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Calculation of differential cross section for dielectronic recombination with two-electron uranium
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Calculation of the differential cross section for the dielectronic recombination with two-electron uranium within
the framework of QED is presented. The polarization of the emitted photon is investigated. The contributions
of the Breit interaction and the interference of the photon multipoles are studied. The Breit corrections to the
widths of the energy levels are taken into account and are found to be very important for both the widths and the
positions of the energy levels for three-electron ions.
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I. INTRODUCTION

Dielectronic recombination with few-electron (in particu-
lar, with two-electron) highly charged ions is of interest both
from experimental and theoretical points of view. Few-electron
highly charged ions are relatively simple systems which
allow precise theoretical description within the framework of
quantum electrodynamics (QED). Dielectronic recombination
is a resonant process where electron recombination with an
ion is performed via formation of an autoionizing (doubly
excited) state of the ion. Interelectron interaction plays a
crucial role in formation of the doubly excited states. Accord-
ingly, dielectronic recombination presents a tool for detailed
investigation of dynamic electron correlations, in particular,
for investigation of the Breit interaction.

Dielectronic recombination with two-electron ions of Fe
was studied experimentally and theoretically in [1]. Mea-
surements of the radiative and Auger decay rates for K-
shell vacancies in highly charged Fe ions were presented in
[2]. The linear polarization measurements of x rays emitted
due to dielectronic recombination into highly charged Kr
ions were recently presented in [3], and measurements of
the dielectronic recombination resonant strengths of highly
charged ions (in particular, two-electron Xe) were performed in
[4]. Experimental investigation of dielectronic recombination
with two- and three-electron ions of Pr, Ho, and Au is
reported in [5]. In particular, dielectronic recombination
strengths are measured and calculated. Experimental study
of the dielectronic recombination with three-electron U ions
is presented in [6]. Calculation of the transition rates for
the doubly excited states of a three-electron ion of uranium
was reported in [7]. The influence of the Breit and QED
effects on the radiative transition parameters is analyzed in
detail. Dielectronic recombination with two-electron uranium
ion was also studied theoretically in [8]. In particular, the
linear polarization and angular distribution of the x-ray pho-
toemission was studied, and the contribution of the magnetic
quadrupoles was investigated. Dielectronic recombination
with one-electron uranium was studied experimentally and
theoretically. The experimental study of the full cross section
was performed in [9]. The corresponding calculations of
the dielectronic recombination are presented in [9–13]. The
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electron recombination with highly charged ions presents a
tool for investigation of the Breit interaction. The recent
studies listed above showed that the Breit interaction may
give important and even dominant contribution to the cross
section of the dielectronic recombination with few-electron
highly charged ions [9,13–18].

We consider the process of electron recombination with
two-electron uranium initially being in its ground state. The
final state is a three-electron ion in the ground state or in one
of the singly excited states (r): (1s1s2s) or (1s1s2p). The
first emitted photon (γ ) can be registered in the experiment.
If the energy of the initial state is close to the energy of a
doubly excited state, the cross section shows resonances. The
resonances are explained by the dielectronic recombination
which can be written as

e− + U 90+(1s1s) → U 89+(d) → U 89+(r) + γ → · · · ,

(1)

where d is a doubly excited state: (1s2s2s), (1s2s2p), or
(1s2p2p). The considered process of electron recombination
includes also the radiative electron capture (REC) [19] which
is a nonresonant subprocess.

To study the cross section of the dielectronic recombination
with highly charged ions, the QED calculations of the radiative
transitions amplitudes between three-electron configurations
are necessary. Such calculations can be performed with
employment of various methods [12,20–24]. Within the
framework of these methods both the resonant and nonresonant
parts of the process of electron recombination are considered
together and they cannot be separated unambiguously [12]. In
the present paper the line-profile approach was used [23].

We present calculations of the full and differential cross
sections for the dielectronic recombination with two-electron
uranium within the framework of QED. The polarization of
the emitted photon is investigated. The contributions of the
Breit interaction and the interference of the photon multipoles
are studied. At the end, we will estimate the contribution of
the three-electron recombination for this collision system.

