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Twofold diabatization of the KRb (1–2)1� complex in the framework of ab initio
and deperturbation approaches
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We performed a diabatization of the mutually perturbed 11� and 21� states of KRb based on both electronic
structure calculation and direct coupled-channel deperturbation analysis of experimental energies. The potential
energy curves (PECs) of the diabatic states and their scalar coupling were constructed from the ab initio adiabatic
PECs by analytically integrating the radial 〈ψad

1 |∂/∂R|ψad
2 〉 matrix element obtained by a finite-difference

method. The diabatic potentials and electronic coupling function were refined by the least squares fitting of the
rovibronic term values of the 1 1� ∼ 2 1� complex. The empirical PECs combined with the coupling function
as well as the diabatized spin-orbit coupling and transition dipole matrix elements are crucial to discovering
efficient photoassociation pathways for production of ultracold ground-state KRb molecules.
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I. INTRODUCTION

The accurate representation of the interacting electronic
states plays a key role in understanding the detailed mechanism
of the photo- and collisionally induced chemical reactions. The
singlet-triplet levels of alkali-metal dimers serve as an interme-
diate state in the two-step optical transformation of the weakly
bound atomic pairs into the absolute ground X 1�+(v = 0,

J = 0) molecular state [1,2]. To suppress the undesired spon-
taneous transitions to the low-lying states a coherent stimulated
Raman adiabatic passage [3] (STIRAP) is often used.

The photoassociative production and trapping of ultracold
KRb molecules has been performed [4]. The resonance
coupling of the B(1)1� and 21� states of KRb (see Fig. 1)
is found to be a promising pathway for direct photoassociative
formation of the X(0,0) ultracold molecules [5]. The rigorous
multichannel modeling of the laser formation of vibrationally
cold KRb molecules has been accomplished in Ref. [6].
The a 3�+ → A 1�+ ∼ b 3� → X 1�+ and a 3�+ → B 1� ∼
c3�+ → X 1�+ optical schemes to create ultracold KRb
molecules have been studied [7] by using the ab initio
potential energy curves (PECs), spin-orbit coupling (SOC),
and transition dipole moment (TDM) functions. The combi-
nation of a molecular beam (MB) and an ultracold molecule
(UM) excitation spectroscopy [8] was used to identify the
optimal a 3�+(v′′

a = 21) → B 1�(v′
1 = 8) → X 1�+(v′′

X = 0)
STIRAP pathway for the 39K85Rb molecule assembling. The
magnetoassociated fermion 40K87Rb molecules have been
STIRAP transferred [9,10] to the lowest X(0,0) level through
the B 1� ∼ c 3�+ levels located near the second dissociation
threshold.

A comprehensive review of modern spectroscopic studies of
the KRb electronic states can be found in the e-book [12]. The
mutually perturbed 11� and 21� states converging to the sec-
ond K(42S) + Rb(52

P ) and third K(42
P ) + Rb(52S) dissoci-

ation thresholds were investigated [13,14] using Doppler-free
optical-optical double resonance polarization spectroscopy
(OODRPS). In the subsequent laser-induced 31� → 21�
fluorescence (LIF) studies [15,16] of both 39K85Rb and
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39K87Rb isotopologs by Fourier transform spectroscopy (FTS)
the vibrational numbering of the 21�(v′

2) state was corrected
by 6 vibrational quanta. The experimental rovibronic term
values of the 11� ∼ 21� complex were reduced to the “effec-
tive” band Ev′ ,Bv′ and conventional Dunham Yij molecular
constants [14,15]. The Rydberg-Klein-Rees (RKR) potential
was constructed for the adiabatic B(1)1� state (see Fig. 2).
The vibrational term values of the lowest B 1�(v′

1 ∈ [0,21])
levels were obtained during the spectroscopic analysis of the
MB experiment [17]. The ground singlet X 1�+ and triplet
a 3�+ states were comprehensively studied by means of high
resolution LIF spectra [18] coming from the spin-orbit coupled
B 1� ∼ c 3�+ levels.

The adiabatic potentials, permanent and transition dipole
moments for the radially coupled 11� and 21� states were
first ab initio calculated in Refs. [19,20]. The comprehensive
set of nonrelativistic PECs, permanent and transition dipole
moments for the ground and excited states of KRb are available
[11,21–25] as well. The SOC effect has been included into ab
initio calculations in Refs. [6,11,24,26].

