
PHYSICAL REVIEW A 94, 042343 (2016)

Partial transpose criteria for symmetric states

F. Bohnet-Waldraff,1,2 D. Braun,1 and O. Giraud2

1Institut für Theoretische Physik, Universität Tübingen, 72076 Tübingen, Germany
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We express the positive-partial-transpose (PPT) separability criterion for symmetric states of multiqubit systems
in terms of matrix inequalities based on the recently introduced tensor representation for spin states. We construct
a matrix from the tensor representation of the state and show that it is similar to the partial transpose of the density
matrix written in the computational basis. Furthermore, the positivity of this matrix is equivalent to the positivity
of a correlation matrix constructed from tensor products of Pauli operators. This allows for a more transparent
experimental interpretation of the PPT criteria for an arbitrary spin-j state. The unitary matrices connecting
our matrix to the partial transpose of the state generalize the so-called magic basis that plays a central role in
Wootters’ explicit formula for the concurrence of a two-qubit system and the Bell bases used for the teleportation
of a one- or two-qubit state.
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I. INTRODUCTION

Quantum information provides a window on various re-
markable features of quantum mechanics, such as entangle-
ment [1] or teleportation [2]. A central resource in quantum
information processing is quantum entanglement. A quantum
state is said to be separable if it can be written as a convex
sum of product states, i.e., states that are tensor products of
states of all the subsystems; otherwise it is said to be entangled
[3]. The state of a bipartite quantum system is known to be
separable if and only if it remains positive under all positive
quantum maps. Looking at a subclass of positive quantum
channels, one obtains necessary conditions for separability,
which therefore signal bipartite entanglement if the condition
is violated. In this respect, a central role is played by
the “positive-partial-transposed criterion” (PPT), physically
obtained by time reversal of one of the two subsystems [4,5].
For systems with Hilbert-space dimensions at most 2 × 2
or 2 × 3, PPT is also sufficient for separability. For higher
dimensional systems, entangled states exist that have positive
partial transpose [6,7].

For multipartite systems, the situation is substantially more
complicated due to the possibility that only certain bipartitions
could be entangled [8]. For three qubits, six different stochastic
local operations and classical communication (SLOCC) -
equivalence classes exist (i.e., families of states that can be
transformed into each other with nonzero probability using
only stochastic local operations and classical communication),
including two of genuine multipartite entanglement [9,10].
For four qubits, there are already uncountably many SLOCC
classes [11]. Polynomial invariants (under SLOCC) have
been used to classify and even quantify the entanglement of
multiqudit states [12,13].

For symmetric states, that is, states belonging to the
vector space spanned by pure states invariant under particle
exchange, the situation is somewhat simpler, in the sense
that several entanglement criteria coincide [14]. Continuous
sets of SLOCC classes of pure states can be grouped into
SLOCC-invariant families based on the degeneracy structure
of the involved single particle states [15]. Notably, PPT is
equivalent to the positivity of a correlation matrix of moments

of local orthogonal observables [14]. PPT symmetric states of
two or three qubits are all separable [16], whereas for four, five,
or six qubits entangled symmetric PPT states exist [14,17].
PPT mixed symmetric states for N qubits were studied in
[18], where criteria for separability in terms of the ranks of
such states were found.

In a parallel line of research, the concept of classical spin
states and the notion of quantumness of a spin state was
introduced [19–22]. In analogy to quantum optics, a pure spin
state is considered (most) classical if the quantum fluctuations
of the spin vector are minimal, i.e., as small as allowed by
Heisenberg’s uncertainty principle. This selects uniquely the
SU(2)-coherent states as pure “classical spin states.” Their
convex hull is the set of all classical spin states, and the
distance of a given state ρ from this convex set is a measure of
its “quantumness.” In [20,21] the quantumness based on the
Hilbert-Schmidt distance and the Bures distance was analyzed,
and the “most quantum” state for these measures identified.
Classical states of a spin j are in fact formally identical to fully
separable symmetric states of N = 2j spins- 1

2 (see Sec. II C).
Statements about the classicality of spin-j states therefore
immediately translate to statements about the separability of
symmetric states of multiqubit systems.