II. METHOD OF CALCULATION

The present calculations are based on the QED approach
already applied for calculation of the cross section of electron
recombination with one-electron ions [12,13]—the line-profile
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approach (LPA) [23]. To describe the electron recombina-
tion with two-electron ions, the line-profile approach was
generalized to three-electron systems. The incident electron
is considered as an electron with certain momentum p and
polarization μ and is described by the wave function ψ p,μ.
Wave function ψnjlm describes a bound electron with the
corresponding quantum numbers [n, j , and m are the principle
quantum number, total angular momentum, and its projection,
respectively, and l defines the parity (−1)l]. Employing
expansion of the wave function ψ p,μ in series over the wave
functions of electron with certain energy ε, total angular
momentum j , its projection m, and parity (−1)l the wave
function of the incident electron can be written as [25]

ψ p,μ(r) =
∫

dε
∑
j lm

a pμ,εjlmψεjlm(r) (2)

and

a pμ,εjlm = (2π )3/2

√
pε

ileiφjl [�+
j lm( p),υμ( p)]δ(ε − ε), (3)

where �jlm( p) is the spherical spinor, and υμ( p) is the spinor
with projection μ = ±1/2 on the axis defined by electron
momentum p, (

p
| p| ,

σ̂

2

)
υμ( p) = μυμ( p), (4)

where σ̂ is the Pauli vector, and the phase φjl is the Coulomb
phase shift. Relativistic units are used throughout unless
otherwise stated.

In the LPA the initial, final, and intermediate three-electron
states are expanded in series of three-electron functions in the
j -j coupling scheme. The following algorithm is employed for
composition of the basis set of three-electron wave functions
in the j -j coupling scheme. First, we select two electrons with
closest energies and a composed two-electron wave function
in the j -j coupling scheme

�
(0)
j12m12n1j1l1n2j2l2

= N
∑
m1m2

〈j1m1j2m2|J12m12〉

× det{ψn1j1l1m1 ,ψn2j2l2m2}, (5)

where N is a normalization constant (equal to 1/
√

2 for
nonequivalent electrons and 1/2 for equivalent electrons)
and 〈j1m1j2m2|J12m12〉 are Clebsch-Gordan coefficients. The
electrons are represented by the quantum numbers ni , ji , li , and
mi (ni denotes the principle quantum number for the bound
electrons, and the energy for the electron from the continuum
part of the spectrum ji is the total angular momentum, li
defines the parity, mi is the projection of the total angular
momentum, and i = 1,2 denotes the first and second electrons,
respectively). Then we compose three-electron wave functions
with certain angular momentum J and its projection M ,

�
(0)
JMj12n1j1l1n2j2l2n3j3l3

= N
∑

m1m2m12m3

〈j12m12j3m3|JM〉

× 〈j1m1j2m2|j12m12〉
× det{ψn1j1l1m1 ,ψn2j2l2m2 ,ψn3j3l3m3},

(6)

where N is the normalization constant (equal to 1/
√

12
for three-electron states with two equivalent electrons and
to 1/

√
6 for states without equivalent electrons). If three-

electron configurations contain three equivalent electrons, the
coefficients of fractional parentage (j1j2[j12]j3J |}j1j2j3νJ )
are to be calculated for composing the three-electron wave
functions in the j -j coupling scheme [26–28]

�
(0)
JMγn1j1l1n2j2l2n3j3l3

=
∑
j12

(j1j2[j12]j3J |}j1j2j3νJ )

×�
(0)
JMj12n1j1l1n2j2l2n3j3l3

. (7)

Here the quantum number ν denotes repeating terms of the
electronic structure (if necessary).

The initial state of the system [a two-electron ion in its
ground (1s1s) state and an incident electron] can be described
by the wave function

� ini = 1√
6

det{ψn1j1l1m1 ,ψn2j2l2m2 ,ψ p,μ}. (8)

The wave function ψ p,μ describes the incident electron with
momentum p and polarization μ, the wave function ψnjlm

describes a bound electron with the corresponding quantum
numbers n, j , l, and m. Employing the expansion of Eq. (2)
the wave function of the initial state can be presented as a
linear combination of the following determinants:

�
(0)
n1j1l1m1n2j2l2m2εj3l3m3

= 1√
6

det{ψn1j1l1m1 ,ψn2j2l2m2 ,ψεj3l3m3}.

