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We present a worldline method for the calculation of Casimir energies for scalar fields coupled to
magnetodielectric media. The scalar model we consider may be applied in arbitrary geometries, and it corresponds
exactly to one polarization of the electromagnetic field in planar layered media. Starting from the field theory
for electromagnetism, we work with the two decoupled polarizations in planar media and develop worldline
path integrals, which represent the two polarizations separately, for computing both Casimir and Casimir-Polder
potentials. We then show analytically that the path integrals for the transverse-electric polarization coupled to a
dielectric medium converge to the proper solutions in certain special cases, including the Casimir-Polder potential
of an atom near a planar interface, and the Casimir energy due to two planar interfaces. We also evaluate the path
integrals numerically via Monte Carlo path-averaging for these cases, studying the convergence and performance
of the resulting computational techniques. While these scalar methods are only exact in particular geometries,
they may serve as an approximation for Casimir energies for the vector electromagnetic field in other geometries.
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I. INTRODUCTION

The Casimir force is a striking manifestation of the quantum
vacuum. Casimir forces arise due to fluctuations in quantum
fields interacting with material bodies. These fluctuations lead
to forces between ideal conductors [1], atoms and conductors
[2], and dielectric slabs [3]. Beyond their fundamental interest
as inherently quantum phenomena, Casimir forces are also
of technical importance. For example, they must be taken
into account in stiction in microelectromechanical systems
[4], and in attempts to couple atoms to solid-state systems
to realize architectures for a scalable quantum-information
processor [5,6]. It is then imperative to be able to calculate
these forces in a wide range of geometries, while also taking
into account material properties. The calculation of Casimir
forces is challenging because the force depends sensitively
on the material properties and the geometry of the bodies. In
addition, the calculations are usually expressed as differences
between divergent quantities, which must be handled carefully.
While analytical calculations can be carried out for simple,
highly symmetric geometries, in general numerical approaches
are required [7].

The scattering approach is to date the only general method
for calculating electromagnetic Casimir energies in arbitrary
geometries of material bodies. This method has been devel-
oped by a number of authors as an analytical tool [8–12].
The scattering approach has also been extended to a general
numerical method for computing Casimir energies [13–16]
by leveraging the computational similarity to calculations
in classical electromagnetism [7]. This “boundary element
method” considers fluctuating surface currents on bodies
interacting via the electromagnetic field. Computationally,
this method relies on inverting the matrix that encodes the
scattering of photons by the surface currents [17]. While indeed
being powerful and general, it is important to complement this
method with alternate methods, which would possess different
systematic errors and alternative regimes of efficient operation.

The worldline method is a promising alternative method for
calculating Casimir energies [18]. The worldline method is a
general method of computing effective actions for quadratic
quantum field theories in terms of worldline (i.e., single-
particle) path integrals [19,20]. Gies et al. showed how to
apply the worldline method to computing Casimir energies for
a scalar field coupled to a background potential, which models
the material bodies [18,21–23]. More recently, this method
has been extended to computing stress-energy tensors for
scalar fields, with applications to computing Casimir energies
[24,25]. Since the formalism is not specific to any particular
geometry, it serves as a method for numerically computing
Casimir energies in arbitrary geometries. Furthermore, the
worldline method offers an intuitive picture of Casimir ener-
gies as emerging from the spacetime trajectories (worldlines)
of virtual particles.

In brief, in the worldline method, one generates an ensemble
of closed, random walks, and along the walk one evaluates
the potential, which encodes the locations and geometries
of the interacting bodies. Thus, visualizing the intersection
of the “path cloud” with the material bodies provides the
intuitive picture of the Casimir energy. For example, the
worldline method has been applied in evaluating Casimir
energies for nontrivial geometries, notably for a piston in a
flasklike container [26], where the worldlines give an intuitive
picture of how the piston and flask contributions conspire to
produce a force whose sign depends on the shape of the flask.
Worldline numerics have also been used to better understand
geometries with sharp edges [23], and to understand the limits
of the proximity-force approximation [27]. Finally, the method
has also been extended to include the effects of nonzero
temperature [28–30].

At present there are two main limitations of the worldline
method. First, the method only treats a single scalar field,
whereas two coupled polarizations are necessary to treat full
electromagnetism. Second, the material bodies are treated as a
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background potential, rather than a dielectric permittivity and
a magnetic permeability.

The main success of the worldline method thus far has been
in modeling bodies via arbitrarily strong potentials. These
result in Dirichlet boundary conditions on the scalar field,
which mimic the boundary conditions on one electromagnetic
polarization at a perfectly conducting boundary. However, in
extending the utility of the worldline method, it is important
to treat the vector nature of the field and the coupling to
magnetodielectric materials.

There has already been some progress in this direction thus
far. Bordag et al. have developed the path-integral quantization
of the electromagnetic field, including coupling to a nondis-
persive dielectric [31,32], with applications to the analytic
computation of energies for dielectric spheres and heat-kernel
coefficients. Aehlig et al., in a paper discussing computational
optimizations to worldline calculations of Casimir energies,
have also speculated on how polarization could be incorpo-
rated [33]. Fosco et al. have considered how to implement
regularized Neumann boundary conditions in path integrals,
and they wrote down a worldline path integral for Neumann
boundaries, using a nonlocal (in proper time) representation
of the boundary potential [34]. Similar functional-determinant
methods have also been used to compute the electrostatic
contribution of the Casimir energy in terms of a scalar
field [35].

In the present work, we show how to incorporate explicit
coupling to dielectric and magnetic materials within the world-
line formalism. We demonstrate analytically how, in simple
geometries, a new version of the scalar theory reproduces
known electromagnetic Casimir and Casimir-Polder energies
for dielectric bodies. We also study the numeric evaluation of
the worldline path integrals. In this work, we focus mainly on
the path integral for the transverse-electric (TE) polarization.
In the limit of large dielectric permittivity, this path integral
also handles Dirichlet boundary conditions on the (scalar) TE
field. While the path integral can be evaluated in any geometry,
it only corresponds exactly to one electromagnetic polarization
in planar, layered media. In other geometries, it can serve
as a scalar approximation (albeit an uncontrolled one) for
the full electromagnetic problem, including proper dielectric
coupling. The other, transverse-magnetic (TM), polarization
has additional technical complications for dielectric media,
as it involves a singular potential at a dielectric interface. In
the limit of large dielectric permittivity, it imposes Neumann
boundary conditions on the scalar field. We will discuss the
analytic and numerical evaluation of this path integral in a
future paper [36].

This paper is organized as follows. In Sec. II we compare
the action for the original scalar problem with the action
for the electromagnetic field in media and introduce a scalar
action to model the electromagnetic problem. We then derive
the corresponding partition function. In Sec. III we develop
worldline path integrals for the Casimir and Casimir-Polder
energies. In Sec. IV we derive analytical results for the
Casimir-Polder potential for an atom near a planar, dielectric
interface, and the Casimir energy for two parallel, planar
dielectric interfaces. In Sec. V we discuss the numerical
methods used to evaluate the path integral, examine their
convergence behavior, and propose high-accuracy methods.

Finally, in Sec. VI we generalize the formalism to incorporate
dispersion and nonzero temperature.

II. FIELD PARTITION FUNCTION

To begin our development, we will briefly review the setup
of the previous worldline formalism for evaluating the Casimir
energy of a scalar field, φ = φ(r,t), coupled to a background
potential V (r). This is described by the action [18]

S = 1

2

∫ T

0
dt

∫
dr
[

1

c2
(∂tφ)2 − |∇φ|2 − V (r) φ2

]
, (1)

with the associated wave equation

∇2φ − 1

c2
∂2
t φ + V (r) φ = 0. (2)

In the original work [18], the suggestion was to represent
the potential in terms of a δ function as V (r) = λ δ[σ (r)],
where σ (r) = 0 defines the surfaces of the material bodies. An
alternative representation arises by simply setting V (r) = λ in
the interior of the bodies. In the limit λ −→ ∞, the potential
in either case imposes Dirichlet boundary conditions on the
surfaces.

In electromagnetism, by contrast, the source-free field
action in the presence of linear, nondispersive media, in terms
of the scalar and vector potentials A0 and A, is

SEM = 1

2μ0

∫
dt

∫
dr
[
εr(r)

c2
(∇A0 + ∂tA)2 − (∇ × A)2

μr(r)

]
,

(3)

where εr(r) := ε(r)/ε0 and μr(r) := μ(r)/μ0 are the relative
permittivity and permeability, respectively. Note that this
action may be equivalently written

SEM = 1

2

∫
dt

∫
dr (E · D − B · H), (4)

where the fields are given as usual by E = −(∇A0 + ∂tA),
B = ∇ × A, D(r,t) = ε(r)E(r,t), and B(r,t) = μ(r)H(r,t).

Then setting δSEM/δA0 = 0 leads to ∇ · εr∇A0 = −∂t∇ ·
εrA. This is a first-order equation in time, thus acting as a
constraint and implying a gauge freedom. In Coulomb gauge,
∇ · εrA = 0, and thus in the absence of sources we may take
A0 = 0. The remaining variation δSEM/δA = 0 leads to the
wave equation

∇ × 1

μr
∇ × A − εr

c2
∂2
t A = 0. (5)

In the case of a planar layered medium such that the electro-
magnetic properties of the media only vary in one direction,
εr(r) ≡ εr(z) and μr(r) ≡ μr(z), the action (3) factors into two
independent scalar actions, corresponding to the transverse-
electric (TE) and transverse-magnetic (TM) polarizations. This
decomposition of the electromagnetic field into two decoupled
scalar fields was also used by Schwinger et al. [37] for
computing Casimir energies in planar geometries. This is
illustrated for the TE polarization at a planar interface in Fig. 1,
where for plane-wave modes, the electric-field component
parallel to the medium behaves as a scalar, since its direction
is fixed.
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FIG. 1. Schematic illustration of electric and magnetic fields for
a TE-polarized mode at a planar vacuum-dielectric interface, for
incident (Ei, Hi), reflected (Er, Hr), and transmitted (Et, Ht) fields.
For this polarization, the electric field is effectively scalar while
the magnetic-field polarization varies between media. This scalarlike
behavior holds in any planar layered medium that varies in only one
direction, such that ε(r) ≡ ε(z) and μ(r) ≡ μ(z).

In any TE-polarized plane-wave mode, the electric field is
parallel to the interface. We take the polarization to be along
the y direction, such that E = ŷE, and thus A = ŷA. The
Coulomb-gauge condition further implies ∂yA = 0, so that
(∇ × A)2 = |∇Ay |2. Then for any planar TE mode, the action
(3) can be expressed in terms of the nonvanishing component
of the vector potential φ(r,t) := Ay as

STE = 1

2μ0

∫
dt

∫
dr
[
εr(z)

c2
(∂tφ)2 − 1

μr(z)
|∇φ|2

]
, (6)

with the corresponding wave equation

∇ · 1

μr(z)
∇φ − εr(z)

c2
∂2
t φ = 0. (7)

This action allows the TE-polarized modes to be represented
explicitly in terms of a scalar field φ(r,t).