Among other alkali-metal diatomics, the KRb molecule
stands out because of the high density of the electronic
states belonging to both singlet and triplet manifolds. This
is attributed to the accidental close values of the ionization
potential, electronic affinity, and the polarizability of K and Rb
atoms in their ground states as well as the almost degenerate
energies of the first excited K(42

P ) and Rb(52
P ) states

[27–29]. The high density of the low-lying covalence and
ion-pair states apparently leads to the pronounced radial
coupling effect between the states of the same spatial and
spin symmetry. This appears (see, for example, Figs. 1 and 2)
as an avoided crossing of the corresponding adiabatic PECs
as well as a sharp dependence of the relevant electronic
matrix elements on the internuclear distance R. The sharp
R dependence of the spin-orbit, angular, and radial coupling
matrix elements embarrasses a deperturbation analysis while
the abrupt R variation of the adiabatic TDM functions prevents
a straightforward simulation of radiative properties.

The electronic coupling matrix element V12 ≈ U1(Rc) −
U2(Rc) estimates near the avoided crossing point Rc of the
adiabatic PECs warn that a conventional adiabatic approxima-
tion is not ideally suitable for representation of the twin (1,2)1�
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FIG. 1. Scheme of the ab initio adiabatic potential energy curves
[11] of the KRb electronic states correlated to the lowest three
dissociation limits. The arrows denote a possible two-step stimulated
Raman adiabatic passage [9].

states of KRb, since the so-called adiabaticity parameter
[30] γ ≡ V12/

√
ω1ω2 is close to 3. Here, ωi are harmonic

frequencies of the interacting adiabatic states. To our best
knowledge, a global deperturbation analysis of the 1 1� ∼ 2 1�

complex has not been performed yet in the framework of either
adiabatic or diabatic approximation.

In the present work, we performed a twofold diabatization
of the KRb 1 1� ∼ 2 1� complex by means of mutually
complementary methods, namely: ab initio electronic structure
calculations and direct coupled-channel (CC) deperturbation
treatment of experimental term values [12–17].

II. AB INITIO DIABATIZATION OF THE (1 ∼ 2) 1�

TWIN STATES

The simplest two-state transformation (diabatization) of
the adiabatic electronic wave functions ψ1,2(R) to their
diabatic counterparts ϕ1,2(R) can be realized by the unitary
transformation [30],(

ϕ1

ϕ2

)
=

(
cos θ sin θ

− sin θ cos θ

)(
ψ1

ψ2

)
, (1)

where the rotation angle θ (R) is evaluated as a function of the
internuclear distance R by integration of the radial coupling
matrix element:

B12 ≡ 〈ψ1|∂/∂R|ψ2〉 = dθ

dR
. (2)

FIG. 2. The empirical adiabatic (open symbols, present work;
closed symbols, RKR) and diabatic (solid lines) PECs available for
the (1,2)1� twin states of KRb. The RKR potential for the 21� state
was built using the Dunham coefficients [15], while the RKR points
of the B(1)1� state were borrowed from Ref. [14]. The shadowed
regions indicate the rovibronic E

exp
v′J ′ term values data sets [15,16]

included in the present CC deperturbation analysis. The inset enlarges
the region in the vicinity of the crossing point of V1(R) and V2(R)
diabatic PECs.

The integration of the ab initio calculated radial coupling
matrix element (2) is performed implicitly by means of a
smooth interpolation of the original pointwise B12(R) function
in the vicinity of a dominant maximum (which is located near
the avoided crossing point Rc of the corresponding adiabatic
potentials) by the simplest Lorentz form [30]:

B12(R) ≈ w

4(R − Rc)2 + w2
, (3)

with the two R-independent parameters Rc and w. Then, the
required rotation angle function,

θ (R) = 1

2
arctan

[
2(R − Rc)

w

]
+ π

4
, (4)

is prolonged to the R ∈ [0,+∞) range in order to accomplish
a diabatization of the corresponding electronic wave
functions (1).

The diabatic potentials V1,2(R) and electronic coupling
matrix element V12(R) are calculated from the adiabatic PECs
U1,2(R) via the relations:

V1 = cos2 θU1 + sin2 θU2,

V2 = sin2 θU1 + cos2 θU2,

V12 = sin 2θ |U1 − U2|/2. (5)
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The adiabatic PECs Uab
i (R) were evaluated for the low-

lying excited (1 − 3)1,3�+ and (1,2)1,3� states converging to
the lowest three dissociation limits (see Fig. 1) in the basis
of the zeroth-order (spin-averaged) electronic wave functions
corresponding to the pure (a) Hund’s coupling case. To
diminish the systematic R-depended error (first of all, basis
set superposition error) the originally calculated adiabatic
potentials Uab

i for the excited states were corrected due to
the semiempirical relation [2]:

Ui(R) = [
Uab

i (R) − Uab
X (R)

] + U
emp
X (R), (6)

where the highly accurate empirical PEC U
emp
X of the ground

X 1�+ state was borrowed from Ref. [18].
All electronic structure calculations were performed in a

wide range of internuclear distances on the density grid by
means of the MOLPRO program package [31]. The radial cou-
pling matrix element B12(R) between the 11� and 21� states
was evaluated by the three-point finite-difference method.