(9)

Accordingly, the wave function of the initial state can be
expanded into a series of three-electron functions with certain
total momentum (in the j -j coupling scheme)

� ini =
∑

JMj12n1j1l1n2j2l2j3l3

∫
dε 〈�(0)

JMj12n1j1l1n2j2l2εj3l3
| � ini〉

×�
(0)
JMj12n1j1l1n2j2l2εj3l3

. (10)

The final state [(1s1s2s), (1s1s2p) three-electron states]
can be written as a three-electron configuration in the j -j
coupling scheme

�fin = �
(0)
JMj12n1j1l1n2j2l2n3j3l3

. (11)

To describe highly charged ions within the framework of
QED, the LPA was employed [12,23]. The interaction with
the quantized electromagnetic and electron-positron fields
leads to interelectron interaction, electron self-energy, and
vacuum polarization corrections to the amplitude. Within the
LPA the system is considered to be enclosed in a sphere of
a large radius R → ∞. Then, the incident electron can be
described by a normalized wave function which corresponds
to an artificial bound electron state (eR). For calculation of the
amplitudes of the transitions between bound states the standard
QED perturbation theory for the quasidegenerate states can be
applied [21,23,29,30].

Within the LPA we introduce g, the set of three-electron
configurations which includes all the three-electron config-
urations composed by 1s,2s,2p,3s,3p,3d electrons and the
electron eR describing the incident electron. There is also
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introduced the matrix V which is defined by the one and
two-photon exchange, electron self-energy, and vacuum polar-
ization matrix elements. Matrix V = V (0) + V is considered
as a block matrix

V =
[
V11 V12

V21 V22

]
=

[
V

(0)
11 + V11 V12

V21 V
(0)

22 + V22

]
.

(12)

Matrix V11 is defined on set g, which contains configurations
mixing with the reference state ng ∈ g. Matrix V (0) is a
diagonal matrix, its diagonal elements give energies of the
three-electron configurations without regard to the interaction
with the quantized fields which are the sum of the one-electron
Dirac energies of the corresponding electrons. Matrix V11 is
not a diagonal matrix, but it contains a small parameter of the
QED perturbation theory. Matrix V11 is a finite-dimensional
matrix and can be diagonalized numerically. Then, the standard
perturbation theory can be applied for the diagonalization of
the matrix V .

The amplitude of the electron recombination is written as a
matrix element of the photon emission operator �(0) with the
bra and ket vectors given by the eigenfunctions of the matrix
V : �fin and � ini corresponding to the final and initial states of
the system, respectively, with

Uif = 〈�fin|�|� ini〉. (13)

The operator � is derived within the QED perturbation theory
order by order [12,23]. The operator � can be represented
by its matrix elements, in the zeroth order of the perturbation
theory it reads

�
(0)
u1u2u3d1d2d3

= eA
(k,λ)∗
u1d1

δu2d2δu3d3 + δu1d1eA
(k,λ)∗
u2d2

δu3d3

+ δu1d1δu2d2eA
(k,λ)∗
u3d3

, (14)

where u1, u2, u3, d1, d2, d3 are one-electron states with certain
total angular momentum and parity, and the one-electron
matrix elements A

(k,λ)∗
ud are defined as

A
(k,λ)∗
ud =

∫
d3r ψu(r)γ νA(k,λ)∗

ν (r)ψd (r), (15)

FIG. 1. The total cross section of the dielectronic recombination with two-electron uranium as a function of the kinetic energy of the
incident electron K . The left column correspond to full QED calculation (Coulomb + Breit with retardation) and the right column denote the
calculation with disregard of the Breit interaction. Red dashed vertical lines indicate the positions of the resonances with the doubly excited
states.
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TABLE I. Comparison of the energies (E − 3mc2 = E − i �

2 , in keV) of three electronic states and corresponding resonance kinetic
energies (ε) of the impact electron (on the second line for each state). Second and third columns show the diagonal element of the matrix V

[see Eq. (12)]. Columns 4–6 show eigenvalues of the matrix V with different electron-electron interaction models.