To treat the action for the transverse-magnetic (TM)
polarization in a planar layered medium, it is convenient to
introduce magnetic potentials C0 and C [32], in terms of which
the fields are H = (∇C0 + ∂tC) and D = (∇ × C). In terms
of these potentials, the electromagnetic action is

SEM = 1

2ε0

∫
dt

∫
dr
[
μr(r)

c2
(∇C0 + ∂tC)2 − (∇ × C)2

εr(r)

]
(8)

after changing the overall sign. Assuming the Coulomb-like
gauge condition ∇ · μrC = 0, the reduction to a scalar action
for TM modes follows in the same way, with the resulting
action

STM = 1

2ε0

∫
dt

∫
dr
[
μr(z)

c2
(∂tψ)2 − 1

εr(z)
|∇ψ |2

]
, (9)

and the corresponding wave equation

∇ · 1

εr(z)
∇ψ − μr(z)

c2
∂2
t ψ = 0, (10)

where for any plane-wave mode ψ(r,t) is the only nonva-
nishing component of C. The TM scalar action and wave
equation also follow simply from the TE case by noting
that electromagnetism is invariant under the duality symmetry
E ←→ H, B ←→ −D, and ε ←→ μ.

The partition function for either scalar field is then a path
integral over the fields in terms of the Euclidean action (i.e.,
with the replacement t → −i�β). For example, the TE path
integral becomes

ZTE =
∫

Dφ exp

[
− ε0c

2�

∫ β�c

0
dτ

∫
dr

×
(

εr(r)|∂τφ(r,τ )|2 + 1

μr(r)
|∇φ(r,τ )|2

)]
, (11)

where τ := β�c. Changing to a scaled field variable

φ̃(r,t) := φ(r,t)√
μr(r)

(12)

removes explicit spatial dependence from the gradient term,
but the change in integration measure to Dφ̃ introduces a func-
tional determinant involving μr. This determinant ultimately
drops out of the final calculation, provided we calculate only
physically relevant differences between configurations that
amount to translations and rearrangements of the materials.
Note also that subtleties involved in Faddeev-Popov-type
gauge-fixing do not arise here, because the gauge condition
used here is linear in the fields.

Then carrying out the Gaussian integration over the field
variables, and performing the analogous procedure in the TM
case, the partition functions become

ZTE = det
[− 1

2εr(r)μr(r)∂2
τ − 1

2∇2 − VTE(r)
]−1/2

,
(13)

ZTM = det
[− 1

2εr(r)μr(r)∂2
τ − 1

2∇2 − VTM(r)
]−1/2

,

where the potentials are defined as

VTE := 1
2 [(∇ln

√
μr)

2 − ∇2ln
√

μr],
(14)

VTM := 1
2 [(∇ln

√
εr)

2 − ∇2ln
√

εr],

and these arise from the commutation of μr(r) and εr(r)
through the derivative operators. Note that VTE and VTM will
still appear in the path integral even without the field-rescaling
procedure in Eq. (12). However, the development of the
worldline path integrals is much more involved. Further details
on this alternate derivation of the potentials will be provided
elsewhere [36], where we will also discuss their analytical and
numerical evaluation at material interfaces.

III. WORLDLINE PATH INTEGRAL

A. Casimir energies and renormalization

To extract zero-temperature Casimir energies from the
partition function, we can compute the mean ground-state
energy via E = −∂β lnZ. Since the divergent absolute energy
is not a physical observable, it is important to renormalize
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the energy. That is, one should subtract the energy of a
reference configuration to obtain a finite interaction energy:
E = −∂β(lnZ − lnZ0). The reference configuration depends
on the geometry of interest, but a typical choice is an arbitrarily
large separation of the material objects.

The derivation of the worldline path integral then proceeds
by evaluating the partition-function determinants (13) via the
identity

ln det[A] = trln[A], (15)

and then using the integral representation

ln[A] − ln[B] =
∫ ∞

0

dT
T (e−BT − e−AT ) (16)

for the logarithm. Note that without the renormalizing sub-
traction here, the integral diverges at the lower limit—this is
the same ultraviolet divergence that comes from computing
Casimir energies via mode summation. For simplicity of
notation, we will normally not write out the subtraction
of the reference configuration, so the divergent expressions
that follow must be interpreted as representing the finite
quantity that remains after this subtraction. From Eq. (13),
the (nonrenormalized) mean energy is

ETE = −∂β

2

∫ ∞

0

dT
T tr eT [(1/2)εr(x̂)μr(x̂)∂2

τ +(1/2)∇2+VTE(x̂)], (17)

where now the notation x̂ emphasizes the operator nature of
the field variable. We can evaluate the trace for this operator
by introducing an auxiliary Hilbert space with 〈x,τ |x̂|ψ〉 =
xψ(x,τ ), 〈x,τ |p̂|ψ〉 = −i∇ψ(x,τ ), 〈x,τ |τ̂ |ψ〉 = τψ(x,τ ),
〈x,τ |p̂τ |ψ〉 = −i∂τψ(x,τ ), and 〈x|p〉 = eix·p. Then express-
ing the trace as a spacetime integration, the result is

ETE = −∂β

2

∫ ∞

0

dT
T

∫ β�c

0
dτ0

∫
dx0

×〈x0,τ0|e−[εr(x̂)μr(x̂)p̂2
τ /2+p̂2/2+VTE(x̂)]T |x0,τ0〉. (18)

Since the matrix element is independent of τ̂ , it is
only necessary to develop the path integral in the spa-
tial dimensions. Splitting the exponential operator into N

pieces, and inserting spatial position and momentum identi-
ties 1 = ∫ dxj |xj 〉〈xj | = (2π )−(D−1)

∫
dpj |pj 〉〈pj | between

each piece, the matrix element becomes

〈x0,τ0|e−[εr(x̂)μr(x̂)p̂2
τ /2+p̂2/2+VTE(x̂)]T |x0,τ0〉

=
∫ N∏

j=1

(
dxj dpj

(2π )D−1

){
δD−1(xN − x0)

N∏
k=0

[〈xk|pk〉

× 〈pk|e−[εr(x̂)μr(x̂)p̂2
τ /2+p̂2/2+VTE(x̂)]�T |xk−1〉]

}
, (19)

where D is the spacetime dimension, �T = T /N , and the
path-closure condition xN = x0 from the trace is now enforced
by the δ function. Replacing operators by eigenvalues, using
〈xj |pj 〉 = eipj ·xj , and evaluating the momentum integrals

leaves

〈x0,τ0|e−[εr(x̂)μr(x̂)p̂2
τ /2+p̂2/2+VTE(x̂)]T |x0,τ0〉

=
∫ N∏

j=1

dxj

(2π�T )(D−1)/2

⎧⎨
⎩δD−1(xN − x0)

×
N∏

k=1

[e−(xk−xk−1)2/(2�T )−�T VTE(xk−1)

× e−εr(xk−1) μr(xk−1) p̂2
τ �T /2]

⎫⎬
⎭. (20)

Putting this back into Eq. (18) and carrying out the remaining
integrals over τ0 and pτ gives

ETE = −�c

2

∫ ∞

0

dT
T

∫ N∏
j=1

dxj

(2π�T )(D−1)/2

× δD−1(xN − x0)[
2πT N−1

∑N−1
=0 εr(x) μr(x)

]1/2

×
N∏

k=1

[e−(xk−xk−1)2/(2�T )−�T VTE(xk−1)]. (21)

This expression already exhibits the form of the numerical
method: The Gaussian densities, in conjunction with the δ

function, define a probability measure for paths (random
walks) that begin and end at x0. The contribution of the material
body enters in the evaluation of [εr(r) μr(r)] and VTE(r) [or
VTM(r) in the TM case] along the path.

The presence of the δ function δ(xN − x0) leads to an
additional overall normalization constant (2πT )−(D−1)/2, if
the sum encompasses only paths that close, such that xN = x0.
This follows from the expression [38]∫

dq δ[h(q)] f (q) =
∫

h−1(0)
dS

1

|∇h(q)|f (q), (22)

where S is the surface satisfying h(q) = 0, and

|∇h(q)| =
√√√√∑

k

(
∂h

∂qk

)2

(23)

is the Euclidean norm of the gradient vector. In the case at hand,
the δ function restricts a sum of N Gaussian integrals to have
a total of zero. Defining the increments �xn := xn+1 − xn,
the path-closure constraint is δ(

∑N−1
k=0 �xk). Accounting for

the remaining normalization constant of the Gaussian xN

integral (as part of dS), the extra contribution for consid-
ering only closed paths (xN = x0) in the path integral is
(2π�T N )−(D−1)/2 = (2πT )−(D−1)/2.

Taking the remaining N − 1 Gaussian factors to be the
probability measure for the paths, in a Monte Carlo interpre-
tation of the path integrals, the sample paths are Brownian
bridges [39] in the limit of large N . To be more precise,
a Wiener path W (t) is a continuous-time random walk,
where each increment has ensemble average 〈〈dW (t)〉〉 = 0
(where the double brackets denote an ensemble average)
and variance 〈〈dW 2(t)〉〉 = dt , with 〈〈dW (t) dW (t ′)〉〉 = 0 for
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t �= t ′. A Brownian bridge BT (t) is a Wiener path subject
to the pinning condition BT (T ) = 0. (The bridges may also
be defined such that they are pinned to other end points.)
Brownian bridges thus form a subset of zero measure of all
possible Wiener paths.

The (unrenormalized) Casimir energy can then be rewritten
in continuous-time notation as

ETE = − �c

2(2π )D/2

∫ ∞

0

dT
T 1+D/2

∫
dx0

〈〈
e−T 〈VTE〉

〈εrμr〉1/2

〉〉
x(t)

(24)

for the TE polarization, and

ETM = − �c

2(2π )D/2

∫ ∞

0

dT
T 1+D/2

∫
dx0

〈〈
e−T 〈VTM〉

〈εrμr〉1/2

〉〉
x(t)

(25)

for the TM polarization, where only the coordinate x0 is elided
in the notation 〈〈· · · 〉〉x(t) that denotes an ensemble average over
vector Brownian bridges x(t) starting and returning to x0, and

〈f 〉 := 1

T

∫ T

0
dt f [x(t)] = 1

N

N−1∑
k=0

f (xk) (26)

is a shorthand for the average value of f (r), evaluated along
the path. In this paper, we will stick to the evaluation of the TE
path integral (24) in the presence of dielectric-only materials,
which simplifies to

ETE = − �c

2(2π )D/2

∫ ∞

0

dT
T 1+D/2

∫
dx0

〈〈〈εr〉−1/2〉〉
x(t). (27)

Note that this has the same form as the TM path integral (25)
in the presence of magnetic-only materials.

B. Casimir-Polder energies

In principle, Eqs. (24) and (25) can yield Casimir-Polder
energies for an atom interacting with a macroscopic body
by treating the atom as a small chunk of magnetodielectric
material. However, this is numerically inefficient: the vast
majority of paths will not intersect the atom, and will thus
not contribute to the renormalized potential. (Note that only
paths that intersect both bodies will contribute to the properly
renormalized, two-body Casimir energy.) It is therefore useful
to develop specialized path integrals for evaluating Casimir-
Polder potentials.