The details of the computational procedure used can be
found elsewhere [24]. Briefly, the inner core shell of both
potassium and rubidium atoms was replaced by energy-
consistent nonempirical effective core potentials [32] (ECP),
leaving nine outer shell (eight subvalence plus one valence)
electrons for explicit treatment. The relevant spin-averaged and
spin-orbit Gaussian basis sets used for each atom (ECP10MDF
for K and ECP28MDF for Rb, respectively) were taken from
the above reference. The optimized molecular orbitals were
constructed from the solutions of the state-averaged complete
active space self-consistent field problem for all 18 electrons
on the lowest (1–10)1,3�+ and (1–5)1,3� electronic states
taken with equal weights [33]. The dynamical correlation
was introduced via the internally contracted multireference
configuration interaction (MRCI) method [34] which was
applied for only two valence electrons keeping the remaining
16 subvalence electrons frozen. The l-independent core-
polarization potentials (CPPs) of both atoms (see Table I) were
employed to implicitly account for the residual core-valence
correlation effects [35]. The corresponding CPP cutoff radii
of both atoms were adjusted to reproduce the experimental
fine-structure splitting of the lowest excited K(42

P ) and
Rb(52

P ) states [29].
The resulting MRCI wave functions were used to evaluate

the permanent dipole functions d1,2(R) of adiabatic 11� and
21� states as well as the corresponding 11�−21� transition
dipole moment d12(R). The adiabatic matrix elements were
transformed to the relevant diabatic moments μ1,2(R),μ12(R)
as

μ1 = cos2 θd1 + sin2 θd2 − sin 2θd12,

μ2 = sin2 θd1 + cos2 θd2 + sin 2θd12,

μ12 = cos 2θd12 + sin 2θ |d1 − d2|/2. (7)

TABLE I. The static dipole polarizability [28] of the cation and
its cutoff radii implemented in the CPP potentials of the K and Rb
atoms. All parameters in a.u.

αcore rcutoff

K 5.354 0.247
Rb 9.096 0.379

Finally, we have calculated spin-orbit ξij (R) (j ∈
(1,2) 3�; (2,3) 3�+) and angular L±

ij (R) (j ∈ (1 − 3) 1�+)
coupling matrix elements as well as transition dipole moments
dij (R) (j ∈ (1,2) 1�+) for adiabatic i ∈ 1 1�,2 1� states.
The resulting adiabatic matrix elements Wij ∈ ξij ,L

±
ij ,dij

were unitary transformed to their diabatic counterparts Wij

as

W1j = cos θW1j + sin θW2j ,

W2j = − sin θW1j + cos θW2j . (8)

III. THE COUPLED-CHANNEL DEPERTURBATION
ANALYSIS OF THE (1 ∼ 2) 1� COMPLEX

In the framework of the rigorous coupled-channel (CC)
deperturbation model [24,36,37], the nonadiabatic rovibronic
energy ECC of the (1,2)1� complex is determined by the
solution of the two coupled radial equations,

(
−I

�
2d2

2μdR2
+ V(R) − IECC

)
(R) = 0,

(0) = (∞) = 0, (9)

where μ is the reduced molecular mass, I is the identity matrix,
and V(R) is the symmetric matrix of the potential energy given
by

V1 1� = V1; V2 1� = V2; V1 1�−2 1� = V12, (10)

where the diabatic potentials V1,2(R) and electronic cou-
pling matrix element V12(R) are the mass-invariant functions
of internuclear distance R. The two-component vibrational
eigenfunction  in Eq. (9) is normalized for the bound
states as

∑
i Pi = 1, where Pi = 〈φi |φi〉 (i ∈ 1 1�,2 1�) is the

fractional partition of the level with the energy ECC.
The diabatic matrix elements are related to the adiabatic

PECs as

U1,2 = (V1 + V2)/2 ±
√

(V1 − V2)2/4 + V 2
12. (11)

The corresponding “effective” rotational constant BCC is
defined as the expectation value,

BCC = �
2

2μ

∑
i=1,2

〈φi |1/R2|φi〉. (12)

The rovibronic energies ECC and vibrational wave functions
φi(R) were obtained through solving the CC equations (9) by
the finite-difference boundary value method [38]. The adaptive
analytical mapping procedure [39] was exploited to decrease
the required number of grid points.