V V

Coulomb Coulomb+Breit Coulomb Coulomb+Breit Coulomb+Breit
(with retardation) (without retardation) (with retardation)

"

Three electron E � E � E � E � E �

state ε ε ε ε ε

[1s(2s 2s)0]1/2 −198.350 0.000 −198.304 0.000 −198.377 0.004 −198.327 0.004 −198.332 0.002
63.366 63.078 63.340 63.058 63.054

[1s(2s 2p1/2)1]3/2 −198.282 0.031 −198.281 0.021 −198.291 0.031 −198.281 0.031 −198.289 0.021
63.433 63.102 63.426 63.105 63.097

[1s(2s 2p1/2)0]1/2 −198.299 0.032 −198.231 0.016 −198.357 0.032 −198.245 0.032 −198.256 0.011
63.416 63.151 63.360 63.140 63.129

[1s(2s 2p1/2)1]1/2 −198.174 0.032 −198.009 0.006 −198.131 0.032 −198.000 0.032 −198.002 0.012
63.541 63.373 63.585 63.385 63.384

[1s(2p1/2 2p1/2)0]1/2 −198.058 0.063 −197.962 0.032 −198.048 0.059 −197.944 0.060 −197.954 0.031
63.658 63.421 63.669 63.441 63.431

[1s(2s 2p3/2)1]3/2 −193.832 0.027 −193.795 0.003 −193.769 0.027 −193.679 0.027 −193.901 0.026
67.883 67.588 67.948 67.706 67.485

[1s(2s 2p3/2)1]1/2 −193.856 0.026 −193.821 0.034 −193.857 0.026 −193.824 0.026 −193.822 0.034
67.859 67.561 67.860 67.561 67.563

[1s(2p1/2 2p3/2)2]5/2 −193.745 0.058 −193.747 0.022 −193.750 0.058 −193.730 0.058 −193.752 0.022
67.970 67.635 67.967 67.655 67.634

[1s(2p1/2 2p3/2)1]3/2 −193.788 0.058 −193.717 0.016 −193.801 0.058 −193.718 0.058 −193.732 0.029
67.928 67.665 67.915 67.667 67.654

[1s(2p1/2 2p3/2)1]1/2 −193.732 0.057 −193.690 0.056 −193.736 0.057 −193.698 0.057 −193.695 0.056
67.983 67.692 67.980 67.687 67.691

[1s(2s 2p3/2)2]3/2 −193.860 0.026 −193.788 0.032 −193.927 0.026 −193.897 0.026 −193.686 0.009
67.855 67.594 67.790 67.488 67.700

[1s(2p1/2 2p3/2)2]3/2 −193.723 0.058 −193.610 0.041 −193.717 0.058 −193.594 0.058 −193.606 0.029
67.993 67.772 67.999 67.791 67.780

[1s(2p3/2 2p3/2)2]5/2 −189.426 0.053 −189.415 0.010 −189.426 0.053 −189.385 0.053 −189.414 0.010
72.289 71.968 72.291 72.001 71.971

[1s(2p3/2 2p3/2)2]3/2 −189.369 0.052 −189.324 0.052 −189.369 0.052 −189.325 0.052 −189.324 0.052
72.346 72.058 72.348 72.060 72.061

[1s(2p3/2 2p3/2)0]1/2 −189.334 0.053 −189.288 0.027 −189.332 0.053 −189.269 0.053 −189.286 0.027
72.381 72.094 72.385 72.117 72.100

where γ ν are Dirac gamma matrices. The emitted photon wave
function is A(k,λ)∗

ν = (A(k,λ)∗
0 ,A(k,λ)∗). We use a gauge in which

A
(k,λ)
0 = 0. The vector part of the photon wave function A(k,λ)

reads as

A(k,λ)(r) =
√

2π

ω
eikr e(λ), (16)

where ω and k are frequency and momentum of the
photon, respectively. Employing the multipole expansion we
can write [31]