In [22], it was noted that PPT for spin-1 states is equivalent
to the positivity of a matrix built from tensor entries of a
recently introduced tensor representation of the state [23]. The
aim of the present work is to generalize this result to arbitrary
spin and bipartition. We show that an appropriate arrangement
of the components of the tensor representing a spin-j state
leads to a matrix that is similar to the partial transposed
multiqubit state written in the computational basis. Hence,
positivity of this matrix is equivalent to PPT of the multiqubit
state. We explicitly construct the unitary transformations that
connect the two matrix representations, and show that they
generalize the “magic basis” that for two qubits allows one
to obtain an explicit form of the concurrence [24]. We also
point out the connection to correlation functions that were
introduced earlier for studying entanglement of symmetric
spin states [14,25,26]. After recalling the basic definitions
in Sec. II, we first consider the easier case of an equal
bipartition in Sec. III, then move on to the general case in
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Sec. IV. In Sec. V we discuss various consequences of our
results.

II. CLASSICAL SPIN STATES

A. Tensor representation

Let ρ be a spin-j state (mixed or pure), with j integer or
half-integer, and N = 2j . In [23] we introduced a tensorial
representation of ρ as

ρ = 1

2N
Xμ1μ2···μN

Sμ1μ2···μN
, (1)

where

Xμ1μ2···μN
= tr(ρ Sμ1μ2···μN

) (2)

is a real symmetric tensor (we use Einstein sum convention,
summing over repeated indices). The matrices Sμ1μ2···μN

can
be obtained from the expansion of the matrix corresponding
to the (j,0) representation of a Lorentz boost along a
four-vector. Alternately, they can be constructed from Pauli
matrices σμ, 0 � μ � 3, with σ0 the 2 × 2 identity matrix, as
the projection of the tensor product σμ1 ⊗ σμ2 ⊗ · · · ⊗ σμN

onto the subspace spanned by pure states invariant under
permutation [23]. The tensor representation is such that

3∑
a=1

Xaaμ3···μN
= X00μ3···μN

(3)

for arbitrary 0 � μ3, . . . ,μN � 3. The matrix S0···0 is the
(N + 1) × (N + 1) identity matrix, so that in particular, the
condition trρ = 1 is equivalent to X0···0 = 1.

B. Classical states

A spin-j coherent state |αj 〉 associated with the Bloch
vector n = (sin θ cos φ, sin θ sin φ, cos θ ) is defined as

|αj 〉 =
j∑

m=−j

√(
2j

j + m

)(
cos

θ

2

)j+m(
sin

θ

2
e−iφ

)j−m

|j,m〉,

(4)
where {|j,m〉; −j � m � j} is the usual angular momentum
basis. Such a state has tensor entries given by Xμ1μ2···μN

=
nμ1nμ2 · · · nμN

, with n = (1,n) [23]. For spin- 1
2 we denote

coherent states simply by |α〉. If |αj 〉 is written in the N -spins- 1
2

computational basis, we have the identities

|αj 〉 = |α〉 ⊗ |α〉 ⊗ · · · ⊗ |α〉, (5)

the tensor product of N copies of the spin- 1
2 coherent state,

and

nμ = 〈α|σμ|α〉. (6)

In [19] we introduced classical spin states as the convex hull of
coherent states, that is, states ρ such that there exists a positive
function P (α) defined on the unit sphere and verifying

ρ =
∫

dα P (α)|αj 〉〈αj |. (7)

In tensor terms, classical states are states ρ whose tensor
representation is given by

Xμ1μ2···μN
=

∫
S

dnP (n)nμ1nμ2 . . . nμN
, (8)

where S is the unit sphere of R3 and dn is the flat measure on
the sphere. Since the we are considering finite-dimensional
Hilbert spaces, Caratheodory’s theorem ensures that the
integral in (8) can be replaced by a finite sum, so that there
exist weights wi � 0 and vectors n(i) = (1,n(i)) such that

Xμ1μ2...μN
=

∑
i

win
(i)
μ1

n(i)
μ2

· · · n(i)
μN

. (9)

C. Classicality and separability

A spin-j state can be seen as the projection of the state of
N spins- 1

2 onto the vector space S spanned by pure symmetric
states. We call a mixed state ρ symmetric if it is equal to its
projection onto S. If a convex combination of pure states ρ =∑

wi |vi〉〈vi |, with |vi〉 pure states and wi � 0, is symmetric,
then necessarily all |vi〉 belong to S. Indeed, let S⊥ be the
vector space orthogonal to S. Then for any vector |u〉 ∈ S⊥ the
symmetry of ρ implies that 〈u|ρ|u〉 = 0, thus

∑
wi |〈u|vi〉|2 =

0. Positivity of the wi then implies that 〈u|vi〉 = 0, and thus
|vi〉 ∈ (S⊥)⊥ = S.

Classical spin-j states can thus be seen as separable fully
symmetric states of 2j spin- 1

2 states, and vice versa, via the
following theorem:

Theorem 1. A symmetric state is (fully) separable if and
only if there exists a P representation for which the P function
is positive on the two sphere. In other words, classical states
are identified with fully separable symmetric states.