To perform a direct fit of the experimental data we
represented the diabatic interatomic potentials and the relevant
electronic coupling matrix element in their fully analytical
forms. In particular, the Morse-long-range (MLR) [40–42]
function,

V2(R) ≡ UMLR = [
T dis

2 − De

]

+De

[
1 − uLR(R)

uLR(Re)
e−β(R)yeq

p (R)

]2

, (13)
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is used to approximate the diabatic PEC of the 21� state
converging to the K(42S) + Rb(52

P ) dissociation threshold.
The fixed parameter of the dissociation energy T dis

2 in-
volved in Eq. (13) was determined as T dis

2 = D
X
e + ERb(52P ) −

ERb(52S) = 16 955.169 cm−1, where the experimental dissoci-
ation energy of the ground state [43] (taken at the hfs center-
of-gravity) D

X
e = 4217.822 cm−1 and the corresponding

nonrelativistic energy of the D lines of the Rb atom [29].
The coefficient β(R) in the MLR function,

βMLR(R) = yref
p β∞ + [

1 − yref
p

] N∑
i=0

βi

[
yref

q

]i
, (14)

is the polynomial function of the reduced coordinates yref
p,q :

yref
p,q (R) = Rp,q − R

p,q

ref

Rp,q + R
p,q

ref

, (15)

where Rref is the reference distance and the parameters q

and p are integers. The reduced variable y
eq
p in Eq. (13)

is defined by Eq. (15) where the Rref is substituted for the
equilibrium distance Re. The parameter β∞ is constrained to
be ln {2De/uLR(Re)}, where De is the the well depth and uLR

is the long-range potential,

uLR(R) =
∑
n=6,8

Dn

Cn

Rn
, (16)

with fixed sets of the dispersion coefficients Cn and the
damping functions [44–46] Dn:

Dn(R) =
[

1 − exp

(
−3.3(ρR)

n
− 0.423(ρR)2

√
n

)]n−1

, (17)

where the scaling parameter ρ = 0.461 [45].
To approximate the diabatic PEC of the 1 1� state converg-

ing to the K(4 2
P )+Rb(5 2S) dissociation threshold we used

the double-exponential–long-range (DELR) potential [47]:

V1(R) ≡ UDELR = T dis
1 − uLR(R)

+Ae−2β(R)(R−Re) − Be−β(R)(R−Re), (18)

which allowed us to represent a rotationless barrier above
the third asymptote at distances R > Re (see Fig. 1).
The dissociation energy T dis

1 = D
X
e + EK(42P ) − EK(42S) =

17 241.481 cm−1 was fixed during the fit. The nonrelativistic
energy of the D lines of the K atom was taken from Ref. [29].

The exponent coefficient β(R) of the DELR potential was
defined as

βDELR(R) =
N∑

i=0

βi

[
yref

q

]i
, (19)

while the pre-exponential coefficients A and B were
determined from the conditions UDELR(Re) = 0 and
dUDELR/dR|R=Re

= 0 which lead to

A = De − uLR(Re) − u′
LR(Re)/βDELR(Re),

B = De − uLR(Re) + A, (20)

where u′
LR ≡ duLR/dR.

Finally, the electronic coupling matrix element V
emp

12 (R)
between the diabatic 11� and 21� states was represented by
the polynomial:

V
emp

12 (R) = (
1 − yref

q

) N∑
i=0

βi

[
yref

q

]i
. (21)

The optimal parameters of the MLR and DELR potentials as
well as electronic coupling matrix element were determined
simultaneously in the framework of the weighted nonlinear
least-squared fitting (NLSF) procedure:

χ2 =
N exp∑
j=1

[(
E

exp
j − ECC

j

)
/σ

exp
j

]2

+
Nab∑
j=1

([
V ab

1 (Rj ) − UDELR(Rj )
]/

σab
j

)2

+
Nab∑
j=1

([
V ab

2 (Rj ) − UMLR(Rj )
]/

σab
j

)2

+
Nab∑
j=1

([
V ab

12 (Rj ) − V
emp

12 (Rj )
]/

σab
j

)2
, (22)

where E
exp
j denote the experimental term values of the (1 ∼

2) 1� complex and the σ
exp
j -values mean their uncertainties.

The V ab
1,2 and V ab

12 are the diabatic functions evaluated by Eq. (5)
at the point Rj , and σab

j are their uncertainties obtained by
averaging the present and preceding [11] ab initio curves. The
theoretical curves were incorporated in the NLSF procedure
in order to propagate the empirical functions outside of the
experimental data region.

IV. RESULTS AND DISCUSSION

A. Ab initio data

The resulting “difference-based” PECs obtained by Eq. (6)
for adiabatic B(1)1� and 21� states from the present and
preceding [11] ab initio calculations demonstrates overall good
agreement as can be seen in Fig. 3. The most significant
deviations are observed in the vicinity of the avoided crossing
point Rc ≈ 5.36 (Å). The corresponding diabatic V1(R) and
V2(R) PECs obtained by the unitary transformation (5) are
depicted as well.

