels correspond to various rotational
channels j of the dissociating oxygen molecule. For the A1 vibrational
states, only even j are allowed. Because J = 0, the partial wave in
each asymptotic channel (vd,j,l) is determined simply as l = j .

the three potential wells simultaneously. The energy D0 of
dissociation to the 16O(3

P ) and 16O2(X 3�
−
g [vd = 0,j = 0])

products, computed on the PES of Ref. [64], is 8555 cm−1

above the ground rovibrational level of 16O3. This is even
closer to the experimental D0 = 8563 cm−1 value by Ruscic
[65,66,47] than the estimation of the original work [64]
because the zero-point energy of the O2 fragment was treated
here in a more consistent way using the same global PES

A convenient way of analyzing nuclear dynamics of three
atoms is given by HSA curves, which could be viewed in a way
similar to Born-Oppenheimer curves for diatomic molecules,
except that the adiabatic and dissociation coordinate in the
HSA curves is the hyperradius, not the interatomic distance. In
contrast to the case of Born-Oppenheimer separation between
electronic and vibrational motion for diatomic molecules,
nonadiabatic coupling between HSA states is almost always
strong and cannot be neglected. Nevertheless, many key fea-
tures of the dynamics can easily be identified and qualitatively
studied. The HSA curves obtained for A1 vibrational symmetry
and J = 0 are shown in Fig. 2. At small values of hyperradius,
near ρ = 4.2, the lowest HSA curves have a minimum, which
corresponds to the O3 equilibrium. Each of the lowest HSA
curves near the minimum represents approximately a particular
combination of v2 and v3 vibrational modes of O3. The v1

mode near the O3 equilibrium is represented by the continuous
variable ρ, which is at this first step not quantized in the
space of HSA coordinates. Therefore, the lowest HSA curve
Ua(ρ) (a = 1) near ρ = 4.2 is an adiabatic representation of
the set (ρ,0,0) of vibrational modes of O3 corresponding to the
normal mode quantum numbers v2 = v3 = 0, the second and
third HSA curves are (v2 = 1,v3 = 0) and (v2 = 2,v3 = 0),
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FIG. 3. Comparison of the energies of band centers obtained in
this study with the previous calculation [64] and experimental data
[8,15–18,67–72] for two vibrational symmetries (A1 and A2 in the
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Ref. [64]). The difference between the present results and the previous
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FIG. 4. The largest of the three rotational constants for A1
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rotational constant Av on the energy of the vibrational states permits
an assignment of normal modes for low energy levels. Normal mode
quantum numbers are specified for a few levels. Note that at high
energy the normal mode assignment becomes “nominative” and is
to be taken with caution because of strong anharmonic basis state
mixing.
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FIG. 5. Wave functions of the (7,0,0) (top panels) and the (0,11,0) (bottom panels) levels as functions of the Jacobi coordinates R, r, and
γ . Only the vibrational (without the rotational) part of the wave functions is given. In the left panels, the dependence on R and γ is shown for
a fixed value of r = 2.28a0, which is the equilibrium nuclear distance in the O2 molecule. The right panels show the R,r dependence for fixed
γ = 40◦.

the fourth one is (v2 = 0,v3 = 2), etc. Odd v3 are not present
in A1 vibrational symmetry.

At energies near and higher than 6000 cm−1 above the
(0,0,0) level, the normal modes are significantly mixed and the
mode assignment becomes more difficult. However, the HSA
curves at large energies, above the energy of dissociation, and
at large ρ, provide a convenient description of dissociation
dynamics. At large ρ, each adiabatic curve converges to a par-
ticular asymptotic channel represented by a rovibrational level
(vd,j ) of O2 and the partial wave of relative motion of O2 and
O. As one can see, there are multiple very sharp avoided cross-
ings, especially in the zone of transition from short to large ρ.