To introduce the atom, we may regard it as producing
localized perturbations δεr(r) and δμr(r) to the background
relative permittivity and permeability, respectively. In the
dipole approximation, these perturbations are given explicitly
in terms of δ functions as

δεr(r) = α0

ε0
δD−1(r − rA),

δμr(r) = β0μ0 δD−1(r − rA),
(28)

where α0 and β0 are, respectively, the static polarizability
and magnetizability of the atom, and rA is the location of
the atom. [Note that the polarizability and magnetizability
are defined such that the electric and magnetic induced dipole
moments are d = α0E and m = β0μ0H, while the polarization
and magnetization are conventionally given in terms of the
perturbations by P = δε E and M = (δμ/μ0) H.] The relevant
energy is then the difference between the Casimir energies

with and without the perturbations. To first order in the
perturbations,

δE[εr,μr] = E[εr + δεr,μr + δμr] − E[εr,μr]

=
∫

dr
[
δE

δεr
δεr(r) + δE

δμr
δμr(r)

]
. (29)

Then putting in the perturbations (28), we identify this energy
as the Casimir-Polder potential,

VCP(rA) = α0

ε0

(
δE

δεr(rA)

)
+ β0μ0

(
δE

δμr(rA)

)
, (30)

written here in terms of functional derivatives of the Casimir
energy evaluated at the atomic position. Note that in treating
the atom as arbitrarily well-localized, the perturbations (28) are
technically divergent. However, the effect of the perturbations
is still small, so the expansion here is really in terms of α0 and
β0 (i.e., this is a shorthand for taking a small but finite radius of
the atom to zero at the end of the calculation). Note also that the
expression (30) is invariant under the duality transformation
εr ←→ μr, α0/ε0 ←→ β0μ0 [40,41].

Then to carry out the explicit expansion in Eq. (29)
to compute the functional derivatives in the Casimir-Polder
potential (30), we need the path-average expansion

〈(εr + δεr)(μr + δμr)〉−1/2

= 1

〈εrμr〉1/2
− 〈δεr μr〉

2〈εrμr〉3/2
− 〈εr δμr〉

2〈εrμr〉3/2
, (31)

as well as the expansions of the potentials (14), which are
necessary to include the contributions of the potential factors
of the form e−T 〈VTE〉:

VTE[μr + δμr] = 1

8

[
∇ ln(μr + δμr)

]2

− 1

4
∇2ln(μr + δμr)

= VTE[μr] + 1

4

[(
∇ δμr

μr

)
· ∇ lnμr − ∇2 δμr

μr

]
.

(32)

These expressions serve to expand Eqs. (24) and (25),
integrating by parts where necessary. Integrating over the
starting (and ending) point x0 of all rigid translations of a
particular path and computing the path average gives

∫
dx0

〈
f (x) δD−1(x − rA)

〉 = f (rA), (33)

where, after removing the δ function, the resulting “paths”
are averages over all rigid translations of the same path
such that the path intersects rA. The ensemble average of
paths is equivalently sampled by simply averaging over paths
beginning and ending at rA. Assembling these pieces gives the
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following expression for the TE-polarization Casimir-Polder
potential:

V (TE)
CP (rA) = �c

4(2π )D/2

∫ ∞

0

dT
T 1+D/2

×
〈〈(

α0μr(rA)

ε0
+ β0μ0εr(rA)

)
e−T 〈VTE〉

〈εrμr〉3/2

− β0μ0T
2μr(rA)

[∇2(lnμr) + ∇(lnμr) · ∇ + ∇2]

× e−T 〈VTE〉

〈εrμr〉1/2

〉〉
x(t), x(0)=x(T )=rA

. (34)

For TM polarization, the corresponding expression is

V (TM)
CP (rA) = �c

4(2π )D/2

∫ ∞

0

dT
T 1+D/2

×
〈〈(

β0μ0εr(rA) + α0μr(rA)

ε0

)
e−T 〈VTM〉

〈εrμr〉3/2

− α0T
2ε0εr(rA)

[∇2(lnεr) + ∇(lnεr) · ∇ + ∇2]

× e−T 〈VTM〉

〈εrμr〉1/2

〉〉
x(t), x(0)=x(T )=rA

. (35)

In this paper, we will evaluate the TE path integral for an
electric-dipole atom coupled to a dielectric-only material, in
which case the path integral (34) simplifies considerably to

V (TE)
CP (rA) = �cα0

4(2π )D/2ε0

∫ ∞

0

dT
T 1+D/2

〈〈〈εr〉−3/2
〉〉

x(t), (36)

which has the same form as the TM path integral for a
magnetic-dipole atom coupled to a magnetic-only material.
The TM path integral also simplifies somewhat in this case,
but it still involves the potential VTM in Eqs. (14), the evaluation
of which we will consider in the future [36].

IV. ANALYTIC WORLDLINE SUMMATION

To further investigate the worldline path integrals, we
will consider their analytic evaluation and show that the
dielectric-body path integrals (27) and (36) converge to known
solutions in planar geometries. In certain limits, this evaluation
is quite straightforward. For example, for a polarizable
atom interacting with a perfectly conducting planar surface
(corresponding to εr −→ ∞), the conductor imposes Dirichlet
boundary conditions on the scalar field, as in previous work on
Casimir worldlines with background potentials [18]. In the
renormalized form of the path integral (36), the integrand
〈εr〉−3/2 − 1 is averaged over the ensemble. The integrand
vanishes for paths that do not touch the surface, but it takes the
value −1 for those that do. Thus, the ensemble average yields
the probability for a Brownian bridge to cross the surface,
with an overall minus sign. For a Brownian bridge BT (t), the
probability to cross a boundary at distance d is well known,
and it takes the value

Pcross = exp(−2d2/T ). (37)

Putting this value into the path integral and carrying out the
remaining integral gives

V (TE)
CP (rA) = − �cα0

64π2ε0d4
(38)

for D = 4, which is the correct contribution of the TE
polarization to the Casimir-Polder potential in this limit.

In the case of a more general planar dielectric surface,
the relevant statistic to describe the path average 〈εr〉 is the
sojourn-time functional (see Appendix B)

Ts[BT (t); d] :=
∫ 1

0
dt �[BT (t) − d], (39)

which is the time a Brownian bridge BT (t) spends past a
boundary at distance d [here �(x) is the Heaviside function].
The probability distribution for Ts is known exactly for a
Brownian bridge [42,43], and the probability density may be
written

fTs (x) = [1 − e−2d2/T ]δ(x − 0+)

+
√

8d2(T − x)

πxT 3
e−2d2/(T −x)

+
(

1 − 4d2

T

)
e−2d2/T

T erfc

⎛
⎝
√

2d2x

T (T − x)

⎞
⎠.

(40)

This may be used to compute the ensemble average of
〈εr〉−3/2 − 1 = (1 + χTs)−3/2 − 1, where χ = εr − 1 is the
dielectric susceptibility, in the renormalized form of the
path integral (36), which then yields the TE Casimir-Polder
potential for arbitrary χ . However, we will defer this solution
in favor of deriving it via a slightly different method.

A. Iterated Laplace transform

The derivation of the sojourn-time density (40) involves the
solution to a diffusion equation to obtain an iterated Laplace
transform of the density. Inverting the Laplace transforms then
gives the density directly [43]. A modification of this procedure
provides the same solution for the Casimir-Polder potential for
a polarizable atom and a planar dielectric half-space without
directly knowing the sojourn-time density. This method then
extends to other situations in which the density for the relevant
path statistic has a cumbersome form (such as the Casimir
energy or the Casimir-Polder potential for two parallel, planar
dielectric interfaces) or is not readily available in closed form
(such as the Casimir energies for the TM polarization for planar
dielectric interfaces).

The method employs the Feynman-Kac formula [39,44],
which states that a solution f (x,t) to the diffusion equation

∂tf = 1
2∂2

xf − [V (x) + λ]f + g(x), (41)

with particle killing rate V (x) and source function g(x),
can also be written as an ensemble average over diffusive
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trajectories,

f (x,t) =
〈〈

f0[x + W (t)] e−λt−∫ t

0 dt ′ V [x+W (t ′)]

+
∫ t

0
dt ′ g[x + W (t ′)] e−λt ′−∫ t ′

0 dt ′′ V [x+W (t ′′)]
〉〉

,

(42)

where the initial condition is f0(x) = f (x,t = 0), and
〈〈· · · 〉〉 denotes the ensemble average over Wiener processes
W (t) [with initial condition W (0) = 0, increment means
〈〈dW (t)〉〉 = 0, and increment variance 〈〈dW (t)2〉〉 = dt]. The
formula in one dimension is sufficient for Casimir calculations
with planar geometries, but the method here readily generalizes
to multiple dimensions.

In steady state, the solution is independent of the initial
condition, and choosing the source function to be g(x,t) =
δ(x), the path average becomes

f (x) =
∫ ∞

0
dt ′
〈〈
δ[x + W (t ′)] e−λt ′−∫ t ′

0 dt ′′ V [x(t ′′)]〉〉, (43)

where f (x) satisfies the eigenvalue equation

λf = 1
2∂2

xf − V (x) f + δ(x). (44)

The δ function pins the paths at the end point such that
W (t) = −x. In the worldline path integrals, solutions with
closed paths are then obtained by setting x = 0 in the solution
f (x). The further restriction to Brownian-bridge sample paths
requires a further normalization factor of (2πT )−1/2, which
follows from Eqs. (22) and (23).

The worldline path integrals (27) and (36) for the Casimir
and Casimir-Polder energies both have the general form

U (x0) =
∫ ∞

0

dT
T 1+D/2

〈〈
1

〈εr〉α
〉〉

x(t)

, (45)

where α = 1/2 for Casimir energies and α = 3/2 for Casimir-
Polder energies, and the paths x(t) satisfy x(0) = x(T ) = x0.
Then the identity

1

[h(x)]α
= 1

�(α)

∫ ∞

0
ds sα−1e−s h(x), (46)

where �[α] is the Gamma function, allows us to exponentiate
the material dependence in Eq. (45):

U (x0) = 1

�(α)

∫ ∞

0

dT
T 1+(D−1)/2−α

∫ ∞

0
ds sα−1

×
〈〈

1√
T

e−s
∫ T

0 dt εr[x(t)]

〉〉
x(t)

. (47)

The T integral here has the form of a Mellin transform, which
can be related to a Laplace transform via an integration of the
form [45]∫ ∞

0
dT T z−1 f (T )

= 1

�(1 − z)

∫ ∞

0
dλ λ−z

∫ ∞

0
dT e−λT f (T ). (48)

Thus, the factor T −1−(D−1)/2+α may be recast as an additional
integral:

U (x0) =
∫ ∞

0
dλ

λ(D−1)/2−α

�[(D − 1)/2 − α]

∫ ∞

0
ds

sα−1

�(α)

×
∫ ∞

0
dT
〈〈

1√
T

e−λT −s
∫ T

0 dt εr[x(t)]

〉〉
x(t)

. (49)

When written in terms of the susceptibility χ , where εr =
1 + χ , this expression takes the form of an iterated Laplace
transform, in the variables λ and s. The solution f (0) from
Eq. (44) gives the integral over the ensemble average here, and
the remaining two integrals may then be carried out to give the
relevant Casimir energy.