The ab initio radial B12(R) and electronic V12(R) coupling
matrix elements are given on Figs. 4(a) and 4(b), respec-
tively. The inset demonstrates that the simplest two-parameter
Lorentz curve (3) perfectly fits a peak of the ab initio B12(R)
function.

The permanent dipole moments of the 11� and 21� states as
well as the corresponding 11� −21� transition dipole moment
are given in Fig. 5(a). The adiabatic functions d1,2(R),d12(R)
were obtained during the electronic structure calculations
while the diabatic moments μ1,2(R),μ12(R) were evaluated
according to Eq. (7). As follows from the charge density of
the electronic wave functions of the twin (1,2)1� states [19],
the d1,2(R) functions have a “mirror” R dependance d1 ≈ −d2

with a sharp global extremum about ±2 a.u. located near the
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FIG. 3. The “difference-based” adiabatic PECs obtained from the
present (open symbols) and preceding [11] (solid symbols) ab initio
calculations. The solid lines denote the corresponding diabatic ab
initio PECs of the 11� and 21� states.

point Rc. It should be noticed, that the adiabatic transition
moment d12 becomes zero at the same point. In contrast to
sharp adiabatic functions, their diabatic counterparts demon-
strate rather smooth R behavior. Furthermore, the absolute
magnitudes of the diabatic |μ1,2(R)| functions significantly
decrease at intermediate internuclear distances.

The adiabatic (1,2) 1� − (X,A) 1�+ transition dipole mo-
ments are depicted in Fig. 5(b) along with the diabatic
moments evaluated by Eq. (8). A good agreement of the
present B(1) 1� − X 1�+ transition moment and the preceding
estimate [23] is observed. Figure 5(b) also shows that the
diabatic 1 1� − A 1�+ and 2 1� → X 1�+ moments are very
small at short and intermediate R distances.

The diabatic 11� → X1� + transition moment μ1X(R)
was used to evaluate a radiative lifetime for the lowest
vibrational levels of the 1 1� state by the approximate sum
rule [48]:

1

τ1 1�

≈ 8π2

3�ε0

〈
φJ ′

1

∣∣[�V1X]3[μ1X]2
∣∣φJ ′

1

〉
, (23)

where �V1X(R) = V1(R) − UX(R) is the difference of the
diabatic PEC of the 1 1� state and ground-state PEC. The
resulting τ = 11.3 ns predicted for the B 1�(v′

1 = 2,J ′ = 41)

FIG. 4. (a) The radial coupling electronic matrix element B12(R)
calculated between adiabatic 11� and 21� states. In the inset the
dashed line depicts the fitting Lorentz curve (3) with the parameters
Rc = 5.36 and w = 0.4036 (both in Å). (b) The ab initio and
empirical electronic coupling V12(R) function between diabatic 11�

and 21� states.

level is remarkably close to its experimental counterpart
[13] of 11.6 ns. It should be noted, that the contribution of
the 1 1� − A 1�+ transition into the τ1 1� estimate could be
neglected since |μ1A| � |μ1X| and |�V1A| � |�V1X|.

The resulting SOC matrix elements obtained during the
present ab initio calculations are depicted in Fig. 6. As
expected, the diabatization procedure provides a smooth
R behavior of most SOC functions. However, the diabatic
(1,2) 1� − 3 3�+ functions are still not smooth enough since
the radial coupling of the 3 3�+ state with the higher (n �
4) 3�+ states takes place. It should be also noted that the present
B 1� − c 3�+ and B 1� − b 3� functions deviate significantly
at short and intermediate R ranges from the preceding result
[6], which has been used in modeling the optimal a 3�+ →
B 1� ∼ c 3�+ → X 1�+ STIRAP cycle [7].

The angular coupling matrix elements L±
ij (R) obtained for

the (1,2) 1� − (1 − 3) 1�+ nonadiabatic transitions are pre-
sented in Fig. 7. It is seen that Van Vleck’s pure precession hy-
pothesis [30] L±

ij ≈ √
l(l + 1) = const works perfectly for the

1 1� − A 1�+ pair with l = 1. With l = 2, it works fairly well
for the 2 1� − 3 1�+ pair at short and intermediate distances.

042510-5



S. V. KOZLOV, E. A. PAZYUK, AND A. V. STOLYAROV PHYSICAL REVIEW A 94, 042510 (2016)

FIG. 5. (a) The adiabatic and diabatic ab initio permanent dipole
moments of the 11� and 21� states as well as the corresponding
11� −21� transition moment. (b) The ab initio TDM functions
between the (1,2)1� and X,A 1�+ states. The dashed line denotes
TDM functions calculated without CPP potentials. The dotted line
denotes the dB 1�−X 1�+ (R) function from Ref. [23].