IV. BOUND STATES NEAR D0 AND PREDISSOCIATED
RESONANCES

A series of calculations with different parameters of the nu-
merical approach were performed to assess the uncertainty of
the obtained energies with respect to the numerical procedure.
The final results for A1 and A2 vibrational levels were obtained
with 60 HSA states. The number of B splines used for each of
the hyperspherical angles θ and φ was 120. Similar to previous
work by Alijah and Kokoouline on the H3

+ molecule [79], the
interval of variation of ϕ was from π/6 to π/2 in calculations of

A1 and A2 levels. The variation interval of ρ was from 2.9 to 16;
a variable step width [82,84,94] along the ρ grid was used with
192 grid points. The estimated uncertainty due to the employed
numerical method is better than 0.001 cm−1 for low vibrational
levels and about 0.01 cm−1 for levels at around 7500 cm−1

above the ground vibrational level. This convergence error
is significantly lower than the uncertainties of the ozone
PES. Figure 3 compares the energies of 16O3 band centers
up to 8000 cm−1 obtained in this study with the previous
calculation [64] and experimental data [8,15–18,67–72]. The
rms deviation between the calculation of Ref. [64] in C2v

symmetry and the present D3h calculations is of 0.03 cm−1

only up to this energy cutoff. This confirms a good nuclear
basis set convergence of both methods. The rms (obs-calc)
deviation for all vibrational band centers directly observed in
high-resolution spectroscopy experiments is 1 cm−1. This is by
one order of magnitude better than the accuracy of vibrational
calculations using other ozone PESs available in the literature.
The uncertainty in the determination of resonance energies
depends on their widths and is roughly 10% of the respective
width. The uncertainty in calculated widths is better than 20%
for most of the resonances.

The assignment of vibrational bands is simplified by using
the vibrational dependence of rotational constants predicted
from the PES and derived from rovibrational spectra analyses
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FIG. 6. As Fig. 5, but for the pure antisymmetric stretching modes (0,0,4) (top panels) and (0,0,6) (bottom panels).

as described in Refs. [16,67–71,73]. The largest rotational
constant, Av , corresponding to the “linearization” z axis, is
given by the following expression in hyperspherical coordi-
nates [95]:

Av = 〈
�00

v

∣∣ 1

μρ2(1 − sin θ )

∣∣�00
v

〉
. (13)

At low vibrational excitations, the rotational constant Av

has nearly linear behavior with respect to the normal mode
quantum numbers, v1, v2, or v3, with proportionality coeffi-
cients different for each mode. This can be seen in Fig. 4.
For example, when v1 = v3 = 0, the levels (0,v2,0) form
almost a straight line in the Av(Ev) plot. The same is true
for other series, (v1,0,0), (0,0,v3), (1,v2,0), etc. Near the
dissociation limits, the normal mode approximation is not valid
anymore and the series become mixed, although the (v1,0,0)
and (0,v2,0) series survive even above the dissociation. Such
states cannot dissociate into O2 + O unless mixed with the
antisymmetric vibrational mode.

Figures 5 and 6 and the top panel of Fig. 7 show wave
functions of five bound vibrational levels of A1 vibrational
symmetry in terms of Jacobi coordinates R, r , and γ , where r

is the distance between two oxygen nuclei of a chosen pair, R

is the distance from the center of mass of this pair to the third
nucleus, and γ is the angle between the vectors along r and
R. The left panels of the figures demonstrate the dependence
of the wave functions on R and γ . The interval of variation
of γ is from 0◦ to 180◦, such that it covers two of the three

possible equivalent arrangements (permutations) of the three
nuclei; i.e., it represents two of the three potential wells of
the ozone potential. As evident, the obtained wave functions
are symmetric with respect to an exchange between the two
wells. Since the calculations were performed in hyperspherical
coordinates, the wave functions are also symmetric with
respect to the exchange involving the third well, but the Jacobi
coordinates cannot easily represent such a symmetry.

To demonstrate the nature of wave functions of different
normal modes, the functions chosen in Figs. 5–7 represent
“pure” vibrational modes: (7,0,0), (0,11,0), (0,12,0), (0,0,4),
and (0,0,6). It is easy to identify the pure v1 (symmetric
stretching) and v2 (bending) modes by counting nodes in
the Jacobi coordinates, but the behavior of the antisymmetric
stretching mode v3 is more complicated in Jacobi coordinates.