B. Casimir-Polder energy

For an atom in vacuum, the explicitly renormalized form of
the Casimir-Polder potential (36) is

V (TE)
CP (rA) = �cα0

4(2π )D/2ε0

∫ ∞

0

dT
T 1+D/2

〈〈〈εr〉−3/2 − 1
〉〉

x(t),

(50)

where the extra term corresponds to a subtraction of the
potential in the limit where material bodies are moved far
away from the atom. This subtraction removes the T = 0
divergence. For an atom at a distance d from a planar dielectric
half-space, we take εr(z) = 1 + χ�(z − d), where d > 0. The
corresponding solution to Eq. (44) is (see Appendix A 1)∫ ∞

0

dT√
T
〈〈
e−λT −s

∫ T
0 dt {1+χ�[d−x(t)]}〉〉

x(t)

=
√

π

λ + s

[
1 +

√
λ + s − √

λ + s(1 + χ )√
λ + s + √

λ + s(1 + χ )
e−2

√
2(λ+s) d

]
.

(51)

This expression is related to the sojourn time of a Brownian
bridge, and it can be used to derive the density (40).

The Casimir-Polder potential follows by substituting
Eq. (51) into Eq. (49), and then using the result with α = 3/2
to evaluate Eq. (50), with the result in D = 4 dimensions,

VCP(d) = − �cα0

8π2ε0

∫ ∞

0
ds

√
s

∫ ∞

0
dλ

× e−2
√

2(λ+s) d

√
λ + s

(√
λ + s(1 + χ ) − √

λ + s√
λ + s(1 + χ ) + √

λ + s

)
,

(52)

where the d-independent part of Eq. (51) vanishes under
renormalization. The integrals can be evaluated exactly to
obtain

V (TE)
CP (d) = − 3�cα0

32π2ε0d4
ηTE(χ ), (53)

where ηTE(χ ) gives the potential normalized to the Casimir-
Polder energy between a spherical atom and a perfectly
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conducting plane:

ηTE(χ ) = 1

6
+ 1

χ
−

√
1 + χ

2χ
− sinh−1√χ

2χ3/2
. (54)

These expressions give the known contribution of the
TE polarization to the Casimir-Polder potential [46]. As
χ −→ ∞, this “efficiency” ηTE converges to 1/6, in agreement
with the strong-coupling limit (38), and it is approximately
χ/40 for small χ . The remainder of the full electromagnetic
Casimir-Polder potential is supplied by the contribution from
the TM polarization.

This procedure also applies to an atom embedded in the
dielectric side of a planar vacuum-dielectric interface. In this
case, the explicitly renormalized form of the potential (36) is

V (TE)
CP (rA) = �cα0

4(2π )D/2ε0

∫ ∞

0

dT
T 1+D/2

× 〈〈〈εr〉−3/2 − [εr(rA)]−3/2
〉〉

x(t), (55)

in order to properly remove the T = 0 divergence. This
corresponds to subtracting the potential in the limit where
the interface is moved far away from the atom, which itself
is still embedded in the dielectric. In evaluating this potential,
the d < 0 part of the path-averaged expression (A7) applies,
and the same procedure leads to

V (TE)
CP (d) = �cα0

8π2ε0

∫ ∞

0
ds

√
s

∫ ∞

0
dλ

e−2
√

2[λ+s(1+χ)] d

√
λ + s(1 + χ )

×
(√

λ + s(1 + χ ) − √
λ + s√

λ + s(1 + χ ) + √
λ + s

)
, (56)

where d > 0 is the distance between the atom and the interface.
The integration here may also be carried out analytically, so
the result may be written

V (TE)
CP (d) = 3�cα0

32π2ε0z4
η′

TE(χ ), (57)

where the relative contribution compared to the (magnitude)
of the total electromagnetic strong-coupling result is

η′
TE(χ ) =

(
5

6
+ 1

χ
−

√
1 + χ

2χ
− (1 + χ )3/2

2χ3/2
tan−1 √

χ

)

× (1 + χ )−3/2. (58)

Note that, on the dielectric side of the interface, the overall
sign of the potential is positive, because the efficiency factor
(58) is strictly positive.

C. Casimir energy

The same technique, used in evaluating the worldline path
integral (27), yields the Casimir energy between two parallel
dielectric interfaces. A proper renormalization here involves
subtracting the one-body contributions from the two-body
energy, leaving only the interaction energy of the two planes.
Denoting the permittivity due to both dielectric half-spaces
εr,12(z), while using εr,1(z) and εr,2(z) to denote the respective

single-body dielectrics, the renormalized Casimir energy is

ETE = �c

2(2π )D/2

∫ ∞

0

dT
T 1+D/2

∫
dx0

×
〈〈(

1√
εr,12(x0)

− 1√〈εr,12〉

)

−
(

1√
εr,1(x0)

− 1√〈εr,1〉

)

−
(

1√
εr,2(x0)

− 1√〈εr,2〉

)〉〉
x(t)

, (59)

so that the one-body contributions are now explicitly sub-
tracted from the two-body energy. The divergence at T = 0
is also removed in each case by subtracting the value of
the integrand at T = 0, which depends on the dielectric
functions evaluated at x0. Explicitly, the permittivity func-
tions are εr,1(z) = 1 + χ1�(d1 − z), εr,2(z) = 1 + χ2�(z −
d2), and εr,12(z) = 1 + χ1�(d1 − z) + χ2�(z − d2), where χ1

and χ2 are the susceptibilities of the two dielectric half-
spaces, which are separated by a distance d = d2 − d1 > 0.
The energy here is still divergent, being proportional to the
transverse area of the half-spaces. Taking the integration
over the transverse dimensions to be the cross-sectional area,
A := ∫ dD−2x0, the energy per unit area ETE/A produces a
finite result.

The ensemble averages in Eq. (49), integrated over T and
x0, are computed in Appendix A 1, and the one-body and
two-body contributions are given, respectively, by Eqs. (A9)
and (A17). Combining these results with Eq. (59), the Casimir
energy density becomes

ETE

A
= −

√
2π�c

8π2�(2)�(1/2)

∫ ∞

0
dλ λ

∫ ∞

0
ds

×
√

s

λ + s

(
r1r2e

−2
√

2(λ+s)d

1 − r1r2e−2
√

2(λ+s)d

)

×
(√

2d + 1√
λ + s(1 + χ1)

+ 1√
λ + s(1 + χ2)

)
,

(60)

where

ri =
√

λ + s − √
λ + s(1 + χi)√

λ + s + √
λ + s(1 + χi)

. (61)

This integral can be cast in a more conventional form by
changing integration variables to p = √

λ + s/
√

s and ξ =√
2s d. Then integrating by parts with respect to p results in

the expression

ETE

A
= − �cπ2

720d3
γTE(χ1,χ2), (62)

where

γTE = −180

π4

∫ ∞

0
dξ ξ 2

∫ ∞

1
dp p ln (1 − r1r2e

−2pξ ), (63)

and the Fresnel reflection coefficients are

ri = p −
√

p2 + χi

p +
√

p2 + χi

. (64)
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These expressions agree with previous calculations [47,48].
The factor γTE gives the ratio of the energy density due
to the TE polarization relative to the total electromagnetic
Casimir energy density for two perfectly conducting parallel
planes. As χ1,χ2 −→ ∞, this efficiency factor converges to
1/2, reflecting the equal contributions of the TE and TM
polarizations in the perfect-conductor limit. The Casimir force
F = −∂dETE between the interfaces here also agrees with the
TE-polarization component of the Lifshitz calculation [3].

V. NUMERICAL METHODS

The main motivation for the development of a worldline
path integral is to enable geometry-independent numerical
methods for computing Casimir energies. To investigate the
feasibility of such algorithms, we will discuss the numerical
evaluation of the path integrals (27) and (36) for the TE
polarization of the electromagnetic field, and compare the
numerical solutions to the available analytic solutions in
planar geometries. It is important to emphasize that the
methods developed here apply in any material geometry, but
the solutions correspond to exact electromagnetic solutions
in planar layered media. In more general geometries, the
solutions correspond to Casimir energies for scalar fields
coupled to dielectric media via the action (6) with arbitrary
εr(r), or to magnetic media via the action (9) with arbitrary
μr(r). These can be regarded as scalar approximations to a full
electromagnetic calculation.

Because this section is long and integrates a number of
distinct but related tracks, a brief outline here will serve to
guide the reader. We carry out the numerical integration of
the path functionals (27) and (36) via Monte Carlo sampling.
The many-dimensional spatial components of the integration
are sampled by generating stochastic paths, as we discuss
in the following section. It turns out to be convenient also
to evaluate the integral over the “proper-time” parameter
T by Monte Carlo sampling (Sec. V B), but this must be
done on a pathwise basis to circumvent problems with the
(removable) singularity at T = 0. Section V C discusses the
numerical results, where some counterintuitive scaling arises
in the discretization (finite-N ) error. A relatively detailed
analysis is required to understand the scaling behavior here.
Finally, Sec. V D describes some more sophisticated numerical
techniques to improve the discretization error.

A. Path generation

The basic ingredient for the numeric evaluation of the
path integrals is the generation of the paths themselves. It
is sufficient to consider the generation of standard Brownian
bridges B(t), or Wiener paths pinned such that B(0) = B(1) =
0. Numerically, the goal is to generate samples Bk of a discrete
representation of the bridge in N time steps of duration
�t = 1/N , such that B0 = BN = 0, with the correct statistics
for Wiener-path increments, 〈〈�Bk〉〉 = 0 and 〈〈�Bj�Bk〉〉 =
δjk�t . One intuitive approach follows from the observation
that, in the continuum limit, a Wiener process with a drift is
still a Wiener process. Thus, given a Wiener process W (t),
one can readily introduce a drift to force the path to close, by

setting

B(t) = W (t) − tW (1). (65)

Then the “gap” W (1) in the closure of the end point is
“prorated” along the path. Since the Wiener increments �Wk

can be generated simply by multiplying standard-normal
deviates by

√
�t , this provides a simple method for generating

the required bridges. At finite N , the statistics generated by
this procedure are only approximately correct, as the variance
of each step turns out to be �t(1 − �t). However, it is possible
to directly generate bridges with the correct finite-N statistics
with only slightly more work, by changing variables in the
Gaussian path measure in the path integral (21) to decouple the
increments. The result corresponds to the “v-loop” algorithm
of Gies et al. [18], and it can be compactly written as the
recursion

Bk =
√

ck

N
zk + ckBk−1 (k = 1, . . . ,N − 1), (66)

where B0 = BN = 0, the zk are standard-normal random
deviates, and the recursion coefficients are given by

ck := N − k

N − k + 1
. (67)

This recursion procedure can be regarded as a discrete rep-
resentation of the well-known stochastic differential equation

dB = −
(

B

1 − t

)
dt + dW, (68)

which represents a standard Brownian bridge B(t) in terms
of a Wiener process W (t). The resulting standard Brownian
bridges can then be scaled and shifted according to

xk = x0 +
√
T Bk (69)

to generate paths that start at x0 and return after time T , as are
needed to evaluate the path integrals.

Numerically, the coupling to the dielectric occurs via the
path average of εr(r) along each Brownian bridge. This can be
computed most directly as in Eq. (26):

〈εr〉 = 1

N

N∑
k=1

εr(xk). (70)

In evaluating the two-body Casimir energy (59), the explicit
renormalization entails evaluating the two-body path average
〈εr,12〉, and then subtracting the one-body path averages 〈εr,1〉
and 〈εr,2〉 on a pathwise basis.