This theorem was proved many times in many guises (see,
e.g., [27], p. 4 or [28]). For completeness we briefly give a
proof of this fact.

Proof. If ρ is fully separable, then it is possible to write
ρ = ∑

i λiρ
(i)
1 ⊗ · · · ⊗ ρ

(i)
N , and then to decompose each ρ

(i)
k

in its eigenvector basis, so that

ρ =
∑

i

μi

∣∣v(i)
1

〉〈
v

(i)
1

∣∣ ⊗ · · · ⊗ ∣∣v(i)
N

〉〈
v

(i)
N

∣∣
=

∑
i

μi

∣∣v(i)
1 · · · v(i)

N

〉〈
v

(i)
1 · · · v(i)

N

∣∣, (10)

with μi � 0. Since ρ is symmetric one has |v(i)
1 · · · v(i)

N 〉 ∈ S.
The symmetry imposes that |v(i)

1 〉 = · · · = |v(i)
N 〉. As spin- 1

2
states are all coherent states and from Eq. (5) the tensor product
of identical spin- 1

2 coherent states yields a spin-j coherent
state, this completes the proof. The converse is obvious, since
inserting (5) into (7) shows that any classical state is separable
and symmetric. �

Seeing a spin-j state as a multipartite state allows one to
define partial operations on subsystems, such as partial tracing
or partial transposition. An important property of the tensor
representation (1) is the following: the partial trace of a state ρ

with tensor Xμ1μ2···μN
, taken over N − k qubits, is a symmetric

k-qubit state with tensor coefficients Xμ1···μk0···0 [23]. This will
allow us to reexpress various separability criteria in terms of
the Xμ1μ2···μN

.
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D. Separability criteria

Using the correspondence outlined above, classicality
criteria can be obtained from known separability criteria, such
as the PPT criterion. Let us consider a bipartite quantum state
ρ ∈ H1 ⊗ H2, with H1,H2 two finite-dimensional Hilbert
spaces of dimension d1 and d2, respectively. The partial
transpose of ρ with respect to subsystem 2 is defined by

(ρPT)i1i2,j1j2 = ρi1j2,j1i2 , 0 � ik,jk � dk − 1. (11)

Peres [4] showed that positivity of the partial transpose matrix
ρPT is a necessary condition for separability. It was conjectured
[4] and later proved [5] that PPT is a necessary and sufficient
condition in the case where dA = 2 and dB = 2 or 3.

In the case of classical spin-j states seen as fully separable
symmetric states of N = 2j spins- 1

2 , PPT yields a necessary
criterion for any bipartition of the N qubits into r and N − r

qubits. As the state is symmetric this criterion only depends
on the number r of the qubits and not on which qubits are
chosen. We denote by PT(N − r : r) the partial transpose
matrix associated with such a bipartition, where transposition
only affects the Hilbert space associated with the last r qubits.
For instance, for a five-qubit separable state ρ1 ⊗ ρ2 ⊗ ρ3 ⊗
ρ4 ⊗ ρ5 we have PT(3 : 2) = ρ1 ⊗ ρ2 ⊗ ρ3 ⊗ ρT

4 ⊗ ρT
5 . As

PT(r : N − r) is the transpose of the matrix PT(N − r : r)
we shall only consider the case r � j .

The Peres separability criterion [4] gives as a necessary
classicality criterion

PT(N − r : r) � 0, 1 � r � N/2. (12)

For states of two or three qubits, the Peres-Horodecki criterion
[5] yields a necessary and sufficient separability condition that
reads

PT(N − 1 : 1) � 0. (13)

Equivalently, with j = N/2, this gives a necessary and
sufficient classicality condition for spin-j states with j = 1
or j = 3/2.

III. PPT AND TENSOR REPRESENTATION

A. Matrix T for equal bipartition

In this section we reformulate the classicality criterion (12)
for integer j and equal bipartition (j : j ) in terms of tensor
entries Xμ1μ2···μN

. We start by introducing the 4j × 4j matrix

Tμ,ν = Xμ1···μj ν1···νj
, (14)

where matrix indices are vectors μ = (μ1 · · · μj ) and ν =
(ν1 · · · νj ), 0 � μi, νi � 3. [In this paper we use commas to
separate the two (multi-)indices of a square matrix, while
tensor indices have no commas.] According to the definition
of Xμ1···μN

, the matrix elements of T can all be obtained
as expectation values of tensor products of Pauli operators.
The matrix T is real and symmetric. It turns out, as we will
show, that ρPT = PT(j : j ) is similar to a multiple of T , that
is, there exists a unitary matrix R and a (positive) constant
λ such that R†ρPTR = λT . In particular, this implies that
for the equal bipartition (j : j ), the positivity of the partial
transpose ρPT is equivalent to the positivity of the matrix T ,
so that the corresponding necessary classicality criterion can

be expressed as T � 0. We first examine the cases of small j

and then move on to the general situation.

