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Ionization potentials of superheavy elements No, Lr, and Rf and their ions
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We predict ionization potentials of superheavy elements No, Lr, and Rf and their ions using a relativistic hybrid
method that combines configuration interaction (CI) with the linearized coupled-cluster approach. Extensive study
of the completeness of the four-electron CI calculations for Hf and Rf was carried out. As a test of theoretical
accuracy, we also calculated ionization potential of Yb, Lu, Hf, and their ions, which are homologues of the
superheavy elements of this study.
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I. INTRODUCTION

The first ionization potential (IP) of atoms and ions, which is
defined as the minimal energy required to remove one electron,
is an important characteristic of an element that determines
its chemical properties. The IP values presented in tables
as experimental ones are usually obtained by extrapolating a
sequence of Rydberg levels to n → ∞ (n is principal quantum
number). This method has very high accuracy but requires
detailed knowledge of the spectra of Rydberg states; otherwise,
it cannot be used. For this reason IPs are known to high
accuracy for most of neutral atoms and for many ions, the
systems with very well studied spectra [1]. For other ions and
for superheavy elements (SHEs) the IPs are either not known
or known to very poor accuracy only.

The goal of the present work is to address both issues:
accurate predictions of IPs for the superheavy atoms and ions
and testing the accuracy of the IP predictions for the lighter
ions to asses the potential for significant improvement of the
IP calculations in ions with one to four valence electrons using
state-of-the art methodology.

We focus on the IPs of SHEs (nuclear charge Z > 100)
as the atomic calculations provide important information for
planning and interpreting the measurements for this multidis-
ciplinary area of research involving nuclear physics, atomic
physics, and chemistry (see, e.g., reviews [2–4]) The sequence
of No (Z = 102), Lr (Z = 103), and Rf (Z = 104) atoms is
particulary interesting since these have two, three, and four
valence electrons, respectively, and can be modeled with the
highest precision relativistic approaches that treat correlation
corrections to all orders of perturbation theory [5,6]. In
Ref. [7], we studied these systems but calculated ionization
potential only using the configuration interaction (CI) +
second-order many-body perturbation theory (MBPT) method.
In 2015, the first ionization potential of Lr was measured [8],

using efficient surface ion-source and a radioisotope detection
system coupled to a mass separator. This work opened the
way for the first IP measurements of transactinide SHEs on
an atom-at-a-time scale. The measurement of the first IP of
No is also in progress [9]. Therefore, it is timely to provide
accurate predictions for these superheavy atoms and their ions,
critically evaluated for their accuracy.

II. COMPUTATIONAL METHODS

Prediction of IPs involves the calculation of the ground-state
valence energies of the neutral atoms and ions. For monovalent
systems, the IP, i.e., the removal energy of the electron in
the ground state is generally calculated directly. For systems
with a few valence electrons, two calculations are generally
necessary, for the system of interest and the corresponding
ion with one electron removed. For example, determining the
first IP of divalent Yb I can be accomplished by calculating
its two-electron binding energy for the ground 6s2 1S0 state
and a removal energy of Yb II ion in its ground 6s 2S1/2

state. The difference of the two values gives the first IP
of Yb I. For systems with a few valence electrons, it is
important to ensure similar accuracy of these two calculations,
as the final IP is very sensitive to any inconsistencies in the
computations, both from omitted correlations and other effects
and from numerical aspects of both computations. As a result,
IPs present excellent benchmarks for tests of computational
methods.

We calculate the M-electron IPs of No I, No II, Lr I, Lr
II, Lr III, Rf I, Rf II, Rf III, and Rf IV, with the number of
valence electrons M = 1 to 4, which allowed us to calculate
the first IPs for all of the atoms and ions. As a test of theoretical
accuracy, we also calculate IPs for their homologues, Yb I, Yb
II, Lu I, Lu II, Lu III, Hf I, Hf II, Hf III, and Hf IV. Carrying out
these calculations allowed us to both estimate the uncertainties
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in our IP predictions, based on the comparisons of IPs of Yb,
Lu, and Hf with reference data, and to study the differences
between SHEs and their lighter homologues. For example,
large relativistic corrections in SHEs caused changes in the
ground state configurations for several systems that we have
studied.