B. Monte Carlo sampling

The remaining integrals over T and x0 can be performed
pathwise by scaling and shifting each Brownian bridge as
in Eq. (69), computing the integrals for each path via
standard quadrature techniques. In the Dirichlet-boundary
limit (χ −→ ∞), the integration over T is particularly simple
[21]: For each path and initial position x0, the integrand
“turns on” at some minimum time T0 when the scaled path
first touches the surface, in which case the problem reduces
to an integration of T −(1+D/2) over [T0,∞), which can be
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done analytically. However, for a more general dielectric, it is
convenient and efficient to evaluate both integrals via Monte
Carlo sampling, where for each path values for T and x0 are
drawn from appropriate distributions.

The T integration is not an obvious candidate for
Monte Carlo sampling, because the explicit weighting factor
T −(1+D/2) in the path integrals does not yield a normalizable
distribution on [0,∞). However, due to the renormalization
procedure, which removes the T = 0 divergence, for any given
path there exists a bound T0, below which the renormalized
integrand vanishes. This bound corresponds to a range of T
where the path does not extend far enough to cross the relevant
interface. (For more general functionals than the path average,
or for a source point x0 in a continuously varying background,
this may not be exactly true. However, one can still find a
similar bound, below which the integrand is negligibly small.)
Thus, given a particular standard Brownian bridge and source
point x0, the value of T0 is fixed, and T may be drawn from
the pathwise, normalized probability density

p(T ; T0) = �(T − T0)
(D/2)T D/2

0

T 1+D/2
. (71)

Then the integrand is evaluated at the chosen value of T , and
the result must be multiplied by the Monte-Carlo normalization
factor [(D/2)T0

D/2]−1.
In sampling the spatial integral over source points x0, no

explicit spatial dependence is available as a basis for sampling,
other than the geometry of the material bodies. However,
reasoning similar to that of the T integral yields a serviceable
distribution—note that it is not necessary to exactly match the
spatial dependence of the integrand, but a sampling distribution
that mimics the true spatial dependence reasonably well will
lead to efficient convergence of the ensemble average. For two
bodies, for example, the region between the bodies should
contribute the most, since these paths will interact with both
bodies at relatively small values of T . Thus, their contribution
will be magnified due to the T −(1+D/2) factor, relative to paths
associated with the exterior region. A reasonable choice is
to sample uniformly from this interior region. Source points
farther away in the exterior region should be sampled less
often, because of their smaller contribution. A rough estimate
is given by the crossing probability e−2d2

0 /T [Eq. (37)] at some
distance scale d0, which, for example, could represent the
distance to the nearest interface. In the T integral, this gives a
power-law scaling behavior:∫ ∞

0

dT
T 1+D/2

e−2d2
0 /T = �(D/2)

2D/2 dD
0

. (72)

The power law here can then serve as a basis for the sampling
distribution in the external region. As an example, for the
Casimir energy in D = 4 dimensions between two dielectric
half-spaces, with the vacuum gap centered at the origin, the
function

p(x0; d0) = 3d3
0

8
×
{

d −4
0 , |x0| < d0,

x−4
0 , |x0| > d0

(73)

can serve as a sampling density for x0, where d0 is an adjustable
parameter. For demonstration purposes, we take d0 to be
the distance d between interfaces in the computations here,

FIG. 2. Numerical evaluation of the path integral (50) for the
(normalized, dimensionless) Casimir-Polder potential of an atom near
a dielectric half-space, as a function of the (dimensionless) dielectric
susceptibility χ . The computations employed N = 105 points per
path, averaging over 108 paths. The solid line gives the analytic result
(54) for comparison. Error bars delimit one standard deviation. Inset:
same data plotted with a linear vertical axis.

although the choice of d0 = d/2 would be more optimal for
this problem. This general idea extends to higher dimensions
in a general way, for example by letting d0 define the radius
of a sphere, which encompasses all the material objects, and
from which samples are drawn uniformly. The same power-law
tails then define the sampling distribution outside the sphere.
In specific geometries, better-adapted sampling densities can
be used to improve the accuracy of the calculations.

C. Numerical results

The results for summing the TE-polarization Casimir-
Polder path integral (50) are shown in Fig. 2, normalized to the
total electromagnetic Casimir-Polder potential for a perfectly
conducting boundary, as in Eq. (53). The analytic result (54)
for ηTE is also shown for comparison; the numerical result and
analytic results agree to within a fraction of a percent. The
analogous plot for numerically evaluating the Casimir-Polder
path integral (55) for an atom embedded in the dielectric
side of the interface, compared to the analytic result (58),
is shown in Fig. 3, where the agreement is also excellent. The
results for numerically evaluating the path integral (27) for the
normalized Casimir energy between two parallel, dielectric
half-spaces are shown in Fig. 4, with the analytic result (54)
for γTE for comparison; the agreement here is similarly good.
The same set of paths were used to evaluate the path integral for
each value of χ , so the data points shown are not statistically
independent. Note that the distance dependence of the path
integrals follows immediately from the dependence of the
path integrals on T , so we do not explicitly test any distance
dependence here. For finite N , the ensemble average tends to
be biased below the true Casimir energy, particularly for large
values of χ . The main mechanism is that any given discrete
path tends to overestimate the lower bound T0 where the scaled
path first touches an interface.

The numerical convergence of the Casimir-Polder and
Casimir energies is shown in Figs. 5 and 6, respectively, where
the numerical estimates η̄TE and γ̄TE approach the exact values
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FIG. 3. Numerical evaluation of the normalized Casimir-Polder
path integral (55) for an atom embedded on the dielectric side of a
dielectric half-space as a function of the dielectric susceptibility χ .
The computations employed N = 105 points per path, averaged over
106 paths. The solid line gives the analytic result (58) for comparison.
Error bars delimit one standard deviation. Inset: same data plotted
with a linear vertical axis.

ηTE and γTE as the number of points N per path increases.
The plots include data over a range of susceptibilities where
the error is largest: χ = 1, 102, 104, and 106, as well as the
strong-coupling limit χ −→ ∞. At fixed N , the error increases
with χ , which is expected because the path average 〈εr〉 can
fluctuate over a wider range of values as χ increases.

The analysis of the scaling of the error with N for such
stochastic integrals is nontrivial. In the remainder of this
section, we will pursue this analysis to effect a more complete
understanding of the numerics; however, note that it is not
essential for the reader to grasp the details in order to use the
numerical methods.

Generally, we need to deal with two considerations: the
discretization error of the integral in the path average (70),

FIG. 4. Numerical evaluation of the Casimir-energy path integral
(59) for two parallel dielectric half-spaces, normalized to the perfect-
conductor energy, as a function of the dielectric susceptibility χ . The
computations employed N = 105 points per path, averaged over 108

paths. The solid line gives the analytic result (63) for comparison.
Error bars delimit one standard deviation. Inset: same data plotted
with a linear vertical axis.

FIG. 5. Numerical convergence of the Casimir-Polder path in-
tegral (36) for an atom near a dielectric half-space. The relative
error is shown as a function of the number N of points per path
for various values of χ as indicated, including the strong-coupling
limit χ −→ ∞. All data points are averaged over 109 paths. Gray
lines indicate N−3/2 and N−1/2 scaling behaviors.

and the truncation error in the derivation of the path integral
in Eq. (20). Naively, one could expect that both these errors
converge to zero as N−1: in Eq. (70) this arises from using
the simplest trapezoidal rule, whereas in Eq. (21) there is an
additional truncation error that is O(N−2) for each of the N

terms. The numerical data, however, show a more complicated,
χ -dependent scaling behavior that we now discuss.

1. Strong-coupling error scaling

The situation is simplest in the limit χ −→ ∞, which
we discuss first. In this limit, the error scales as N−1/2. To
understand this, note that the integrand of the path integral
“saturates” whenever a path crosses the interface. The error
made in the path integral stems from overestimating the
first-crossing time T0, where the time-scaled path just touches
the surface. To quantify this error, we can compare the discrete

FIG. 6. Numerical convergence of the Casimir-energy path inte-
gral (27) for two parallel dielectric half-spaces. The relative error
is shown as a function of the number N of points per path for
various values of χ as indicated, including the strong-coupling limit
χ −→ ∞. All data points are averaged over 109 paths. Gray lines
indicate N−3/2 and N−1/2 scaling behaviors.
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path that falls just short of touching the interface with the set
of continuous-time paths that pass through the same N points
xk . Some of these continuous paths have more “reach” than
the discrete path, and so they have a nonzero probability to
touch the surface between the discrete points. The scaling of
the error follows from considering a (discrete) path with source
point x0 = 0 at distance d > 0 from the planar interface. The
farthest extent of the path toward the interface occurs at some
point xn, with xn ∝ √

T . The farthest extent becomes xn = d

when T = T0. Then

 = d

(
1 −

√
T
T0

)
(74)

represents the distance between the farthest extent of the path
and the interface. For T < T0, there is no contribution of the
discrete path to the path integral. However, even for T < T0,
the continuous paths can still touch the interface. A good
approximation of the touching probability is to only consider
the intervals between xn and xn±1. The scaling behavior of
the probability of both these intervals is the same, and for
simplicity, we only consider the interval xn to xn+1. Since xn is
the farthest extent of the path, the probability for the continuous
path to touch the interface is maximum when xn+1 = xn, in
which case the probability is given by the crossing probability
of a Brownian bridge for a boundary at distance  over time
�T = T /N . From Eq. (37), this is e−22/�T . Thus, the error
in the path integral is, up to an overall factor,

e(N ) =
∫ T0

0

dT
T 1+D/2

exp

[
−2Nd2

(
1 − √

T /T0
)2

T

]
. (75)

Defining δT := T0 − T , the dominant contribution to the inte-
gral comes from small δT , since large values are exponentially
suppressed. Keeping only the leading-order contribution in
δT , changing integration variables to δT , and extending the
upper integration limit, the error becomes

e(N ) ≈
∫ ∞

0

dδT
T 1+D/2

0

exp

[
−2Nd2δT 2

4T 3
0

]

=
√

π

2d2T D−1
0 N

, (76)

which explains the observed N−1/2 scaling of the error in the
strong-coupling limit.

2. Crossover to weak coupling

To understand the scaling in the limit of small χ , we will
begin by considering a similar argument. The discrete path
underestimates the value of the integrand for T slightly less
than T0, because while the finite-N path does not cross the
interface, it may do so in the continuous limit. The estimate
for the error in this case is similar to the situation for the
large-χ limit, but it involves the sojourn time Ts. Again
letting xn denote the point in the path with the farthest extent,
the contribution of the continuous path between neighboring
discrete points xn = xn+1 (which we take to be equal for the
moment to give a simple estimate) is due to the mean sojourn
time of this path segment. In terms of the sojourn time, the

error estimate is, up to an overall factor,

e(N ) =
∫ T0

0

dT
T 1+D/2

T −1〈〈Ts〉〉, (77)

where the ensemble average here encompasses all continuous
paths connecting xn to xn+1. The mean sojourn time can be
computed from the density (40); the relevant path here is
a Brownian bridge spanning time �T , with a boundary at
distance  � 0. The result is

〈〈Ts〉〉 = �T
2

e−22/�T −
√

π2�T
2

erfc

√
22

�T . (78)

Again expanding to lowest order in δT := T0 − T changing
integration variables, and extending the upper integration limit
to infinity, the error becomes

e(N ) ≈
∫ ∞

0

dδT
T 2+D/2

0

[ T0

2N
e−Nd2δT 2/2T 3

0

−
√

πd2δT 2

8NT0
erfc

√
Nd2δT 2

2T 3
0

⎤
⎦

=
√

π

32d2T D−1
0 N3

. (79)

The resulting error estimate scales as N−3/2, as observed in
the numerical data. However, this argument is incomplete, as
it ignores the important case when a path segment straddles
the interface, and it also ignores the contribution of the other
path segments.