For the calculation of states above the dissociation threshold
D0, a complex absorbing potential (CAP) and variable grid step
along ρ adapted to the local de Broglie wavelength were used
as described in Ref. [83]. The parameters of the CAP were
chosen to absorb the outgoing dissociation flux for the interval
of energies approximately between 100 and 4000 cm−1. When
the method of CAP is used, the spectrum of the Hamiltonian
matrix for energies above the dissociation limit contains
not only the relatively long-living resonance states but also
nonphysical “box states.” Real and imaginary parts of box-state
eigenvalues depend on the CAP and grid parameters. A manual
separation of resonances and box states is difficult for this case
because of a large number of resonances. Several calculations
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FIG. 7. As Fig. 5, but for the (0,12,0) bound (top panels) and (0,13,0) resonance (bottom panels) vibrational states. The interval or variation
of R in the left-panel plots is larger than in Figs. 5 and 6 in order to demonstrate the long-range tail of the wave functions. Note that the state
shown in the lower figure exists only if rotation is excited. Thus, the wave functions are just the vibrational parts of the total rovibrational
functions.

with variable parameters, such as CAP, the number of grid
pints along ρ, the number of the HSA states, and the number
of B splines in the HSA calculations, were performed. Spectra
obtained with different sets of parameters were compared,
allowing us to separate the box states from the resonances,
as the latter do not depend on the numerical parameters in a
converged calculation.

The bottom panel of Fig. 7 gives an example of a resonance
wave function of A1 vibrational symmetry. As discussed
above, such J = 0 levels are not allowed for 16O3, at least
in the isolated ground electronic PES approximation, but
we will consider them because the same analysis can be
applied to other isotopologues of O3, and also because a
similar behavior can be exhibited by A1 vibrational factors
of rotationally excited A2 states which are allowed for 16O3.
At short distances, the resonance is mainly described by
the (0,13,0) normal mode contribution. Its wave function
looks very similar to that of the (0,12,0) state. It is still
bound but has one more node along the v2 coordinate. The
outgoing dissociative flux is clearly visible in the R,γ plot.
The contrast in the R,r plot is not quite sufficient to see the
flux clearly. The vibrational resonance (0,13,0) corresponds to
large-amplitude bending motion of ozone. The energy of such
bending oscillations is above dissociation, but the system does
not dissociate fast, because the O2 + O dissociation implies

that two of the three internuclear distances should become very
large and the third distance should stay small, whereas when
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FIG. 8. The Av rotational constants for A2(D3h) vibrational
states. Normal mode quantum numbers are specified for a few
levels. Above the dissociation threshold (vertical dotted red line),
the vibrational levels are predissociated.
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channels with different excitation of the oxygen molecule vd = 0, 1,

and 2. Numerically, lifetimes τ in ps are related to the widths in cm−1

as τ [ps] = (2πc	 [cm−1])−1, where c is the speed of light in units of
cm/ps, c = 0.029 979 245 8 cm/ps. Wave functions of the encircled
levels are shown in Figs. 11 and 12.

the molecule oscillates in the v2 or the v1 modes, all three
internuclear distances increase simultaneously.

Figure 8 shows the vibrational dependence of the rotational
constants Av obtained for A2 vibrational symmetry in the
D3h(M) group. The energy origin of the figure is the same as in
Fig. 4, i.e., the energy of the ground rovibrational level of ozone
(0,0,0),J = 0. The same three families of vibrational levels
corresponding to the three normal modes, are easily identified.
The figure also includes some of the low-energy predissociated
resonances above the dissociation limit. Figure 9 shows widths
of the A2 vibrational levels situated above the dissociation
threshold. Most of the resonances shown in the figure have
widths between 2 and 70 cm−1 (lifetimes between 0.08 and
2 ps) with a few outliers having significantly smaller widths.
These outliers are the levels highly excited in the v1 mode, as
demonstrated in Figs. 11 and. 12.

Figures 10–12 show some of the bound and resonance
vibrational levels of A2 vibrational symmetry of the D3h

group. The vibrational levels (v1,v2,v3) with odd v3 have
overall A2 symmetry. As mentioned above, continuum states
(including dissociative states) of ozone 16O3 can only be of A2

vibrational symmetry. Figure 11 demonstrates two resonance
wave functions from the (v1,0,1) series. Although excitation of
the v1 mode differs for these two levels only by one quantum,
their lifetimes are very different: 330 ps for the (8,0,1) and
3.1 ps for the (9,0,1) level. Figure 12 shows two examples of
wave functions for levels where all three modes are excited
and mixed.

Figure 13 shows the energies of symmetry-allowed levels
for the two lowest values of the angular momentum, J = 0 and
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FIG. 10. Same as Fig. 5, but for the (7,0,1) and (0,10,1) wave functions, of A2(D3h) overall vibrational symmetry.
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FIG. 11. Vibrational part of the wave functions of the (8,0,1) (top panels) and (9,0,1) (bottom panels) levels of A2(D3h) vibrational
symmetry. The calculated widths are 	 = 0.016 cm−1 for the (8,0,1) level and and 1.7 cm−1 for (9,0,1).