B. Spin-1 case

In the spin-1 case the matrix T in (14) coincides with the
4 × 4 matrix X, since the multi-indices μ and ν reduce to
single indices μ and ν, 0 � μ, ν � 3. Let ρPT be the partial
transpose of the spin-1 state ρ written in the canonical basis
of two qubits; it can be expressed as in (11). We want to find
a 4 × 4 unitary matrix R with the property that

(R†)μ,i1i2ρi1j2,j1i2Rj1j2,ν = λXμ,ν (15)

with 0 � i1,i2, j1,j2 � 1 and 0 � μ, ν � 3. Suppose that ρ

is a coherent state. Then the left-hand side of Eq. (15) reads

(R†)μ,i1i2 (|α〉〈α|)i1,j1 (|α〉〈α|)j2,i2Rj1j2,ν , (16)

which can be rewritten as

〈α|i2 (R†)μ,i1i2 |α〉i1 〈α|j1Rj1j2,ν |α〉j2 , (17)

while from Eq. (6) the tensor coordinates of ρ can be
expressed as Xμ,ν = 〈α|σμ|α〉〈α|σ ν |α〉. One easily checks
that a possible choice of R that complies with Eq. (15) is

Ri1i2,μ = 1√
2
σ

μ

i1,i2
(18)

together with λ = 1/2. Since R and λ chosen are both
independent of |α〉, they will in fact fulfill Eq. (15) for any
coherent state. As any density matrix ρ can be expanded as a
linear combination of coherent states [as in (7), but possibly
with a negative P function], R and λ will be suited for any
density matrix. Moreover, the matrix R is unitary since

(R†R)μ,ν = 1
2 tr{σμσ ν} = δμ,ν, (19)

with δμ,ν the Kronecker symbol. Thus, (R†ρPTR)μ,ν = λXμ,ν ,
so that the PPT criterion PT(1 : 1) � 0 is equivalent to
positivity of the 4 × 4 matrix (Xμ,ν)0�μ,ν�3.

C. Spin-2 case

For spin 2, the matrix T is indexed by multi-indices (μ1μ2)
and (ν1ν2), while the matrix ρ expressed in the computational
basis of qubits is indexed by multi-indices (i1i2i3i4) and
(j1j2j3j4), with again ik,jk ∈ {0,1} and μk,νk ∈ {0,1,2,3}. We
are looking for a unitary matrix R and a constant λ such that
R†ρPTR = λT , with ρPT the partial transpose taken over the
last two qubits. As before, we can first consider the case where
ρ is a coherent state. Explicitly, the analog of Eq. (16) for the
components of R†ρPTR reads

(R†)μ1μ2,i1i2i3i4 |α〉〈α|i1,j1 |α〉〈α|i2,j2

× |α〉〈α|j3,i3 |α〉〈α|j4,i4Rj1j2j3j4,ν1ν2 , (20)

while the analog of (17) reads

〈α|i3〈α|i4 (R†)μ1μ2,i1i2i3i4 |α〉i1 |α〉i2

× 〈α|j1〈α|j2Rj1j2j3j4,ν1ν2 |α〉j3 |α〉j4 . (21)

The matrix T can now be written as

〈α|σμ1 |α〉〈α|σμ2 |α〉〈α|σ ν1 |α〉〈α|σ ν2 |α〉. (22)
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A choice of R and λ that fulfills the required relation between
(21) and (22) is

Ri1i2i3i4,μ1μ2 = 1
2σ

μ1
i1,i3

σ
μ2
i2,i4

. (23)

The corresponding value of λ is then λ = 1/4. Note that
other choices are possible for R: a different solution would
be 1

2σ
μ1
i1,i4

σ
μ2
i2,i3

. Since R and λ are independent of |α〉, they are
valid for any coherent state and thus for any density matrix ρ.
Unitarity of the matrix R comes from the identity

(R†R)μ,ν = 1
4 tr{σμ1σ ν1}tr{σμ2σ ν2} = δμ1ν1δμ2ν2 , (24)

with μ = (μ1μ2), ν = (ν1ν2). Therefore, the necessary PPT
criterion (12) for spin-2 states can be expressed as T � 0,
where T is the 16 × 16 matrix defined by Tμ,ν = Xμ1μ2ν1ν2 .