A(k,λ) =
√

2π

ω

∑
j0l0m0

il0gl0 (ωr)[e(λ),Y ∗
j0l0m0

(k)]Y j0l0m0 (r),

(17)

where gl0 (x) = 4πjl0 (x) and jl0 (x) is the spherical Bessel
function, the Y j0l0m0 are the vector spherical harmonics, and
e(λ) is the vector of photon polarization. We consider the linear

polarizations of the photon

e1 = [ p × k]

|[ p × k]| , e2 = [e1 × k]

|[e1 × k]| (18)

and the circular polarizations of the photon

e+ = 1√
2

(e1 + ie2), e− = 1√
2

(e1 − ie2). (19)

The z axis is defined by the incident electron momentum
p. Accordingly, the vectors p, k and the polarization vectors
look like

p
| p| =

⎛
⎝0

0
1

⎞
⎠,

k
|k| =

⎛
⎝sin θ cos φ

sin θ sin φ

cos θ

⎞
⎠, (20)

e1 =
⎛
⎝− sin φ

cos φ

0

⎞
⎠, and e2 =

⎛
⎝cos θ cos φ

cos θ sin φ

− sin θ

⎞
⎠, (21)
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FIG. 2. Interference figures. The left column corresponds to the interference of the individual peaks with each other. The dashed curves
represent the total cross section for the individual peaks (without REC). The red (dashed-dotted) curves represents the total cross section for
dielectronic recombination (without REC). Vertical lines indicate the positions of the resonances with the doubly excited states. The right
column corresponds to the interference of DR (red curves) and REC [blue (dashed) lines]. Black solid curves denotes the full calculation.

respectively. The electron-ion collision process has an axial
symmetry and does not depend on the angle φ.

The operator � in the first order of the perturbation theory
gives a small contribution and is omitted in the present
calculation.

III. RESULTS

We have studied the process of electron recombination
with two-electron uranium being initially in its ground state.
The process is considered in the rest frame of the uranium
ion. We investigated regions of the incident electron energy
where the role of dielectronic recombination is prominent,
restricting ourselves to the consideration of four low lying
energy regions, in particular, the regions where the energy
of the initial state [(1s1s) plus incident electron e] is close
to the energies of doubly excited states (1s2s2s), (1s2s2p),
(1s2p2p). Accordingly, we performed the calculations for

the following resonance regions of the incident electron
(kinetic) energy: [63.03,63.075] keV, [63.075,63.45] keV,
[67.25,68.00] keV, and [71.95,72.15] keV.

The total cross section of electron recombination with
two-electron uranium is presented as a function of the kinetic
energy of the incident electron in Fig. 1. The left four
graphs represent the exact QED calculation of the total cross
section for the four resonance regions, respectively. The right
ones represent the calculation of the total cross section with
disregard of the Breit interelectron interaction (in the Feynman
graphs corresponding to the one- and more photon exchange).
The graphs reveal a large contribution of the Breit interaction
to the cross section.

We note that the relative contribution of the Breit inter-
action to the cross section for dielectronic recombination
with two-electron uranium ions is much larger than that for
dielectronic recombination with one-electron ions (see [9,13]).
The importance of the Breit interaction is explained by large
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FIG. 3. The differential cross section (dσ/d�, in barn/sr) of dielectronic recombination vs K . The graphs in the left column correspond
to the full QED calculation (Coulomb + Breit with retardation) of the differential cross section, the graphs in the right column present the
calculation with disregard of the Breit interaction.

sensitivity of the widths of three-electron energy levels to the
Breit interaction. Within the framework of the standard QED
theory, the energy shift of energy levels (due to the interaction
with quantized electromagnetic and electron-positron fields)
is commonly written as E = Re{E} − i �

2 [21,23,29,32],
where Re{E} is a correction to the energy, and � defines
the width of the energy level. For the one- and two-electron
configurations the major contribution to � is usually given
by the electron self-energy Feynman graph. However, for
three-electron configurations the contribution of the electron
self-energy graph can be largely canceled by the contribution
of the Breit part of the one-photon exchange graph. For
example, (1s1s2s) configuration is the ground state of a
three-electron ion, so the contribution of the imaginary part
of the electron self-energy graph is completely canceled by
contribution of the Breit part of the one-photon exchange
graph. It can be referred as a realization of the Pauli exclusion
principle [31]. We note that in the case of the considered
three-electron doubly excited states we take into account
the interelectron interaction between the 1s electron and the
excited L-shell electrons. However, it is not the case if we
consider the dielectronic recombination with one-electron
ions where the two-electron doubly excited states [such as
(2s,2s),(2s,2p),(2p,2p)] do not contain the 1s electron.