Under unique perturber approximation [30] the q factors
of the doubly degenerate 1� states are estimated as

q 1� ≈
(

�
2

2μR2
e

)2 ∑
1�+

2l(l + 1)

T
1�

e − T
1�+

e

, (24)

yielding, for the 39K85Rb diabatic states, q1 1� ≈ 3.2 × 10−5

and q2 1� ≈ 1.5 × 10−4 cm−1, respectively. Unfortunately,
there are no experimental q values for comparison so far.

To elucidate the subvalence electron correlation effect
we repeated ab initio calculation without core-polarization
potentials but with the same ECP basis sets. The pronounced
discrepancies of the resulting SOC and TDM functions (see,
for example, Figs. 5 and 6) with their ECP+CPP counterparts
confirms the expected importance of the core-valence correla-
tion effect. Furthermore, the present ECP+CPP functions are
in overall good agreement with their preceding TDM coun-

FIG. 6. The adiabatic (solid lines) and diabatic (open circles) ab
initio spin-orbit coupling matrix elements ξij (R) between the (1,2)1�

and (2,3) 3�+ (a), and (1,2) 3� (b) states. The dashed lines denote
the ξB 1�−c 3�+ (R) and ξB 1�−b 3�(R) functions calculated without CPP
potentials. The dotted lines denote the SOC functions borrowed from
Ref. [6].

terparts calculated using the completely different one-electron
ECP [23]. It means that the core-polarization effect could be
properly accounted for in both large (one-electron) and small
(nine-electron) ECPs. The present ECP+CPP approach pro-
vides the SOC and TDM matrix elements of the NaK molecule
[49] which are very close to those obtained by the explicit
correlation of all (2 valence + 16 subvalence) electrons in the
framework of the many-body multipartitioning perturbation
theory. It should also be noted that the present SOC matrix
elements, calculated for the A ∼ b complex of KRb, coincided
with their empirical (deperturbed) counterparts within a few
percent [24].

Thus, we consider the current ab initio estimates to
be the most reliable, i.e., much more accurate than the
previous all-electron calculation of Ref. [26]. The resulting
ab initio potential energy curves, permanent and transition
dipole moments as well as electronic, spin-orbit, and angular
coupling matrix elements are given in pointwise form in the
Supplemental Material [50].
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FIG. 7. The adiabatic (solid lines) and diabatic (open circles) ab
initio angular coupling matrix elements L±

ij (R) calculated between the
(1,2)1� and X 1�+ (a), A 1�+ (b), and 3 1�+ (c) states. The horizontal
dashed lines correspond to

√
2 (b) and

√
6 (c) values, respectively.

B. CC deperturbation data

Experimental input data of the 1 1� ∼ 2 1� complex used in
the NLSF fitting procedure (22) consists of (i) the 110 original
rovibronic term values [16] E

exp
v′J ′ obtained during the (3) 1� →

(1,2) 1� FTS LIF experiment [15] for the rotational levels J ′ ∈
[24,145] in the short range of vibrational quantum numbers
v′

1,v
′
2 ∈ [0,6]; (ii) the reduced term values E

exp
v′ obtained by

the OODRPS measurements [13,14] for the v′
1 ∈ [0,69] and

v′
2 ∈ [6,19] levels, respectively; (iii) the rotationless (J ′ = 0)

term values extracted from the MB experiment [17] for
v′

1 ∈ [0,20] levels.
All energies above correspond to the most abundant

39K85Rb isotopolog while the 29 rovibronic term values [16]
of 39K87Rb are held in reserve for confirmation of the mass-
invariant properties of the fitting functions. The uncertainty
σ exp of the raw rovibronic term values [16] was taken as
0.05 cm−1 while the σ exp = 2 cm−1 was adopted for the
vibronic terms E

exp
v′ since the difference of the empirical data

[13,14] and Ref. [17] reaches few reciprocal centimeters [see
Fig. 8(b)].

The adjusted mass-invariant parameters of the DELR (18)
and MLR (13) potentials obtained for the diabatic 11� and
21� states are presented on Tables II and III, respectively. The
fitting parameters of the empiric 1 1� ∼ 2 1� coupling function

FIG. 8. The residual of the experimental term values of the 1 1� ∼
2 1� complex and CC estimates (9). (a) Circles and squares mark
the 11� and 21� states, respectively. Solid symbols correspond to
the rovibronic term values [16] of 39K85Rb isotopolog while open
symbols to 39K87Rb. (b) and (c) The circles denote the OODRPS
term values [13,14] while the triangles denote the MB data [17]. The
bars denotes the differences between the empirical terms and their
estimates evaluated by the corresponding RKR potentials.