The main use of this argument is to provide a heuristic
explanation of the crossover between different scaling be-
haviors for finite χ and with increasing N . In the small-χ
limit, the error associated with the first path segment touching
the boundary has an O(N−1/2) component due to the extent
of the segment, as in the large-χ limit, but each segment
can only make an O(N−1) contribution relative to the total
path. This extra O(N−1) contribution does not matter if χ is
arbitrarily large, since even a single path segment crossing
the interface causes the integrand to saturate, leading to the
N−1/2 scaling in this regime. For any finite N , there should
then be a crossover between these scaling behaviors, because
it is only when χ/N � 1 that the sojourn-time contribution
of the subpath saturates the integrand, whereas the small-chi
limit corresponds to χ/N � 1. Thus we expect a crossover
between N−1/2 and N−3/2 error scaling around N ∼ χ , as
observed in the numerical data above. In particular, based on
the numeric results, this means that for any finite χ , the error
scales asymptotically with the faster N−3/2 power law after
passing through the crossover regime.

3. Detailed analysis of the N−3/2 error

In fact, the N−3/2 error scaling is somewhat surprising:
as noted above, the discretization error of the path-average
estimator (70) suggests that the error should scale no better
than N−1. To better understand this scaling behavior, it is
necessary to consider the contribution of the entire path. In
doing so, it is useful to compare different approximations
for the path average. For example, an alternate interpolation
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FIG. 7. Numerical convergence of the Casimir-Polder path inte-
gral (36) for an atom near a dielectric half-space, as in Fig. 5, but using
the interpolation estimator (80) instead of the trapezoidal estimator
(70). All data points are averaged over 109 paths.

estimator arises via

〈εr〉 = 1

T

N−1∑
j=0

∫ Tj+1

Tj

dτ εr[x(τ )]

≈ 1

T

N−1∑
j=0

∫ xj+1

xj

dx εr(x)
�T
�xj

= 1

N

N−1∑
j=0

1

�xj

∫ xj+1

xj

dx εr(x), (80)

where �xj = xj+1 − xj and Tj := j�T . The final summand
here is the average integrated value of εr(x) between xj and
xj+1 (in multiple spatial dimensions, this is the average value
computed along the straight line connecting xj and xj+1).
The integrals here can be computed straightforwardly for a
dielectric interface in terms of the fraction of the straight-line
interval spent past the interface. The reference method (70)
can be written

〈εr〉 = 1

N

N−1∑
j=0

εr(xj ) + εr(xj+1)

2
(81)

because xN = x0, and this method coincides with the ordinary
trapezoidal rule in numerical quadrature. For a smooth,
deterministic integrand, both methods have an error that scales
as N−2. However, in computing a sojourn-time integral, the
error estimate is complicated by the involvement of a stochastic
path as well as a discontinuous integrand. As it turns out,
the interpolation method (80) achieves the worst-case N−1

asymptotic scaling that we noted above. This is shown in Fig. 7,
which is the same calculation as in Fig. 5, except in using the
interpolation rule (80) instead of the trapezoidal rule (81).

On the other hand, the trapezoidal rule performs substan-
tially better. The difference between the interpolation rule and
the trapezoidal rule lies entirely in the case in which the points
xn and xn+1 straddle the interface, a case ignored by the error
estimate (79). The mean sojourn time for a bridge between
xn and xn+1 may be calculated from the probability density
in Eq. (B12). The results are visualized in Fig. 8. The figure

FIG. 8. Average sojourn time 〈〈Ts〉〉 for one path segment from
xn to xn+1 [Eq. (B12)] plotted as a function of the interface location
d . The horizontal axis is shifted such that the interval midpoint
x̄n := (xn + xn+1)/2 is centered in the plot, and the axis is scaled
such that the interval boundaries xn and xn+1 are located at ±1/2,
as marked by thin vertical lines. The trapezoidal and interpolation
estimators for the sojourn time, given, respectively, by Eqs. (81) and
(80), are superimposed for comparison. Note that the mean sojourn
time decreases monotonically with d because the path has less of an
opportunity to sojourn in the region to the right of d .

also shows the functions approximating 〈〈Ts〉〉, corresponding
to the interpolation rule and the trapezoidal rule. Note that
the interpolation rule appears to be a good approximation for
〈〈Ts〉〉 for small values of �T /�x 2

n , which correspond to very
long (albeit rare) steps, where the Brownian path is close to a
straight-line (classical) path. The trapezoidal-rule curve does
not obviously constitute any kind of good approximation to
any of the sojourn-time curves. The main feature to note from
this plot is that, outside of the region between xn and xn+1,
the curves all have important common features: they share
the same reflection symmetry, and they decay exponentially
to 0 or 1 in essentially the same way (once the scaling in the
plot is accounted for), as in the case when xn = xn+1. Thus, a
heuristic estimate for the error scaling follows by adapting the
error expression (79), which assumes xn = xn+1, as follows.
The estimate only accounted for the error on the leading side of
the path segment. If we also account for the error on the trailing
side, which amounts to extending the lower integration limit to
−∞, the resulting expression vanishes. Then the leading-order
result comes from keeping the first-order term in δT from the
expansion of the T −(1+D/2) factor. The resulting integral gives
an error that scales as N−2. However, there are N total path
segments, so the overall error scales as N−1, which matches
the simple error estimate from the N -point discretization of
the path. This N−1 scaling also applies, for example, to a
midpoint rule εr(x̄j ) in place of the two-point average in the
sum of Eq. (81), or to any other estimator that depends on
εr(r) along the straight line between xn and xn+1, except for
the trapezoidal rule.

Then what is special about the trapezoidal rule? It turns
out to have the following remarkable property: when averaged
over all possible steps �xn, the trapezoidal rule can exactly
reproduce the mean sojourn time. Mathematically, consider the
mean sojourn time, Eq. (B12), with a = −�xn/2, c = �xn/2,
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and t = �T , for Brownian bridges B(−�xn/2)→(�xn/2)(�T )
connecting −�xn/2 to �xn/2 in time �T :

〈〈Ts〉〉 :=
∫ ∞

−∞
d�xn

e−�x 2
n /2�T

√
2π�T

×〈〈Ts[B(−�xn/2)→(�xn/2)(�T ); d]〉〉. (82)

The overbar here denotes the average over all possible steps
�xn, weighted by the Gaussian probability density for the
step, and the step interval is centered (x̄n = 0) to simplify
the notation. Using the estimator 〈〈T̃s〉〉 corresponding to the
trapezoidal rule, the analogous average is

〈〈T̃s〉〉 =
∫ ∞

−∞
d�xn

e−�x 2
n /2�T

√
2π�T

× �T
2

[
�

(
�xn

2
− d

)
+ �

(
− �xn

2
− d

)]

= �T
2

erfc

[ √
2 d√
�T

]
, (83)

which ends up being exactly the same as the result from
evaluating the integral in Eq. (82). When one carries out a
more careful calculation of the error, analogous to Eq. (79)
but including the difference between the mean sojourn time
(B12) and the trapezoidal or interpolating estimator (i.e., with
xn �= xn+1 in general), as outlined in the previous paragraph,
the results are as follows. In the case of the trapezoidal
estimator, one finds that for any given step size �xn there is
a local error of O(N−2), which vanishes when averaged over
step sizes as in Eq. (82). When the path segment straddles
the interface, the interpolating estimator introduces an excess
O(N−2) error. With N total path segments, this explains the
O(N−1) error scaling for the interpolating estimator and the
higher-order error scaling for the trapezoidal estimator.

D. Accelerated-convergence techniques

The statistical error due to averaging a finite number of
paths is unavoidable. However, for a finite number of points
N per path, it is possible to use more sophisticated methods to
enhance the accuracy relative to the performance discussed in
the previous section. Here we will discuss two such methods
in the context of the Casimir-Polder path integral, but the same
techniques also apply in the general Casimir case. One method
comes from rewriting the TE Casimir-Polder path integral (36)
in the (unrenormalized) form

V (TE)
CP (r) = �cα0

(2π )D/2
√

πε0

∫ ∞

0

dT
T 1+D/2

∫ ∞

0
ds s2 e−s2

× 〈〈 exp[−s2〈χ〉]〉〉x(τ ). (84)

This expression turns out to be the Casimir-Polder analog of
the Casimir free energy for dispersive media in Eq. (95), if the
dependence of the susceptibility on the imaginary frequency
is incorporated as χ (r) −→ χ (r,is). If the paths here refer
to N -point discrete paths, the path average can be written in

terms of the components on each path segment as

V (TE)
CP (r) = �cα0

(2π )D/2
√

πε0

∫ ∞

0

dT
T 1+D/2

∫ ∞

0
ds s2 e−s2

×
〈〈

N−1∏
j=0

exp

[
− s2

T

∫ Tj+1

Tj

dτ χ [x(τ )]

]〉〉
x(τ )

.

(85)

For a vacuum-dielectric interface, the integral in the expo-
nential gives the sojourn time in the dielectric of a Brownian
bridge connecting xj to xj+1 in time �T . Instead of estimating
the path-segment integrals by using samples χ (xj ) as in the
trapezoidal rule (81), it is most accurate to treat the integrals in
terms of the Brownian bridge between xj and xj+1. Averaging
over all such bridges results in the exact (in the N −→ ∞
sense) expression

V (TE)
CP (r)

= �cα0

(2π )D/2
√

πε0

∫ ∞

0

dT
T 1+D/2

∫ ∞

0
ds s2 e−s2

×
〈〈

N−1∏
j=0

〈
–

〈
exp

[
− s2

T

∫ Tj+1

Tj

dτ χ [x(τ )]

]〉
–

〉
�xj

〉〉
x(τ )

,

(86)

where the connected-double-angle brackets 〈-〈 〉-〉�xj
denote

the ensemble average over all bridges between xj and xj+1.
The ensemble-averaged exponential factors here then have
the form of the generating function of the sojourn time. For
a planar vacuum-dielectric interface, expressions for these
generating functions appear in Eqs. (B8)–(B11). The results
there are adapted to the present case by identifying a −→ xj ,
c −→ xj+1, t −→ �T , and s −→ s2χ/T . Thus, for a planar
interface, a calculation performed this way has no finite-N
discretization error. In fact, the analytic calculation of the
TE Casimir-Polder potential in Sec. IV B is essentially a
summation of these paths with N = 1. The expressions for
the moment-generating functions involve integrals, but they
can be evaluated over the range of necessary values in the two
free variables: the scaled interval length (c − a)/

√
t and the

scaled boundary location (d − a)/
√

t . The values needed in
evaluating the path integral can then be generated as needed
from an interpolation table in these two variables, as well as
the two parameters χ and s2/T .