D. General case

The above construction easily generalizes to higher integer
spin sizes. For spin j the 4j × 4j matrix R reads

Ri,μ = 1

2j/2

j∏
k=1

σ
μk

ik,ik+j
, (25)

where i = (i1i2 · · · iN ) and μ = (μ1μ2 · · ·μj ), with 0 � μk �
3 and 0 � ik � 1. Note that each Pauli matrix is indexed by one
index associated with a nontransposed qubit and one associated
with a transposed qubit. Any such pairing would yield a valid
R. It is easy to check that matrices R are unitary and such that
R†ρPTR = λT , with ρPT = PT(j : j ) and λ = 1/2j . Thus, the
corresponding PPT criterion yields the classicality criterion
T � 0.

IV. PPT FOR ANY BIPARTITION

A. T (r) matrices

The results of Sec. III can be further generalized to uneven
bipartitions of symmetric states. In this section we show that
matrices PT(N − r : r) are similar to a multiple of matrices
T (r) defined by

T
(r)
μ i,ν i′ = Xτ1···τN−2rμ1···μrν1···νr

N−2r∏
k=1

σ
τk

ik,i
′
k
, (26)

where μ = (μ1 · · ·μr ), ν = (ν1 · · · νr ), i = (i1 · · · iN−2r ), and
i′ = (i ′1 · · · i ′N−2r ) are multi-indices with 0 � μk � 3 and 0 �
ik, i ′k � 1, and summation over the τk ∈ {0,1,2,3} is implicit.
In this definition, indices ν are associated with the transposed
subspace, while indices τ and μ are associated with the
nontransposed one. Matrices T (r) are of size 4j × 4j . In the
case of equal bipartition r = j , Eq. (26) reduces to Eq. (14).

B. Spin 3/2

Let us start by considering the smallest-size case. Let ρ be a
spin-3/2 state and ρPT = PT(2 : 1), its transpose with respect
to the third qubit. The matrix T (1) in Eq. (26) is given by

T
(1)
μ i,ν i ′ = Xτμνσ

τ
i,i ′ . (27)

Building on the results of the previous section, it is easy to
construct a unitary matrix R such that R†ρPTR = λT (r). As

before we consider the case where ρ is a coherent state. In
such a case, R†ρPTR reduces to

(R†)μ i,a1a2a3 |α〉〈α|a1,b1

× |α〉〈α|a2,b2 |α〉〈α|b3,a3Rb1b2b3,ν i ′ , (28)

with 0 � ak, bk � 1, or equivalently

〈α|a3 (R†)μ i,a1a2a3 |α〉a1 |α〉a2〈α|b1〈α|b2Rb1b2b3,ν i ′ |α〉b3 , (29)

while the matrix T (1) defined in (27) can be written for this
coherent state |α〉 as

〈α|σμ|α〉〈α|σ ν |α〉(2|α〉〈α|)i,i ′ (30)

(we used the fact that 1
2nτσ

τ = |α〉〈α|). Identifying Eqs. (29)
and (30) up to a constant we see that a unitary R can be defined,
for instance, as

Ra1a2a3,μ i = 1√
2
δa1,iσ

μ
a2,a3

. (31)

In fact, the indices a2,a3 of the matrix σμ in (31) have to pair
any index associated with the nontransposed subspace with
an index associated with the transposed subspace, while the
delta function pairs the remaining indices in (29), leading to
the projector |α〉〈α| in (30). Unitarity of R is easily verified,
since

(R†R)μ i,ν i ′ = 1

2
tr{σμσ ν}

∑
i2

δi,i2δi2,i ′ = δμ,νδi,i ′ . (32)

As in the equal bipartition case, linearity ensures that R defined
in (31) together with λ = 1/4 is such that R†ρPTR = λT (r).