(21) are given in Table IV. The resulting parameters are
duplicated in nontruncated ASCII form in the Supplemental
Material [50], where both experimental and CC term values
along with their residuals (see Fig. 8) and fractional partitions
are collected as well. The adiabatic PECs obtained by the
transformation (11) from the empirical diabatic functions
agree very well with the corresponding RKR potentials in
the low energy region (see Fig. 2).

Figure 8(a) demonstrates that the present deperturbation
model allows one to reproduce the most experimental rovi-
bronic term values [16] of the 39K85Rb isotopolog and to
predict the E

exp
v′J ′ -values of the 39K87Rb isotopolog with an

uncertainty close to 0.05 cm−1. However, there are several
pronounced deviations of the experimental term values cor-
responding to the particular rotational levels of v′

1 = 4,5
vibrational states from the CC estimates (see the Supplemental
material [50] for details). The observed outliers are attributed
to the local SOC effect with the lower lying c(2) 3�+ state (see,
Fig. 3).

The CC diabatic model also improves the representation
of the vibronic E

exp
v′ term values [13,14,17] up to the exci-

tation energies ∼16 400 cm−1 [see Fig. 8(b)]. Overall good
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TABLE II. The resulting mass-invariant parameters of the
UDELR(R) potential (18) obtained for the diabatic 1 1� state.

Fitted

De, cm−1 2214.757
Re, Å 4.3715
A, cm−1 − 10280.36
B, cm−1 4577.51

β0, Å
−1

0.47730

β1, Å
−1

0.22714

β2, Å
−1

0.11574

β3, Å
−1 − 0.04563

β4, Å
−1 − 0.20030

β5, Å
−1

0.19131

β6, Å
−1

0.73518

β7, Å
−1 − 0.15280

β8, Å
−1 − 0.72517

Fixed

q 3
Rref , Å 5.6781
T dis, cm−1 17241.481

C6, cm−1 Å
6 −2339 × 105

C8, cm−1 Å
8

9536 × 105

agreement of the calculated BCC
v′ (12) and empirical B

exp
v′

rotational constants is observed in Fig. 9 for the vibrational
v′

1 � 40 and v′
2 � 6 levels.

TABLE III. The resulting mass-invariant parameters of the
UMLR(R) (13) potential obtained for the diabatic 21� state.

Fitted

De, cm−1 1111.961
Re, Å 5.2872
β0 − 0.92350
β1 0.09744
β2 0.09023
β3 − 0.71368
β4 − 1.08251
β5 0.12502
β6 0.35828

Fixed

q 4
p 4
Rref , Å 6.8511
T dis, cm−1 16955.169

C6, cm−1 Å
6

3025 × 105

C8, cm−1 Å
8

7875 × 105

TABLE IV. The resulting mass-invariant parameters of the
electronic 1 1� ∼ 2 1� coupling V

emp
12 (R) function (21).

Fitted

β0, cm−1 114.87
β1, cm−1 − 2.4087
β2, cm−1 − 98.392

Fixed

q 3
Rref , Å 5.36

To test extrapolation possibilities of the deperturbation
model we have calculated rovibronic term values ECC

v′J ′ for
a pair of the closely lying 1 1�(v′

1 = 54) ∼ 2 1�(v′
2 = 15)

levels of the (1 ∼ 2) 1� complex (see Fig. 10) experimentally
studied in Ref. [14]. The vibrational numbering used above
corresponds to the adiabatic representation of the 1 1� ∼
2 1� complex applied for the assignment of the OODRPS

FIG. 9. Comparison of the empirical (solid circles) rotational
constants B

exp
v′ of the 1 1� ∼ 2 1� complex [13,14] and theoretical

BCC
v′ estimates (open circles) derived by Eq. (12). Open squares in

the inset denote B
exp
v′ values calculated for the v′

2 � 6 levels by the
Dunham constants [15].
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FIG. 10. (a) The rovibronic term values ECC
v′J ′ predicted for the

1 1�(v′ = 54) ∼ 2 1�(v′ = 15) levels under the present CC deper-
turbation model. The straight lines denote the adiabatic energies
calculated as E

exp
v′ + B

exp
v′ × J ′(J ′ + 1) by the “effective” band con-

stants [14]. The symbol �CC means the minimal distance predicted
at J ′ = 27. (b) The fraction partition Pki of the CC eigenfunctions
corresponding to term values above.

X 1�+ → 1 1� ∼ 2 1� spectra [14]. The calculated ECC
v′J ′

positions are found to be in good agreement with their
experimental counterparts. In particular, the minimal distance
�CC = 4.3 cm−1 predicted at J ′ = 27 is remarkably close
to the empirical estimate �exp = 2 × 2.2 cm−1 obtained in
Ref. [14]. The fraction partition Pki ≡ 〈φJ ′

ki |φJ ′
ki 〉 of the CC

vibrational eigenfunctions highlights a strong dependance of
admixture of states on the rotational quantum number in the
interval J ′ ∈ [11,35].