The retardation is more significant for the interaction of the
electrons with larger energy difference, hence, the retardation
should be more important for the dielectronic recombination
with two-electron uranium ions.

The energies and widths of the doubly excited states
considered are very sensitive to the Breit interaction. In Table I
we present data which show the role of the Breit interaction for
the doubly excited states. Doubly excited states are specified
in the first column. In the second and the third columns (V
Coulomb and V Coulomb+Breit) are values of the diagonal
matrix elements of matrix V [see Eq. (12)]; these data are
given by summation of the diagonal matrix elements of the
corresponding Feynman graphs (electron self-energy, vacuum
polarization, one-photon exchange, and part of the two-photon
exchange graphs). The column V Coulomb+Breit contains
results of the exact QED calculation, the column V Coulomb
presents results of the calculation with disregard of the Breit
part of photon exchange graphs. These data have no clear
physical meaning, but they demonstrate a strong cancellation
of the imaginary parts of the electron self-energy and the
Breit part of the photon exchange corrections for some of
the configurations. The next three columns present results
of calculation of the energies and widths of the doubly
excited states performed within the exact QED approach
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FIG. 4. The contribution of the higher multipoles to the full and
differential cross sections. The top graph corresponds to the full cross
section (in kbarn). Red dashed curve represent calculation where just
j0 = 1 [see Eq. (17)] taken into account. Black solid curve denotes
the calculation with 0 < j0 < 10. The bottom graph represents the
relative contribution of the higher multipoles δσ [see Eq. (23)].

[column Coulomb+Breit (with retardation)], with disregard
of retardation in the Breit interaction [column Coulomb+Breit
(without retardation)] and with complete neglect of the Breit
interaction (column Coulomb). The corresponding resonance
kinetic energies of the incident electron are also given. These
data demonstrate the importance of the Breit interaction for
the energies and widths of the doubly excited states that explain
the large contribution of the Breit interaction to the cross
section for the dielectronic recombination with two-electron
uranium ions seen in Fig. 1.

The process of dielectronic recombination proceeds via for-
mation of doubly excited states, corresponding to peaks in their
cross sections. In order to study the individual contributions
of the doubly excited states, we performed calculations of the
cross section where only fixed doubly excited states were taken
into account. The results are presented in Fig. 2. Plots in the
left column show individual contribution of the doubly excited
states. Plots in the right column show the separate contribution
of the resonant channel (electron capture via formation of
doubly excited states, i.e., dielectronic recombination) and
the nonresonant channel (REC). We note that partition of
the electron recombination into resonant and nonresonant
channels is ambiguous. Results of the full calculation of the
cross section are given with a mark (Full) in Fig. 2. These plots
also show interference between the dielectronic recombination
and the radiative electron capture.

Results of calculation of the differential cross section (in
barn/sr)

σ ′ ≡ dσ/d� (22)

as a function of the kinetic energy of incident electron K

are given in Fig. 3. The left plots present the exact QED
calculation, the right plots present results of calculation with
disregard of the Breit interaction. As a consequence of large
contribution of the Breit interaction to the total cross section

FIG. 5. The differential cross sections (dσ/d�, in barn/sr) of
dielectronic recombination with two-electron uranium for polarized
incident electrons (μ = −1/2) and the photon emission with circular
polarization e+ [see Eq. (19)].

(see Fig. 1), the Breit interaction is also important for the
differential cross section of electron capture by two-electron
uranium ion.