1. The standard notation notation {JKaKc
} for rotational states

of an asymmetric top molecule is used for bound states within
the well. The irreducible representation in the S3 permutation
group of the vibrational part of the total wave function is
also specified. Only states of A2(D3h) vibrational irrep can
dissociate and, therefore, only resonances of this symmetry
are shown in the figure.

V. CONCLUSION

In this study, energies, widths, and wave functions of
16O3 vibrational resonances were determined for levels up
to about 3000 cm−1 above the dissociation threshold. The
predissociated resonances have lifetimes between 0.08 and 2 ps
with a few long-living levels. These outliers are levels with the
highly excited v1 and v2 modes. An example of a long-living
state is (8,1,0) J = 1 level with the lifetime of 330 ps. Energies
of bound states of the ozone isotopologue 16O3 up to the disso-
ciation threshold were also computed. The total permutation
inversion symmetry S3 × I of the three oxygen atoms was
taken into account using hyperspherical coordinates. The effect
of the symmetry is negligible for the levels deep in the ozone
potential, but vibrational levels near the dissociation threshold
cannot be represented correctly within one potential well and,
therefore, the complete permutation symmetry group should
be used.

Symmetry properties of allowed rovibrational levels of
ozone (applicable to 16O3 and 18O3) as well as correlation
diagrams between the bound-state and dissociation regions
were derived and discussed. The correlation diagrams are
not trivial because ozone dissociates to (or is formed from)
a P -state oxygen atom and an O2 molecule of symmetry 3�−

g .
Within the employed model including only the lowest PES

of ozone, the purely vibrational states, i.e., J = 0 states, of
ozone 16O3 (and 18O3) cannot dissociate to the fragments
allowed by symmetry of the electronic ground state of the
O2 molecule. Note that excited rotational states with J > 0
satisfying Eq. (3) do exist. Examples of such resonances
are shown in Figs. 11 and 12. We would like to stress here
that the single electronic PES model neglects the coupling of
the angular momentum of the molecular frame, R, with the
electronic angular momentum, L, which is not zero. In general,
the total (but without nuclear spin, I) angular momentum J can
be written as J = R + L + S + �, where S is the electronic
spin and � the vibrational angular momentum. From this
we obtain the approximate quantum number of the rotation
of the molecular frame as R = J − L − S − �. Neglecting
the effect of L and S in the rovibrational problem, R ≈ J
is a “good” quantum number. Our rovibrational energies
have been calculated within this approximation, as have been
those obtained by other workers in the field. However, the
importance of the electronic angular momentum is evident
from asymptotic behavior of Eq. (3): At large distances
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FIG. 12. Vibrational part of the wave functions of two highly excited levels of the A2(D3h) symmetries. They are vibrationally assigned
as (8,1,1) and (8,2,1) via the normal mode decomposition using the contact transformation method of Ref. [96]. The calculated widths are
	 = 0.36 cm−1 for the function shown in the top panels and 0.8 cm−1 for the function shown in the bottom panels.

between O and O2, the electronic angular momentum is clearly
not zero. In a more accurate model, the electronic momentum
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FIG. 13. Energies of vibrational levels for J = 0 and J = 1. In
addition to the symbol {JKaKc

} of the rotational states of an asymmet-
ric top molecule, irreducible representations of the vibrational part
(	v , below the graph) and rotation part (	r , above the graph) of the
wave function are specified. The corresponding resonances are shown
in blue.

should be accounted for and coupled to the angular momentum
of the nuclear frame, due to the cross terms generated by
R2, conserving the total angular momentum, J . In such a
more accurate model, the continuum vibrational spectrum
for J ≈ R = 0 is allowed (since R is not “conserved” any
more). The corresponding vibrational resonances should have
relatively long lifetimes because they can only decay due to
non-Born-Oppenheimer and Coriolis couplings involving the
three PESs converging to the same dissociation limit, with the
oxygen atom being in the triply degenerate electronic state.
Such long-living states above the dissociation threshold, for
example, (9,0,0) and (10,0,0), have indeed been observed in
experiments. Therefore, an accurate theoretical determination
of lifetimes of J = 0 resonance levels would involve three
potential energies surfaces.