The starting point for all of our calculations is the frozen
core Dirac-Fock (DF) V N−M potential [10], where N is the
total number of electrons. The initial Dirac-Fock procedure is
carried out for the closed-shell ion, with all valence electrons
removed; with M = 2 for Yb and No, M = 3 for Lu and Lr,
and M = 4 for Hf and Rf. The finite single-electron basis
set is constructed using the B-spline technique [11]. The
basis contains 35 B-splines of order 7 in a cavity of radius
Rmax = 60aB , where aB is Bohr’s radius. The Breit interaction
is included in the present calculations using the approach
developed in Refs. [12,13], while quantum electrodynamic
(QED) effects are accounted for by using the radiative potential
method developed in Ref. [14].

We used linearized coupled-cluster approach [5] (initially
developed for accurate treatment of the alkali-metal atoms)
to calculate the one-electron ground-state removal energies of
monovalent No II, Lr III, Rf IV, Yb II, Lu III, and Hf IV.
The details of the method, its applications, and accuracy have
been discussed in a review [5]. All other systems considered
here have at least two valence electrons, and are treated
with the different approach that combines a modified version
of the method described above with the CI method [6]. In
this method, referred to as CI+all-order, the coupled-cluster
calculation is used to construct an effective Hamiltonian that
incorporates core-core and core-valence correlations. Then,
the effective Hamiltonian is used in the very large-scale
CI calculations. Thus CI+all-order method treats correlation
corrections in all sectors, core-core, core-valence, and valence-
valence, to all orders. We note that only the valence CI
calculation needs to be done since core excitations are already
accounted for by the effective Hamiltonian. All sums in the
all-order terms evaluated for the construction of the effective
Hamiltonian are carried out including lmax = 6 partial waves.
We note that the same effective Hamiltonian is used for
the neutral systems and corresponding multivalent ions. For
example, the same effective Hamiltonian is used for four-
electron Rf I, trivalent Rf II, and divalent Rf III calculations,
since we use the same Dirac-Fock starting potential of Rf V
with all valence electrons removed. Using the same effective
Hamiltonian for all three of these systems brings a high
degree of consistency to the binding energy computations
and corresponding evaluation of the first ionization potentials,
removing some sources of error. The main issue in the com-
putation becomes the saturation of the valence CI space, i.e.,
ensuring that the uncertainty associated with omitting some
many-electron configurations in the CI is small and consistent
for all systems. This is particulary difficult to achieve for
four-electron Hf and Rf, where the number of configurations is
very large and simply increasing the number of configurations
without ensuring that dominant configurations are included
does not guarantee a high accuracy of the CI calculation. We
describe the construction of the Hf CI space and tests that
were carried out to ensure convergence of the CI in detail
below since efficient construction of configuration space for

CI presents an important problem crucial for the high final
accuracy of the predicted values.

In principle, the CI calculation should contain all possible
multielectron configurations that can be constructed from
single-electron basis set wave functions. However, this is
impractical even for two electrons since contributions of the
nlml′ configurations with large principle number n and m are
negligible. For two-electron systems, only configurations with
large n are excluded without the loss of accuracy. For systems
with larger numbers of electrons, further restrictions have to
be implemented since the problem of including all possible
configurations becomes intractable even for three electrons
with reasonable computational resources. Moreover, it is not
necessary to include all of the configurations. It is sufficient
to select those that provide non-negligible contributions to the
low-lying states of interest.

To construct such a set, we start with a few configurations,
for example 6s25d2,6s26p2, 6s5d3 for even states of Hf and
6s26p5d and 6s6p5d2 for odd states. Then, we make a list of
configurations that can be produced by replacing Ne number
of electrons from these configurations to No basis set orbitals.
Generally, it is good to select Ne = 2, which would allow
single and double excitations from the initial configurations.
This limited set is used for the initial computation and its results
are used to reorder the configurations by their weights. Then,
one more excitation is allowed from about 300 configurations
with highest weights, and two excitations are allowed from
about 30 most important configurations. The new resulting list
of configurations is then merged with the original one, ordered
by configuration weights. We find this procedure to be the most
efficient and fast construction of the configuration list for an
accurate large-scale CI calculation. We tested this procedure
in the cases of Hf and Rf. Results of six different calculations
of Hf energies with different number of configurations used
in the four-electron CI calculations are given in Table I. Nc is
the number of four-electrons relativistic configurations; Nd is
the corresponding number of determinants (antisymmetrized
many-electron basis states). Note that the size of the CI
matrix is equal to the number of determinants Nd . The
computational time is roughly proportional to N2