In the present calculation the multipole expansion of the
emitted photon wave function was employed [see Eq. (17)].
The multipoles up to j0 = 9 were taken into account. In-
vestigation of the contribution of the higher multipoles of
the emitted photon is presented in Fig. 4. The upper plot
presents the total cross section. The red curve in the upper
plot corresponds to calculation of the total cross section
within the dipole approximation where only terms with j0 = 1
are taken into account in the multipole expansion Eq. (17).
The black curve in the upper plot corresponds to the full
calculation (j0 � 9). It is seen that contribution of the higher
multipoles to the total cross section is insignificant. The lower
plot shows the differential cross section: there is a relative
difference between the differential cross section calculated in
the dipole approximation σ ′(j0=1) and the full calculation σ ′
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FIG. 6. The Stokes parameter P1 [see Eq. (25)] vs K . The graphs in the left column correspond to the full QED calculation (Coulomb
+ Breit with retardation) of the differential cross section, the graphs in the right column present the calculation with disregard of the Breit
interaction.

[see Eq. (22)]:

δσ = σ ′(j0=1) − σ ′

σ ′ . (23)

In spite of a small contribution of the higher multipoles to the
total cross section (<5%), they play a significant role for the
differential cross section. Our calculations show that mainly
due to the interference between E1, M1 and E2, M2 emitted

FIG. 7. The Stokes parameter P2 [see Eq. (26)] vs K . The graphs in the left column correspond to the full QED calculation (Coulomb
+ Breit with retardation) of the differential cross section, the graphs in the right column present the calculation with disregard of the Breit
interaction.
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FIG. 8. The Stokes parameter P3 [see Eq. (27)] vs K . The graphs in the left column correspond to the full QED calculation (Coulomb
+ Breit with retardation) of the differential cross section, the graphs in the right column present the calculation with disregard of the Breit
interaction.

photons, δσ may reach up to 66% in regions between the
peaks.

We have also studied the contribution of the various
polarizations of the incident electron and emitted photon.
Polarization of the initial state is defined by polarization of
the incident electron (projection of the spin onto the direction
of momentum) which can be equal to μ = ±1/2. Different
polarizations of the incident electron give equal contributions
to the cross section, while the summation over the photon
polarizations is performed; however, they give different con-
tributions if the polarization of the emitted photon is fixed.
In Fig. 5 we present results of calculations of the differential
cross section σ ′

−+, where the incident electron has polarization
μ = −1/2 and the emitted photon has polarization e+ [see
Eq. (19)]. The result of the calculation of the differential cross
section σ ′

−− (the polarization of incident electron is μ = −1/2,
and the photon polarization is e−) can be obtained from Fig. 5
by inversion of the polar axis. Differential cross sections
with different polarizations are connected by the following
condition:

σ ′
μ,− = σ ′

−μ,+. (24)

To investigate the polarizations of the emitted photon, we
calculated the Stokes parameters. We have calculated the
Stokes parameters for incident electrons with polarization
μ = −1/2; the results of the calculations are presented in
Figs. 6–8. The Stokes parameters P1 and P2 for different linear

polarizations of the photon are given in Figs. 6 and 7:

P1 = σ ′
0◦ − σ ′

90◦

σ ′
0◦ + σ ′

90◦
, (25)

P2 = σ ′
45◦ − σ ′

135◦

σ ′
45◦ + σ ′

135◦
, (26)

where σ ′
0◦ , σ ′

90◦ are the differential cross section for emission
of the photon with its polarization vector in or orthogonal to
the ( p,k) plane, respectively, and σ ′

45◦ , σ ′
135◦ are the differential

cross sections for emission of the photon with the polarization
vector at 45◦ and 135◦ to the ( p,k) plane, respectively. The
Stokes parameters P1 and P2 are equal to zero at angles 0◦ and
180◦ [see Eq. (21)]. The Stokes parameter (P3) describing the
circular polarization Eq. (19) is presented in Fig. (8):

P3 = σ ′
+ − σ ′

−
σ ′+ + σ ′−

, (27)

where σ ′
± ≡ dσ±/d� are the differential cross section for

emission of the photon with the corresponding chirality.
Figures 6–8 show that Stokes parameters also very sensitive
to Breit interaction.