C. General R matrices

The above case contains the essence of the general proof
and generalizes to arbitrary values of j and r . In order to
recover matrix T (r) from PT(N − r : r), we have to construct
a matrix R built out of products of σμ matrices and Kronecker
deltas, such that the Pauli matrices pair r indices among those
associated with the nontransposed subspace together with
all r indices associated with the transposed subspace. The
remaining N − 2r indices, corresponding to the remaining
part of the nontransposed subspace, go into Kronecker deltas.
More precisely, we choose these latter indices to be the N − 2r

first ones, and to pair indices k with k + r for N − 2r + 1 �
k � N − r . We thus define matrices R(r) by

R(r)
a,μ i = 1

2r/2

N−2r∏
k=1

δak,ik

r∏
k=1

σμk

aN−2r+k ,aN−r+k
, (33)

with a = (a1 · · · aN ), μ = (μ1 · · · μr ), and i = (i1 · · · iN−2r ),
with μk ∈ {0,1,2,3} and ak,ik ∈ {0,1}. One can check, as
above, that R(r) are unitary and such that

(R(r))†ρPTR(r) = 1

2N−r
T (r) (34)

with ρPT = PT(N − r : r). Unitarity trivially comes from the
fact that indices of the Pauli matrices and the Kronecker
deltas in (33) are all distinct, so that the identity (19) can be
applied to each pair of matrices. To show (34), we first write
ρPT in the computational basis with the help of the tensor
representation. As explained in Sec. II, the expansion (1) can
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be obtained by projecting tensor products of Pauli matrices
onto the symmetric subspace. In the computational basis of N

qubits, ρ can thus be expressed as

ρ = 1

2N
Xμ1μ2···μN

σμ1 ⊗ σμ2 ⊗ · · · ⊗ σμN , (35)

so that ρPT reads

ρPT
a,b = 1

2N
Xτ1···τN

N−r∏
k=1

σ
τk

ak,bk

N∏
k=N−r+1

σ
τk

bk,ak
(36)

with a = (a1 · · · aN ) and b = (b1 · · · bN ), ak,bk ∈ {0,1}. The
left-hand side of (34) has components

[(R(r))†ρPTR(r)]μ i,ν i′ = (R(r)
a,μ i)

∗ρPT
a,bR

(r)
b,ν i′ , (37)

where ∗ denotes complex conjugation. Using (33) and (36),
this can be expressed as

1

2r+N
Xτ1···τN

N−2r∏
k=1

δak,ik

N−r∏
k=N−2r+1

σμk−N+2r

ak+r ,ak

N−r∏
k=1

σ
τk

ak,bk

×
N∏

k=N−r+1

σ
τk

bk,ak

N−2r∏
k=1

δbk,i
′
k

N−r∏
k=N−2r+1

σ
νk−N+2r

bk,bk+r
. (38)

The above product contains terms

δak,ik σ
τk

ak,bk
δbk,i

′
k
= σ

τk

ik,i
′
k

(39)

for 1 � k � N − 2r , terms

σμk−N+2r

ak+r ,ak
σ

τk

ak,bk
σ

νk−N+2r

bk,bk+r
= (σμk−N+2r σ τkσ νk−N+2r )ak+r ,bk+r

(40)

for N − 2r + 1 � k � N − r , and terms

σ
τk

bk,ak
(41)

for N − r + 1 � k � N (recall that we are considering a case
where N − r � r). Taking the product of all terms (39)–(41)

and summing over the remaining ak and bk (those with N −
r + 1 � k � N ), (38) becomes

Xτ1···τN

2r+N

N−2r∏
k=1

σ
τk

ik,i
′
k

r∏
k=1

tr{σμkσ τk+N−2r σ νkσ τk+N−r }. (42)

As can be checked explicitly, one has the identity

1
4yτ,τ ′ tr{σμσ τσ νσ τ ′ } = yμ,ν (43)

for any real symmetric matrix (yμ,ν)0�μ,ν�3 such that∑3
a=1 yaa = y00. Applying this identity to the summation

over pairs of indices (τk+N−2r ,τk+N−r ) for 1 � k � r in (42)
[and using property (3) of the tensor], we recover the term
Xτ1···τN−2rμ1···μrν1···νr

of (26). The product of terms (39) yields
the Pauli matrix terms in (26). The overall remaining factor is
λ = 1/2N−r . This proves Eq. (34).

V. SOME CONSEQUENCES

A. PPT criteria

As mentioned in Sec. II D, the PPT separability criterion
provides necessary, and in some instances sufficient, clas-
sicality criteria. The previous sections have shown that the
partial transpose takes a very simple form for symmetric states
expressed as in (1). Thus each PPT criterion is equivalent to a
linear matrix inequality T (r) � 0. In the simplest case of spin-1
states, T (r) is given by Eq. (14), so that the PPT criterion
PT(1 : 1) � 0 is equivalent to X � 0 for the 4 × 4 matrix
(Xμ,ν)0�μ,ν�3. This was already observed in [22], where the
same relation between ρPT and X was obtained. Our present
results generalize this relation: For integer spin and equal
bipartition r = j , the PT(j : j ) criterion is expressed in a very
transparent way in our tensor language, as the positivity of the
matrix (Tμ,ν) indexed by j tuples of indices and defined in
(14). More generally, each PPT criterion yields a classicality
criterion as the positivity of a matrix T (r).