d . Runs 1
to 4 are different initial runs, with 2, 3, or 4 excitations
allowed from 6s25d2,6s26p2, 6s5d3, 6s26p5d, and 6s6p5d2

configurations. Additional restrictions are introduced on how
many electrons with the same principal and orbital quantum
numbers can be present in the configurations, with only two
allowed for orbitals with high principal quantum number
(for example, 15d). Two calculations were carried out with
two excitations, Run 1 allowed excitations to 47 orbitals,
15spd14f 10g, and Run 2 to 64 orbitals, 20spd16f 10g. Run
3 allowed up to three excitations to 24 orbitals, 10s9pdfg

and Run 4 allowed four excitations to 16 orbitals, 8spd7fg.
Run 5 and a final run combined the results of the previous
runs with some additional excitations from the dominant
configurations but used a different method of constructing
the dominant configuration lists. These were two best variants
of the calculations. We find similar results from Runs 1 to
4, indicating that it is important to both include a sufficient
number of higher orbitals and triple and higher excitations.
Results of two best calculations, Run 5 and the final run differ
insignificantly, with the differences being much smaller than
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TABLE I. Convergence of the calculated Hf energy levels (in cm−1) with the number of configuration functions. No is the number of
orbitals used in the construction of the configuration list used in the CI; Ne is the number of allowed excitations from the initial configurations.
Nc is the number of four-electrons relativistic configurations; Nd is the corresponding number of determinants. The experimental energies are
rounded values from the NIST ASD [1], the value for the ground state 5d26s2 being the sum of ionization potentials of Hf I–IV (see Table II).
The last five columns give the differences of Run 1–Run 5 values from the final results.

Configuration Expt. Run 1 Run 2 Run 3 Run 4 Run 5 Final Run 1 Run 2 Run 3 Run 4 Run 5

Nc 18 867 34 403 31 032 17 998 27 955 35 600 Differences with the “Final” run
Nd 516 419 872 452 1 941 424 1 278 986 1 159 894 1 505 340
No,Ne 47, 2 64, 2 24, 3 16, 4

5d26s2 3F 2 632000 621721 622158 621912 622077 622829 622943 1222 784 1030 866 113
5d26s2 3F 3 2357 2328 2338 2325 2318 2328 2334 6 −5 9 16 5
5d26s2 3F 4 4568 4636 4662 4604 4584 4597 4598 −38 −64 −6 14 1
5d26s2 3P 0 5522 6013 5949 5977 5670 5655 5600 −413 −348 −377 −69 −55
5d26s2 1D2 5639 6098 6024 6067 5871 5819 −279 −205 −247 −51

5d26s6p 3D1 14018 12995 13072 13131 13485 13621 13610 615 538 479 125 −12
5d26s6p 3F 2 14435 13300 13381 13419 13758 13924 13911 611 529 491 152 −13
5d26s6p 3F 3 14542 13481 13557 13618 13956 14123 14105 624 548 487 149 −18
5d26s6p 3D2 16163 15103 15187 15240 15590 15728 625 541 488 139

the uncertainty in the core-valence contributions. Our study
showed that we have sufficiently saturated the configuration
space for Hf, which is further confirmed by a similar accuracy
of our values for the first IP of Hf and trivalet Lr. A similar
study was conducted for Rf.

III. RESULTS AND ESTIMATES OF UNCERTAINTIES

The final values for the ground-state energies (EM ) of Yb,
Lu, Hf, No, Lr, and Rf neutral atoms and positive ions and
corresponding first IPs are given in Table II. The quantity
Icalc = EM−1 − EM gives the calculated IP, where M is the
number of valence electrons. The 1S0 closed-shell core energies
are set to zero. We note that wrong electronic configurations
and terms were listed for Hf III and Hf IV in [7], with also a
typo in the term labels listed for Hf I and Rf I ground states.