The other method applies to the original path integral (36)
for the Casimir-Polder potential, where the goal is to accurately
evaluate the path average 〈εr〉. Writing out the path average as

〈εr〉 = 1 + 1

T

N−1∑
j=0

∫ Tj+1

Tj

dτ χ [x(τ )], (87)

the integrals here again have the form of the sojourn time
in the dielectric medium, in the case of a uniform dielectric
with a sharp boundary. The approach of Eq. (86), where
the sojourn-time integrals for the path segments are replaced
by the ensemble averages over Brownian bridges connecting
xj to xj+1, is possible here by employing Eq. (B12), but
not optimal. However, since the probability density for the
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sojourn time is known in Eqs. (B3)–(B3), these integrals
can be interpreted as random variables, chosen according
to the sojourn-time probability density. The expression for
the sojourn density is relatively complicated, but the only
free parameters are the scaled interval length (c − a)/

√
t , the

scaled boundary location (d − a)/
√

t , and the sojourn time
x/t . It is thus feasible to compute all necessary values of the
inverse cumulative probability function, generating deviates
via an interpolation table in three variables and the parameter
χ . The same idea has been applied in financial mathematics,
for example in the pricing of occupation-time derivatives [49].
Again, for a planar interface, this method corresponds to
directly taking the limit N −→ ∞, with any finite-N path. The
analytic calculation of the TE path integral described following
Eq. (40) via the sojourn-time distribution is equivalent to a
summation over paths in this method for N = 1.

Of course, the planar-interface solution of the path integral
is already known. The real value of these methods lies in
evaluating the path integrals with interfaces of arbitrary
geometry. These methods will still dramatically reduce the
discretization error in the general case, provided N is large
enough that the interface is well-approximated by a plane
on the length scale of a path segment. In this case, the
planar-geometry expressions for the sojourn-time distributions
can be employed. For example, these methods are already
approximate in the case of two parallel, planar interfaces,
because each path segment is assumed to only interact with one
plane; however, this is an excellent approximation provided
that

√
�T is small compared to the gap between the interfaces.

These methods would be especially beneficial in the perfect-
conductor (Dirichlet-boundary) limit, where the asymptotic
convergence with N is particularly slow.

VI. NONZERO TEMPERATURE AND DISPERSION

In considering scenarios more relevant to experiments, it
is important to incorporate material dispersion and nonzero
temperatures. Here we will discuss the generalization of
the worldline formalism to dispersive dielectric materials at
nonzero temperature. Such effects were already incorporated
in the early work of Dzyaloshinskii et al. [46,50]. How-
ever, electromagnetic quantization with dispersive materials
requires some care and has thus been the subject of much
study, because causality considerations imply that dispersive
materials are also absorptive. Dispersive quantization is
typically handled by coupling the electromagnetic field to an
idealized, linear medium, and then coupling the medium to a
bath of oscillators that models dissipation [51–53]. A similar
approach, outlined in Appendix A of Ref. [12], emphasizes
that the dielectric constant is related to the linear response
of the underlying medium. For a linear medium, one can
carefully calculate the total energy for a total medium-bath
system, including energy lost to dissipation. This procedure
leads to expressions for the Casimir energy that correspond
to results computed in the absence of dispersion, but with the
substitution ε → ε(iω) [54–56].

The common theme of this prior work is that the dependence
of Casimir energies on dielectric media enters solely via the
imaginary-frequency permittivity εr(r,isn) evaluated at the
Matsubara frequencies sn := 2πn/�β. To sketch how this

comes about in the path integral, first note that the Wick-rotated
scalar field φ(x,τ ) from the partition function (11) can be
expanded in a Fourier series as

φ(r,τ ) =
∞∑

n=−∞
φn(r) e−isnτ/c, (88)

where

φn(r) =
∫ β�c

0
dτ eisnτ/c φ(r,τ ). (89)

In this expression, the Wick rotation has replaced the real
frequency by ωn −→ isn. Putting this expression for φ(r,τ )
into the partition function (11), we can introduce material
dispersion by giving εr the proper frequency dependence for
each Matsubara mode. The result with μr = 1 is

ZTE =
∞∏

n=−∞

∫
Dφn exp

[
−ε0c

2�

∫
dr

×
(

εr(r,isn)
s2
n

c2
|φn(r)|2 + |∇φn(r)|2

)]
, (90)

where the temperature dependence is implicit in sn. With
nonzero temperature, the appropriate thermodynamic quantity
for computing forces is the free energy, given by F =
−β−1 ln Z, which is equivalent to the mean energy in the limit
β −→ ∞. After integration over the fields in the partition
functions, the free energy becomes

F = −β−1
∑

n

′
ln det

[
εr(r,isn)

s2
n

c2
− ∇2

]
, (91)

where the primed summation is defined by
∑′

nfn := 1
2f0 +∑∞

n=1 fn. The development of the worldline path integral
proceeds in the same manner as in Sec. III, with the
unrenormalized result

F = − 1

(2π )(D−1)/2β

∑
n

′ ∫ ∞

0

dT
T (D+1)/2

∫
dx0

× 〈〈e−s2
n〈εr(x,isn)〉T /(2c2)

〉〉
x(t). (92)

The unrenormalized thermal Casimir-Polder energy follows
according to the logic of Sec. III B, with the result

VCP(rA,β) = 1

2(2π )(D−1)/2ε0c2β

∑
n

′
s2
n α(isn)

×
∫ ∞

0

dT
T (D−1)/2

〈〈
e−s 2

n 〈εr(x,isn)〉T /(2c2)
〉〉

x(t). (93)

Note that in both cases the path average 〈εr〉 is exponentiated,
like a path-integral potential, in contrast to the 〈εr〉−α forms of
the dispersion-free path integrals. Also, since εr(r,isn) is real
and positive for a causal medium, the exponential factors here
are well-behaved.

In the limit of high temperature, the only contribution to
the Casimir-Polder potential comes from the lowest Matsubara
mode at frequency s0 = 0. However, due to the presence of the
factor s 2

n in Eq. (93), this potential vanishes. This is consistent
with known results for a planar interface [57], where in the
limit of high temperature the leading-order contribution to the
potential comes only from the TM polarization.
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In both the Casimir and Casimir-Polder path integrals, the
zero-temperature limit emerges as the Matsubara sum becomes
well-approximated by an integral over frequency. Making the
replacement

2π

�β

∑
n

′ −→
∫ ∞

0
ds, (94)

so that, for example, the Casimir free energy becomes

F = − �

(2π )(D+1)/2

∫ ∞

0
ds

∫ ∞

0

dT
T (D+1)/2

∫
dx0

× 〈〈e−s2T 〈εr(x,is)〉/2c2 〉〉
x0

. (95)

Note that the s integration in Eq. (49), which exponentiated
the 〈εr〉−α dependence on the dielectric, plays essentially the
same role as the integral over the imaginary frequency s here,
but now this integration has a physical interpretation. In the
far-field limit, where the dominant transition wavelengths ω/c

are small relative to the separation of objects, the dielectric
permittivity is given approximately by its zero-frequency
value. Then, after carrying out the integral over s, the path
integral reduces to the dispersion-free expression in Eq. (24)
with μr −→ 1.

VII. SUMMARY

We have extended the worldline method for scalar-field
Casimir energies to better model electromagnetism by incorpo-
rating a coupling of the field to the dielectric permittivity εr(r)
and magnetic permeability μr(r). We have also discussed the
extension of the path integrals to dispersive media at nonzero
temperature.

The numerical evaluation of the Casimir and Casimir-
Polder energies in planar geometries, where exact results are
known, demonstrates the good convergence properties of the
path integrals. This agreement should also extend to other
geometries where the polarizations decouple. The numerical
methods apply in arbitrary geometries, giving Casimir energies
for a scalar field coupled to a magnetodielectric material.
They also serve as a scalar approximation for the full
electromagnetic Casimir energy in arbitrary geometries.

We have also demonstrated analytically that the worldline
path integrals developed here converge to the correct values
for both Casimir and Casimir-Polder energies in planar
geometries. The analytical techniques developed here are also
useful for handling the more technically challenging case of the
TM polarization, in both analytic and numerical calculations,
which we will discuss in future work [36].
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APPENDIX A: SOLUTIONS TO FEYNMAN-KAC
FORMULAS

In the analytic summations of worldlines in Sec. IV, the
solutions to the differential equation (44) are required to give

explicit expressions to the ensemble average (43) over paths.
Here we will give an overview of the derivation of explicit
expressions that correspond to either one or two dielectric
half-spaces. Recall that only the solution f (x) at x = 0 is
required, as this is the case that generates an average over
closed paths, as required by the trace in Eq. (17).

1. One-step potential

The potential corresponding to a single dielectric half-space
of susceptibility χ is

V (x) = χ�(x − d), (A1)

where d is the distance to the planar interface. A path source
point on the vacuum side of the interface corresponds to
d > 0, while a source point on the dielectric side corresponds
to d < 0. Written out explicitly, the differential equation (44)
to solve is

f ′′(x) = 2[λ + χ�(x − d)] f (x) − 2δ(x), (A2)

and the solution gives the path average

f (0) =
∫ ∞

0
dt ′
〈〈
δ[W (t ′)] e−λt ′−χ

∫ t ′
0 dt ′′ �[x(t ′′)−d]

〉〉
, (A3)

where again the double angular brackets 〈〈· · · 〉〉 denote an
average over Wiener paths, which are forced to close here by
the δ function.

The solutions to Eq. (A2) are linear combinations of
the functions exp(±√

2λ x) in regions where x < d, and of
exp[±√

2(λ + χ ) x] in regions where x > d. Then the solution
is determined by enforcing the continuity of f (x) and f ′(x)
across the interface at x = d, enforcing a jump in f ′(x) at
x = 0 due to the δ function,

f ′(0+) − f ′(0−) = −2, (A4)

while enforcing the continuity of f (x) itself, and finally
requiring f (x) −→ 0 as x −→ ±∞. With these conditions,
the solution is

f (0) =
⎧⎨
⎩

1√
2λ

(1 + r e−2
√

2λ d ) (d > 0),
1√

2(λ+χ)
(1 − r e2

√
2(λ+χ) d ) (d < 0),

(A5)

where

r =
√

λ − √
λ + χ√

λ + √
λ + χ

(A6)

has the form of the Fresnel reflection coefficient for TE
polarization at a vacuum-dielectric interface (provided that
in terms of the angle of incidence θ from the vacuum side, one
identifies λ = cos2 θ ).

Combining Eqs. (A3) and (A5) and applying the logic of
Eqs. (22) and (23) to remove the δ function, the result is∫ ∞

0

dT√
T

e−λT 〈〈e−χ
∫ T

0 dt �[x(t)−d]
〉〉

x(t)

=
√

π

λ + χ�(−d)
[1 + sgn(d)re−2

√
2[λ+χ�(−d)] |d|],

(A7)
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where the paths x(t) are now restricted to Brownian bridges,
satisfying x(0) = x(T ) = 0. This solution is then useful in
computing the Casimir-Polder potential for an atom near a
planar dielectric interface by providing an expression for the
T integral in Eq. (49). For example, for d > 0 the replacements
χ −→ sχ and λ −→ λ + s in Eq. (A7) give Eq. (51).