For unpolarized incident electrons the corresponding polar-
izations of the emitted photon give equal contributions to the
differential cross sections σ ′

45◦ , σ ′
135◦ , and σ ′

−, σ ′
+, respectively.

Accordingly, the Stokes parameters P2 and P3 are equal to
zero. The parameter P1 is independent of the polarization of
the incident electron and is the same for the polarized and
unpolarized incident electrons.
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FIG. 9. The comparison of the differential cross section for photon emission at 0◦ angle [σ ′(θ = 0◦), black (solid) curve, in barn/sr] and
the differential cross section for photon emission at 90◦ angle [σ ′(θ = 90◦), red (dashed) curve, in barn/sr]. The graphs in the left column
correspond to the full QED calculation (Coulomb + Breit with retardation) of the differential cross section, the graphs in the right column
present the calculation with disregard of the Breit interaction.

For addition characteristics of angular distribution we
present the differential cross section with photon emission
angles 0◦ [σ ′(θ = 0◦)], 90◦ [σ ′(θ = 90◦)] in Fig. 9 and the
asymmetry parameter [18]

A = σ ′(θ = 90◦)

σ ′(θ = 0◦)
(28)

in Fig. 10, respectively. The calculations show that the
emission to 90◦ dominates over emission to 0◦, particularly
in regions of the resonance energies. Far from the reso-
nance regions the photon is emitted mainly at a 90◦ angle
that results in corresponding growth of the parameter A.
In the framework of the nonrelativistic approximation this
phenomenon is naturally explained as a prohibition of the
photon emission at 0◦ and 180◦ angles for REC with bare nuclei
[19,33,34].

We would like to reiterate that we have also investigated
the contribution of tri-electronic recombination to the process
of electron capture by two-electron uranium ion initially being
in its ground state. We performed calculations of the cross
section for regions of the incident electron energy where
the contribution of the triply excited states [(2s2s)02p1/2]1/2

and [(2p1/22p1/2)02s]1/2 could be significant. It was found
that the contributions of these states to the cross section is
8–11 orders smaller than the corresponding contribution of

the (nonresonant) REC, and it offers no possibility to detect
the tri-electronic recombination in experiment. However, we
found that for the process of electron capture with two-electron
uranium initially being in a single excited state [for example,
(1s2s)0], the contribution of the tri-electronic recombina-
tion is much larger than the corresponding contribution of
the radiative electron capture, which, in principle, makes
it possible to experimentally investigate the tri-electronic
recombination.

In conclusion, we would like to list the main results
obtained. We have presented QED calculations of the total
cross sections of the dielectronic recombination with two-
electron uranium ions initially being in their ground state.
The results demonstrate the large contribution of the Breit
interaction to the cross sections. In particular, the Breit
corrections to the widths of the energy levels are taken into
account and are found to be very important for both the widths
and the positions of the energy levels. The interference between
the resonant and nonresonant (REC) channels is investigated.
The differential cross section for dielectronic recombination of
unpolarized and polarized electrons with two-electron uranium
ions is calculated. The results show that the differential cross
section is very sensitive to the Breit interaction. We have
also investigated the contribution of the higher multipoles of
the photon wave-function expansion. It was found that their
contributions to the differential cross sections are significant.

042513-10



CALCULATION OF DIFFERENTIAL CROSS SECTION FOR . . . PHYSICAL REVIEW A 94, 042513 (2016)

FIG. 10. The asymmetry parameter A [see Eq. (28)] is presented. The graphs in the left column correspond to the full QED calculation
(Coulomb + Breit with retardation) of the differential cross section, the graphs in the right column present the calculation with disregard of the
Breit interaction.

The polarization of the emitted photons and the photon
emission asymmetry are investigated. The Stokes parameters
and the symmetry parameter are calculated. The polarization
parameters are very sensitive to the contributions of the
Breit interaction. The role of the Breit interaction for the
dielectronic recombination with two-electron uranium ions
is very significant, which would allow one to perform a
successful experimental investigation of the Breit interaction
in the process of dielectronic recombination with two-electron
uranium.
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