The calculated energies given in Table II were converted
from atomic units (a.u.) to cm−1 using the conversion factor
219474.6313702(17) from 2014 CODATA fundamental con-
stants [16].

The CI+all-order results are in better agreement with
experiment than the CI+MBPT values of [7], both owing to
a more complete inclusion of the correlation correction in
this approach and use of a larger-scale CI set constructed as
described above for Hf and Rf.

The column Iref of Table II lists the reference data for IPs.
Most of them are taken from the Atomic Spectra Database
of the National Institute of Standards and Technology (NIST
ASD [1]). One exception is the value for Lu III. Reference [1]
gives it as [169010(50)] cm−1, quoted from Sugar and
Kaufman [30]. The square brackets around the value denote
that it is semiempirical. This reflects the fact that Sugar and
Kaufman [30] have used interpolated values of the quantum
defect of the 5g levels along the Tm I isoelectronic sequence
to arrive at this value. However, in the same paper they noted
that Kaufman and Sugar [22] obtained a more accurate IP
value (quoted here in Table II) derived from the ns Rydberg

series, which does not involve any semiempirical adjustments.
Another exception is for the IP of Rf II, which was quoted
in Ref. [1] from Johnson et al. [20]. We replaced it here with
the theoretical value from Eliav et al. [15], which was a result
of a relativistic coupled-cluster calculation similar to ours, but
with no account for QED effects.

We estimated the uncertainties of calculations of Eliav
et al. by extensive comparisons of results published by that
group with available reference data for about 50 different
spectra. Only two of those results deviate substantially from
the reference data in Ref. [1], the IPs of Tl IV and Pr IV.
For Tl IV, the NIST ASD [1] quotes 412500(300) cm−1 from
the thesis of Gutmann [31]. A close examination shows that
the 5d9ns series used by Gutmann to derive the IP from the
Ritz quantum defect formulas is strongly perturbed at n = 7
by interaction with the 5d96d configuration (see percentage
compositions of Tl IV levels in Ref. [1]). In addition, positions
of three out of four 5d97s levels were revised by Wyart
et al. [32] by a few hundred cm−1. Thus the IP of Tl IV
should be revised, and its present value in ASD [1] should
be disregarded. For Pr IV, ASD quotes [314400(200)] cm−1

from Sugar and Reader [33]. This value disagrees with the
calculations of Eliav et al. [34], 311426 cm−1, by about
3000 cm−1. Sugar and Reader derived their semiempirical
value by assuming a constant value for the change in effective
principal quantum numbers �n∗ = 1.048(2) between the 7s

and 6s levels of all doubly and triply ionized lanthanide atoms.
Perhaps, this assumption does not hold for Pr IV, which might
be due to unusually strong interaction between the 4f 7s and
5d6p configurations, not accounted for in the analysis of the
Pr IV spectrum [35].

Excluding the Tl IV and Pr IV data from the comparison,
the root-of-mean-square (rms) deviation of the remaining 50
calculated values of Eliav et al. from high-quality reference
data was calculated separately for electron affinities of neutral
atoms and for IPs of atoms and ions. For the former, it is about
200 cm−1, and for the latter, it is about 500 cm−1. We adopted
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TABLE II. Calculated ground-state energies (EM ) of Yb, Lu, Hf, No, Lr, and Rf neutral atoms and positive ions. M is the number of
valence electrons. The difference Icalc = EM−1 − EM gives the IP. It is assumed that E0 = 0 and the corresponding state is the 1S0 state of the
closed-shell core, [4f 14] for Yb, Lu, and Hf, and [5f 14] for No, Lr, and Rf.