This result is also useful in computing the Casimir energy of
two dielectric half-spaces, where the integral of Eq. (A7) over
all path source points x0 represents the one-body energy of
each half-space. Since the source point is x0 = 0 in Eq. (A7),
it is easiest to interpret d as the distance from the source
point to the interface, and thus the replacement d −→ d − x0

explicitly restores the source-point dependence,∫ ∞

0

dT√
T

e−λT 〈〈e−χ
∫ T

0 dt �[x(t)−d]〉〉x(t)

=
√

π

λ + χ�(x0 − d)

× [1 + sgn(d − x0) r e−2
√

2[λ+χ�(x0−d)] |d|], (A8)

where now x(0) = x(T ) = x0. The first term on the right-
hand side vanishes under renormalization, represented by the
subtractions in the last two terms in Eq. (59), which amounts
to subtracting away ultraviolet divergences as T −→ 0. The
remaining integral over x0 yields the one-body contribution

I =
(

1

4λ
− 1

4(λ + χ )

)
r (A9)

to the total energy. This result is useful in subtracting the
one-body contributions from the two-body interaction energy
in Eq. (59), leading to the last two terms in the last factor in
Eq. (60).

2. Two-step potential

The potential corresponding to two dielectric half-spaces
with separation d and susceptibilities χ1 for x < d1 and χ2 for
x > d2 is

V (x) = χ1�(d1 − x) + χ2�(x − d2), (A10)

where d = d2 − d1 > 0. Following the method in the previous
section for the one-step potential, the differential equation (44)
to solve is

f ′′(x) = 2[λ + χ1�(d1 − x) + χ2�(x − d2)] f (x) − 2δ(x).

(A11)

Applying the same conditions as in the one-step case, the
solution f (0) may be written in three distinct regions. For
0 < d1 < d2, the solution corresponds to path source points in
the χ1 dielectric region x0 < d1, and it is given by

fI(0) = 1√
2(λ + χ1)

×
[

1 +
(

r2e
−2

√
2λd − r1

�

)
e−2

√
2(λ+χ1) d1

]
, (A12)

where the reflection coefficients appear again as

ri :=
√

λ − √
λ + χi√

λ + √
λ + χi

(A13)

and

� := 1 − r1r2e
−2

√
2λ d . (A14)

For d1 < 0 < d2, corresponding to path source points in the
gap region d1 < x0 < d2, the solution is given by

fII(0)= 1√
2λ

[
1 + 2r1r2e

−2
√

2λ d

�
+ r1e

2
√

2λ d1 + r2e
−2

√
2λ d2

�

]
.

(A15)

Finally, for d1 < d2 < 0, corresponding to path source points
in the χ2 dielectric region d1 < d2 < 0, the solution is given
by

fIII(0) = 1√
2(λ + χ2)

×
[

1 +
(

r1e
−2

√
2λd − r2

�

)
e2

√
2(λ+χ2) d2

]
. (A16)

In each region, the first term is independent of d1 and d2

and thus it vanishes under renormalization, which amounts
to the subtraction of [εr,12(x0)]−1/2 from the path-average
functional in Eq. (59). Again, this renormalization corresponds
to removing the divergence at T = 0 by subtracting the energy
in the case in which the interfaces are moved arbitrarily far
from the source point.

The Casimir energy requires the integral of this solution
over all source points x0, which can again be made explicit
by the replacements d1 −→ d1 − x0 and d2 −→ d2 − x0.
Integrating the resulting expressions in all three regions gives
the total contribution

I12 = 2r1r2e
−√

2λdd√
2λ�

+ (r1 + r2)
(1 − e−2

√
2λd )

4λ�

+ r2e
−2

√
2λd − r1

4(λ + χ1)�
+ r1e

−2
√

2λd − r2

4(λ + χ2)�
. (A17)

The one-body energies must then be subtracted from this result
to give the total interaction I = I12 − I1 − I2, where from
Eq. (A9),

Ii =
(

1

4λ
− 1

4(λ + χi)

)
ri (A18)

for the χi half-space. The result provides an expression for
the last integral in Eqs. (49) and (59), which yields the
renormalized Casimir energy (60).

APPENDIX B: SOJOURN-TIME STATISTICS

For a stochastic process y(t), the sojourn time is defined as
the functional

Ts[y(t); d] :=
∫ t

0
dτ �[y(τ ) − d], (B1)

where �(x) is the Heaviside function. It measures the portion
of the time interval [0,t] that the process spends past a
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boundary at position d. The sojourn time is an example of
the more general notion of the occupation time of a set, which
is the time that a stochastic process spends within a specified
set. The sojourn time is, more specifically, the occupation time
of the set [d,∞).

In the application to path integrals in this paper, the case of
interest is when y(t) has the statistics of a Wiener process
[58]. That is, y(t) corresponds to the continuous limit of
a Gaussian random walk. In each time step dt , the step is
unbiased, 〈〈dy(t)〉〉 = 0, where the Wiener increments are
dy(t) := y(t + dt) − y(t), and the double angular brackets
denote an ensemble average over all possible steps. Further,
the step variance is 〈〈dy2(t)〉〉 = dt [which can also be
written dy2(t) = dt], and the steps are independent, such that
〈〈dy(t) dy(t ′)〉〉 = 0 provided t �= t ′. Such a Wiener process

is often denoted by W (t), with the convention that W (0) = 0,
so that the probability density at time t is Gaussian with zero
mean and variance t :

fW (t)(x) = 1√
2πt

e−x2/2t . (B2)

In worldline path integrals, the paths correspond to Wiener
processes whose initial and terminal points are specified. Thus,
we will use y(τ ) here to denote a stochastic process with
Wiener increments, subject to the boundary conditions y(0) =
a and y(t) = c. The sojourn time (B1) for this process to spend
time past the boundary [i.e., the time such that y(τ ) � d] up to
total evolution time t has a probability density given explicitly
by the following expressions:

fTs (x) = [1 − e−2(d−a)(d−c)/t ]δ(x − 0+) + (2d − a − c)

√
2(t − x)

πt3x
e(c−a)2/2t−(2d−a−c)2/2(t−x)

+ 1

t

[
1 − (2d − a − c)2

t

]
e−2(d−a)(d−c)/t erfc

⎛
⎝
√

(2d − a − c)2x

2t(t − x)

⎞
⎠ (0 � x � t ; a � d; c � d), (B3)

fTs (x) =
√

2

π

(c − d)x + (d − a)(t − x)√
t3x(t − x)

e(c−a)2/2t−(c−d)2/2x−(d−a)2/2(t−x) (0 � x � t ; a � d � c)

+ 1

t

[
1 − (2d − a − c)2

t

]
e−2(d−a)(d−c)/t erfc

(
(c − d)(t − x) + (d − a) x√

2tx(t − x)

)
, (B4)

fTs (x) = [1 − e−2(a−d)(c−d)/t ]δ(t − x − 0+) + (a + c − 2d)

√
2x

πt3(t − x)
e(a−c)2/2t−(a+c−2d)2/2x

+ 1

t

[
1 − (a + c − 2d)2

t

]
e−2(a−d)(c−d)/t erfc

(√
(a + c − 2d)2(t − x)

2tx

)
(0 � x � t ; d � c; d � a), (B5)

fTs (x) =
√

2

π

(a − d)x + (d − c)(t − x)√
t3x(t − x)

e(a−c)2/2t−(a−d)2/2x−(d−c)2/2(t−x) (0 � x � t ; c � d � a)

+ 1

t

[
1 − (a + c − 2d)2

t

]
e−2(a−d)(c−d)/t erfc

(
(a − d)(t − x) + (d − c) x√

2tx(t − x)

)
. (B6)

Note that the δ functions in these expressions are necessary for the probability densities to be normalized to unity—the δ-function
coefficients give the probability for the process not to cross the boundary at all. Also, note that the last two expressions can be
inferred from the first two by reversing the signs of a, c, and d, and replacing x by t − x, exploiting a symmetry of the problem.
These expressions agree with those given in Ref. [59], though note that the expressions here contain an explicit overall factor of
[fW (t)(c − a)]−1 that is left implicit there.

A useful statistical average for the sojourn time is the moment-generating function, which has the form of the Laplace
transform of the probability density:

〈〈
e−sTs

〉〉 = ∫ t

0
dx e−sx fTs (x) =

〈〈
exp

[
−s

∫ t

0
dτ �[y(τ ) − d]

]〉〉
. (B7)

For the densities (B3)–(B6), the corresponding moment-generating functions may be written as follows:

〈〈
e−sTs

〉〉 = 1 − e−2(d−a)(d−c)/t (a � d; c � d)

+ e(c−a)2/2t

√
t(2d − a − c)√

2π s

∫ t

0
dτ

1√
τ 3(t − τ )3

e−(2d−a−c)2/2τ (1 − e−s(t−τ )), (B8)
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〈〈
e−sTs

〉〉 = e(c−a)2/2t

√
t√

2πs

∫ t

0
dτ

(d − a)(t − τ )[(c − d)2 − τ ] − (c − d)τ [(d − a)2 − (t − τ )]√
τ 5(t − τ )5

× e−(d−a)2/2(t−τ )−(c−d)2/2τ−sτ (a � d � c), (B9)

〈〈
e−sTs

〉〉 = [1 − e−2(a−d)(c−d)/t ] e−st (d � c; d � a)

+ e(a−c)2/2t

√
t(a + c − 2d)√

2π s

∫ t

0
dτ

1√
τ 3(t − τ )3

e−(a+c−2d)2/2τ (e−sτ − e−st ), (B10)

〈〈
e−sTs

〉〉 = e(a−c)2/2t

√
t√

2πs

∫ t

0
dτ

(d − c)(t − τ )[(a − d)2 − τ ] − (a − d)τ [(d − c)2 − (t − τ )]√
τ 5(t − τ )5

× e−(d−c)2/2(t−τ )−(a−d)2/2τ−sτ (c � d � a). (B11)

The expressions here match those given in Refs. [59] and [60], but again there is an explicit factor of [fW (t)(c − a)]−1 included
in the expressions here. Finally, the mean sojourn time is given more compactly by the expression

〈〈Ts[y(t); d]〉〉 = t

2
+ sgn(2d − a − c)

t

2
[e−2[(d−a)(d−c) �(d−a) �(d−c)+(a−d)(c−d) �(a−d) �(c−d)]/t − 1]

−
√

πt

8
(2d − a − c) e(c−a)2/2t erfc

( |d − a| + |d − c|√
2t

)
, (B12)

as is consistent with differentiating the moment-generating functions in Eqs. (B8)–(B11) or computing the appropriate integral
in terms of the probability density in Eqs. (B3)–(B6).

In deriving these expressions, the general approach is to solve the differential equation (A2) to obtain a solution for the
integral of the path average in Eq. (A3), as we did in Appendix A 1. This expression has the form of a Laplace transform in λ,
whose inverse yields the moment-generating functions (B8)–(B11). The remaining Laplace transform in s may then be inverted
to obtain the expressions (B3)–(B6) for the probability densities.
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