A three-state treatment has also been suggested by Garcia-
Fernandez et al. [9], since there is a conical intersection line at
equilateral triangular configurations between the first and the
second excited singlet states and an avoided crossing between
the ground state and the first excited singlet state. The three
C2v minima can be seen as due to Jahn-Teller stabilization
through vibronic distortion of the equilateral configurations.
The Jahn-Teller stabilization energy, i.e., the energy difference
between the minimum of the conical intersection and the C2v

minima, is very big, ≈77 600 cm−1, which means that the
minimum of the intersection is located high in the continuum of
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the electronic ground state. Nevertheless, the intersection gives
rise to a topological geometrical phase whose inclusion affects
the statistical weights of the computed vibrational states, as we
have demonstrated for the case of triplet H3

+ [79], where the
Jahn-Teller stabilization energy is about 18 000 cm−1 and the
minimum of the conical intersection about 15 000 cm−1 above
dissociation. However, the role of the geometrical phase in
ozone is more complicated, as there is evidence for further
conical intersections [97,98], which add to the phase factor
of the equilateral intersection discussed by Garcia-Fernandez
et al. and might cancel it. Investigation of the phase factors in
ozone will be a subject of future work.

The above discussion did not take into account spin-orbit
coupling. For even more realistic description of the nuclear
motion states in the continuum, one has to consider the effect
of coupling of the electronic singlet state with electronic
triplet states, of symmetry B1 and A2 in C2v(M), or A′′

2 and
A′′

1 in D3h(M), or A′′ in Cs(M), that approach the same
asymptotic dissociation limit, O(3

P ) and O2(X 3�−
g ), as the

electronic ground state. Rosmus, Palmieri, and Schinke [99]
have determined the spin-orbit coupling elements with all
relevant triplet states in the asymptotic channel. The matrix
elements are of the order of 〈X 1A′

1|Hso|3A′′
2〉 ≈ 60 cm−1.

The long-range behavior of the potential energy surfaces
accounting for spin-orbit coupling was discussed in Ref. [100].

To study the effect of spin-orbit coupling, the total nuclear-
electronic wave function must be expanded, including for
simplicity just one generic triplet state, as

�vJm(�,Q) =
∑

k

[
c1 |1A′

1〉ψvJk;1A′
1
(Q)

+ c2 |3A′′
2〉ψvJk;3A′′

2
(Q)

]
RJkm(�). (14)

As before, the product of electronic and nuclear motion
functions must have the same symmetry as the rotational
function, except for their parity. However, the nuclear motion
component of the 3A′′

2 electronic state is antisymmetric and

can therefore correlate with the asymptotic O2 + O wave
function. A full treatment of the nuclear dynamics of ozone
accounting for the spin-orbit coupling would involve solving
the rovibrational Schrödinger equation on several coupled
potential energy surfaces, which is hardly possible at present.
However, an adiabatic approach with respect to the spin-orbit
coupling should also be accurate and could be used in a
future study. In the approach, the first step would be to
construct the matrix of the potential energy. The matrix would
include the lowest three Born-Oppenheimer PESs, mentioned
above, and the spin-orbit coupling such as described in
Refs. [99,100]. The matrix then should be diagonalized for
each geometry, which will produce adiabatic potential surfaces
accounting for the spin-orbit coupling. Because the lowest
Born-Oppenheimer PES (X 1A1) does not cross the two other
PESs at energies near or below the dissociation threshold,
after the diagonalization, the lowest obtained PES will be very
similar to the original X 1A1 Born-Oppenheimer PES, except
that the dissociation limit will be shifted down. Low-energy
rovibrational states obtained with the new adiabatic PES
will be almost identical to the ones discussed in this study.
States near the dissociation threshold (approximately 60 cm−1

above and below D0) will have energies somewhat different
compared to the ones obtained with the PES without the
spin-orbit coupling. However, qualitatively the structure of
rovibrational levels near the dissociation will stay the same.
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[42] S. A. Ndengué, R. Dawes, and F. Gatti, J. Phys. Chem. A 119,

7712 (2015).
[43] S. S. Xantheas, G. J. Atchity, S. T. Elbert, and K. Ruedenberg,

J. Chem. Phys. 94, 8054 (1991).
[44] R. Siebert, R. Schinke, and M. Bittererová, Phys. Chem. Chem.
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