Atom/Ion Configuration Term M EM (a.u.) Icalc (cm−1) Iref
a (cm−1) Ref. �Icalc−ref (cm−1)

Yb I 6s2 1S0 2 −0.68050 50591 50443.20(10) [17] 148
Yb II 6s 2S1/2 1 −0.44999 98761 98231.75(20) [19] 530

Lu I 6s25d 2D3/2 3 −1.48409 43296 43762.60(10) [26] −467
Lu II 6s2 1S0 2 −1.28682 112795 [112000(3000)] [25,28]
Lu III 6s 2S1/2 1 −0.77289 169630 169049(10) [22] 581

Hf I 6s25d2 3F 2 4 −2.83969 54570 55047.9(1) [27] −478
Hf II 6s25d 2D3/2 3 −2.59105 117821 [120000(4000)]b [24]
Hf III 5d2 3F 2 2 −2.05422 181835 [187800(4000)] [21]
Hf IV 5d 2D3/2 1 −1.22572 269014 [269150(200)] [23] −136

No I 7s2 1S0 2 −0.72010 53738 [53600(600)] [29] 138
No II 7s 2S1/2 1 −0.47525 104305 [101000(3000)] [18]

Lr I 7s27p 2P o
1/2 3 −1.51676 39749 40000(650) [8] −251

Lr II 7s2 1S0 2 −1.33565 117289 [115000(3000)] [18]
Lr III 7s 2S1/2 1 −0.80124 175852 [173000(3000)] [18]

Rf I 7s26d2 3F 2 4 −2.79617 48579 (48500(500))b [15] 79
Rf II 7s26d 2D3/2 3 −2.57483 115736 (115900(500))b [15] −164
Rf III 7s2 1S0 2 −2.04750 192301 [192800(2400)] [20]
Rf IV 7s 2S1/2 1 −1.17131 257073 [255700(3200] [20]

aMost of the reference values are taken from the NIST ASD [1]. The original sources of these values are given in the next column. Uncertainty
in the unit of the last digit is given in parentheses after the value. Values enclosed in parentheses are purely theoretical; those in square brackets
are semiempirical (see text).
bUncertainty is estimated in the present work.

the latter value as an estimate of the average uncertainty of
their IP calculations for atoms and ions. The same estimate is
given here for the Rf I result from Ref. [15].

The IP of Hf II was given in ASD [1] as [120000] cm−1

without an uncertainty. This value was quoted from Meggers
and Scribner [24], who approximately estimated the IP based
on analogies between the level structure of Hf II and La II,
assuming that the e2D and e4F terms form series with a2D

and a4F . If these assumptions are valid, the accuracy of their
estimated IP should be around 4000 cm−1, which is a typical
uncertainty of IP of the second spectra derived from two-
member series.

To compare our results with compiled reference data, we
first note that semiempirical data on Lu II, Hf II, Hf III, No
II, Lr II, Lr III, Rf III, and Rf IV have very large uncertainties
ranging from 2400 cm−1 to 4000 cm−1, and they agree with our
calculations within these uncertainties. Excluding those low-
quality data from the comparison, we obtain the rms deviation
of our values from the reference data about 350 cm−1, with
no discernible correlation of the magnitude of deviations with
the core charge or with the magnitude of IP. Thus we estimate
the uncertainty of our calculated values as 350 cm−1 for all
spectra in Table II.

Our value for the IP of Lr I is in excellent agreement with
the 2015 experiment [8], the difference being smaller than
the experimental uncertainty. It also agrees with the results of
coupled cluster calculations presented in the same work [8].
Similar agreement is found with the result of calculation of
Ref. [36] for No I, 53 489 cm−1. We note that our estimate

of uncertainty of this value is the same as that for Ref. [15],
500 cm−1, as it was included in our statistical analysis of results
of Eliav and co-workers. This is lower that the uncertainty
stated in Ref. [36], 0.1 eV (800 cm−1). It is also lower than the
uncertainty of the reference value from Sugar [29], 600 cm−1.
Nevertheless, in our choice of reference data we give stronger
preference to experimental data, if they are available. The
semiempirical result of Ref. [29] for No I is essentially based
on experimental data on several actinide spectra and withstood
a reliability test of several decades.

In summary, we provided accurate predictions for IP of
superheavy No, Lr, Rf, and their ions. We expect these
values to be accurate to about 350 cm−1. Extensive study
of CI convergence was carried out for Hf and Rf to ensure
that uncertainty of the CI calculations is significantly below
the uncertainty in the treatment of core-valence correlation
corrections. We also demonstrated that CI+all-order method
is capable of predicting IP of ions with 1 to 4 valence electron to
a very good precision, which may be used to provide improved
recommended data.
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