In the case of spin- 3
2 , using the results of Sec. IV, a

necessary and sufficient classicality criterion can be expressed
as T (1) � 0, where T (1) is defined in (27). In terms of the tensor
entries, this criterion reads

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

X000 + X003 X001 − iX002 X001 + X013 X011 − iX012 X002 + X023 X012 − iX022 X003 + X033 X013 − iX023

X001 + iX002 X000 − X003 X011 + iX012 X001 − X013 X012 + iX022 X002 − X023 X013 + iX023 X003 − X033

X001 + X013 X011 − iX012 X011 + X113 X111 − iX112 X012 + X123 X112 − iX122 X013 + X133 X113 − iX123

X011 + iX012 X001 − X013 X111 + iX112 X011 − X113 X112 + iX122 X012 − X123 X113 + iX123 X013 − X133

X002 + X023 X012 − iX022 X012 + X123 X112 − iX122 X022 + X223 X122 − iX222 X023 + X233 X123 − iX223

X012 + iX022 X002 − X023 X112 + iX122 X012 − X123 X122 + iX222 X022 − X223 X123 + iX223 X023 − X233

X003 + X033 X013 − iX023 X013 + X133 X113 − iX123 X023 + X233 X123 − iX223 X033 + X333 X133 − iX233

X013 + iX023 X003 − X033 X113 + iX123 X013 − X133 X123 + iX223 X023 − X233 X133 + iX233 X033 − X333

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� 0.

(44)

This matrix inequality can in turn be expressed as positivity
of a 16 × 16 real symmetric matrix, whose entries are of the
form ±Xμ1μ2μ3 , i.e., ±〈σμ1 ⊗ σμ2 ⊗ σμ3〉, which provides a
necessary and sufficient classicality condition as positivity of
a matrix of observables.

B. Correlation matrices

Let X be the tensor representation (2) of a spin-j state ρ

with j integer. We define correlation matrices associated with
the tensor X as the 4r × 4r matrices (1 � r � j )

C(r)
μr ,νr

= Xμrνr 0N−2r
− Xμr 0N−r

Xνr 0N−r
, (45)
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where μr = (μ1 · · · μr ), νr = (ν1 · · · νr ), and 0k is the zero
vector of length k. Since the first line and column of C(r) are
indexed by 0r , and X0···0 = 1, it takes the form

C(r) =

⎛
⎜⎜⎜⎜⎝

0 0 · · · 0

0
... S(r)

0

⎞
⎟⎟⎟⎟⎠, (46)

where the matrix S(r) is of size (4r − 1) × (4r − 1). In terms
of the entries of the matrix T defined in (14), S(r) can be
expressed as

S(r)
μr ,νr

= Tμr 0j−r ,νr 0j−r
− Tμr 0j−r ,0j

Tνr 0j−r ,0j
. (47)

The matrix S(r) can thus be interpreted as the Schur com-
plement of the matrix (Tμr 0j−r ,νr 0j−r

)μr ,νr
with respect to the

upper left entry T0j ,0j
= 1. The matrix (Tμr 0j−r ,νr 0j−r

)μr ,νr
is

the restriction of T to its 4r first lines and columns. This
4r × 4r subblock coincides with the matrix T associated with
the spin-r state ρr obtained from ρ by tracing out N − 2r

qubits. Since positivity of a matrix is equivalent to positivity
of its Schur complement (if the part complemented is itself
positive), one has that the upper left 4r × 4r block of T is
positive if and only if C(r) � 0. Together with the results
of the previous sections, this shows that the PPT criterion
PT(j : j ) � 0 applied to ρ is equivalent to positivity of the
correlation matrix C(j ), and more generally the PPT criterion
PT(r : r) � 0 applied to the reduced density matrix ρr is
equivalent to positivity of the correlation matrix C(r).

If ρ is a classical state, then all its reduced density matrices
ρr are classical as well. The PPT criterion thus leads to a
sequence of necessary classicality conditions C(r) � 0. These
conditions are those obtained by different means in [25], where
the so-called “intergroup covariance matrices” coincide with
our matrices C(r). This also allows us to recover results from
[14] that the partial transpose criterion for partition into two
equally sized subsystems is equivalent to positivity of the
correlation matrix of local orthogonal observables.