The divergence of the present CC estimates and empirical
band constants generally increases as the vibrational excitation
increases [see Fig. 8(c)]. The same effect takes places in
the empirical adiabatic PECs and RKR potentials. It can be
attributed to the monotonically growing SO coupling with the
b 3� state correlated with the same dissociation limit (see,
Fig. 3). Furthermore, the high vibrational 1 1�(v′

1 � 63) levels
lying just above the fine 4 2S1/2 (K)+5 2

P 1/2(Rb) asymptotic
undergo a predissociation effect [14].

Thus, raw experimental term values corresponding to high
v′,J ′ levels of the (1 ∼ 2) 1� complex would be certainly
useful for the comprehensive deperturbation analysis since

the “effective” band constants indispensably “absorb” the
spin-orbit perturbation effect in the high energy region.

C. Intensity anomalies of the
X 1�+(v′′ = 12) → 1 1�(v′ = 54) ∼ 2 1�(v′ = 15) transition

The present deperturbation model (9) combined with di-
abatic (1,2) 1� − X 1�+ transition moments μ1X(R),μ2X(R)
[see Fig. 5(b)] was used to elucidate the “abnormal” inten-
sity distribution observed for the X 1�+(v′′

X = 12,J ′′ = J ′ +
1) → 1 1�(v′

1 = 54,J ′) ∼ 2 1�(v′
2 = 15,J ′) rovibronic transi-

tion [14].
The absorbtion intensities from the ground X 1�+ state to

a pair of adjoining levels of the (1 ∼ 2) 1� complex were
evaluated according to the relation:

ICC
k 1�−X 1�+ ∼ |MkX|2

= ∣∣〈φJ ′
k1

∣∣μ1X

∣∣χJ ′′
X

〉∣∣2 + ∣∣〈φJ ′
k2

∣∣μ2X

∣∣χJ ′′
X

〉∣∣2

+ 2
〈
φJ ′

k1

∣∣μ1X

∣∣χJ ′′
X

〉〈
φJ ′

k2

∣∣μ2X

∣∣χJ ′′
X

〉
, (25)

where k = 1,2 is the index of the states represented in Fig. 10,
φJ ′

k1(R),φJ ′
k2(R) are the CC rovibrational wave functions, and

χJ ′′
X (R) are the vibrational wave functions of the ground X

FIG. 11. The nodal structure of vibrational wave functions cal-
culated for the particular rotational J ′ = J ′′ − 1 levels of the upper
v′

1 = 54 (a), v′
2 = 15 (b), and ground v′′

X = 12 (c) vibrational states.
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FIG. 12. (a) The rovibronic transition matrix elements calculated
for the v′′

X = 12 → v′
1 = 54 ∼ v′

2 = 15 transition. (b) The total
X 1�+ → 1 1� ∼ 2 1� transition probabilities calculated by Eq. (25).
(c) Comparison of the theoretical and experimental intensity ratios.
The experimental points were digitized from Fig. 8 of Ref. [14].

state (see Fig. 11) calculated with the highly accurate empirical
potential [18].

The rovibronic 〈φJ ′
k1|μ1X|χJ ′′

X 〉 and 〈φJ ′
k2|μ2X|χJ ′′

X 〉 matrix
elements calculated for the X 1�+(v′′

X = 12) → 1 1�(v′
1 =

54) ∼ 2 1�(v′
2 = 15) transitions are given in Fig. 12(a). It

is seen that the 〈φJ ′
k2|μ2X|χJ ′′

X 〉 terms give a negligible
contribution to the total |MkX|2 transition probability since
|μ2X| � |μ1X| [see Fig. 5(b)]. Furthermore, 〈φJ ′

21|μ1X|χJ ′′
X 〉

matrix elements demonstrate abnormally strong J ′ depen-
dance, and they accidentally become very small in the vicinity
of J ′ ≈ 25 due to the interference effect taking place in the
overlap integral of the upper and ground rovibrotional wave
functions.

V. CONCLUDING REMARKS

We performed the diabatization of the twin (1,2)1� states of
KRb based on an ab initio electronic structure calculation and
the direct coupled-channel treatment of experimental term val-
ues of the (1 ∼ 2) 1� complex. The present CC deperturbation
model, based on a diabatic representation, provides the almost
spectroscopic (experimental) accuracy of the approximation.
The empirical PECs and electronic coupling function, along
with ab initio spin-orbit and angular coupling matrix elements,
could be utilized in further deperturbation analysis carried out
in the framework of both adiabatic and diabatic approximation.
The diabatic transition dipole moments are appropriated for
radiative property estimates.
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