From the above considerations, we see that all these
necessary conditions are encompassed in a compact way in the
single condition T � 0. This latter condition is not sufficient,
nor is the condition that all partial transposes be positive. For
instance, there exist symmetric four-qubit entangled states for
which all partial transposes are positive [17].

C. Teleportation and generalized magic bases

The matrix Ri,μ = 1√
2
σ

μ

i1,i2
with i = (i1,i2) defined in (18)

can be written out explicitly in the computational basis as

R = 1√
2

⎛
⎜⎜⎜⎝

1 0 0 1

0 1 −i 0

0 1 i 0

1 0 0 −1

⎞
⎟⎟⎟⎠. (48)

The μth column of R contains the elements of the Pauli matrix
σμ (up to normalization). These are equal, up to a phase
factor, to the two-qubit Bell states. More precisely, the Bell
states are the columns of the matrix R̃i1i2,μ = 1√

2
σ̃

μ

i1,i2
, where

σ̃ μ = σμ for μ 
= 2 and σ̃ μ = iσμ for μ = 2. They are also
proportional to the magic basis introduced in [29]: namely,
the three last columns of R have to be multiplied by −i in
order to recover the magic basis of [29]. We recall that, among
other properties, the magic basis is such that when a state |ψ〉
is written in this basis, with some coefficients αi, 1 � i � 4,
then its concurrence is given by C(|ψ〉) = |∑4

i=1 α2
i |.

Bell states are used in the quantum teleportation protocol
of a single qubit [2]. If Alice and Bob share a Bell state, it is
possible for them to teleport a one-qubit state by exchanging
only two classical bits. In a similar spirit, four-qubit general-
ized Bell states |gi〉, 1 � i � 16, were introduced in [30]: if
Alice and Bob share one of these generalized Bell states, they
are able to teleport a two-qubit pure state by exchanging four
classical bits (the protocol of [30] is essentially the same as in
the one-qubit case). It turns out that the columns of our spin-2
matrix R, defined explicitly in (23), are equal, up to a phase
factor, to the 16 states |gi〉. More precisely, the |gi〉 of [30] are
exactly the columns of the matrix

R̃i1i2i3i4,μ1μ2 = 1
2 σ̃

μ1
i1,i3

σ̃
μ2
i2,i4

(49)

(again the σ̃ are such that σ̃ μ = iσμ for μ = 2, and σμ other-
wise). The generalized Bell basis also provides a generalization
of the magic basis to higher qubits. The two-qubit magic basis
|ei〉, 1 � i � 16, in [30] is constructed by multiplying the |gi〉
by appropriate phases. A state expressed in this basis as |ψ〉 =∑16

i=1 αi |ei〉 is then such that the generalized concurrence [31]
is given by C(|ψ〉) = |∑16

i=1 α2
i |. We can recover the magic

basis |ei〉 just by multiplying by i the eight columns of R̃

indexed by pairs (μ1,μ2) such that |μ1 − μ2| = 1. Our formula
thus provides a very compact form both for the Bell states
appearing in the two-qubit teleportation protocol and for the
generalized magic basis of [30].

It is clear from Eq. (49), and from the general form (25)
of matrices R, that this approach can be straightforwardly
generalized to an arbitrary number of qubits. The N -qubit
teleportation protocol proposed in [30] was obtained from the
action of products of the form (σ z)α(σx)β , with α,β ∈ {0,1}, on
a state

∑N−1
j=0 |j 〉|j 〉. Using the fact that σ zσ x = iσ y , one can

check that the generalized Bell basis coincides, up to phases,
with the columns of our matrices. In particular, this means that
R can also be interpreted as the unitary matrix that Alice has to
apply on her side to make a Bell measurement in the N -qubit
teleportation protocol.

VI. CONCLUSION

The present results provide a unifying framework for
various concepts dealing with symmetric states. It allows us to
reformulate several known results in a much simpler way. In
the language of the tensor representation, criteria such as the
PPT separability criterion can be expressed in a much more
transparent way by positivity of the matrix T . In particular, this
allows one to directly relate the partial transpose to correlations
of observables, which provides a physical interpretation of the
partial transpose beyond time reversal. Note that the matrix R

in (48) was used in [32] to generate local unitary invariants
in terms of partial transpose and realignments. It may be
possible to extend our expressions to that setting as well.
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Furthermore, such representations may also be generalized to
qudit symmetric states, that is, symmetric tensor products of
d-level systems. However, the symmetric sectors are then less
easy to describe and their description would require additional
work.
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