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For a fixed average energy, the simultaneous estimation of multiple phases can provide a better total precision
than estimating them individually. We show this for a multimode interferometer with a phase in each mode, using
Gaussian inputs and passive elements, by calculating the covariance matrix. The quantum Cramér-Rao bound
provides a lower bound to the covariance matrix via the quantum Fisher information matrix, whose elements we
derive to be the covariances of the photon numbers across the modes. We prove that this bound can be saturated.
In spite of the Gaussian nature of the problem, the calculation of non-Gaussian integrals is required, which we
accomplish analytically. We find our simultaneous strategy to yield no more than a factor-of-2 improvement in
total precision, possibly because of a fundamental performance limitation of Gaussian states. Our work shows
that no modal entanglement is necessary for simultaneous quantum-enhanced estimation of multiple phases.
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I. INTRODUCTION

Parameter estimation with quantum-enhanced precision has
the potential to provide substantial technological advances
as well as deep insights into the fundamental workings of
Nature. Originating in the quest for the increased sensitivity
requirements for detecting gravitational waves using laser
interferometers with squeezed light [1,2], the field now en-
compasses a variety of scenarios studying the quantum limits
of sensing [3–6]. Relative phase estimation in a two-mode
interferometer is by far the most common, although some
attention has also been cast to the simultaneous estimation of
multiple parameters at the quantum limit [7–13].

A fundamental bound on the precision of an estimation
is the quantum limit on the variance of the estimator. This
is set by the quantum Cramér-Rao bound (QCRB) [14] and
valuable insights into the working of quantum mechanics have
been obtained by studying it in the multiparameter scenario
[15–17]. In addition to this fundamental understanding, several
scenarios of practical and technological interest are intrin-
sically multiparameter estimation problems, leading to new
methodologies of obtaining quantum enhancements arising
purely from the multidimensional nature of the problem. This
includes magnetic-field sensing in three dimensions [18] and
imaging [10,19–21]. These proposed schemes use a fixed
number of photons in multimode entangled states, which are
not easy to prepare for increasing photon numbers.

Concerning Gaussian states and their role in estimation
theory, general expressions have been derived which are useful
for evaluating the quantum Fisher information matrix [22–27]
but the explicit expressions found in these works are limited
to two-parameter estimation problems. Reference [28] utilizes
the quantum Ziv-Zakai bound [29] to numerically study the
precision limit of up to 16-mode squeezed vacuum states
and find in their example an improvement with simultaneous
strategies without quantifying the factor of the improvement.

In this work we show that for an arbitrary number of phases
and a fixed average amount of energy, simultaneous estimation
(Fig. 1) of a fixed number of phase parameters is better
than individual estimation (Fig. 2). We do so by obtaining
an analytical expression for the quantum Fisher information

matrix (QFIM) as a function of the number of phases and the
total average energy. In spite of the improvement found in
the simultaneous case, we observe that under assumptions of
equal magnitude squeezing in each mode and a multimode
interferometer which is an orthogonal transform presents
at most a factor-of-2 improvement, pointing to potential
limitations of Gaussian states in multiparameter quantum
metrology.

The QFIM bounds the covariance matrix for multiple phase
estimation, and our results are derived for pure Gaussian
states in terms of the Husimi Q function. Gaussian states
are easier to prepare in practice than fixed particle number
states, and while couched in the language of optical systems,
our work also applies to bosonic degrees of freedom of matter
systems. We show that our bounds are attainable, and discuss
the implications of the factor-of-2 improvement.

Our work may thus improve the performance of optical
techniques in quantum imaging [30] and possibly gravitational
wave astronomy [31], as well as optomechanical systems
employed in fundamental studies [32,33]. Some of these have
been studied experimentally in quantum optics, where noise
reduction has been observed using correlated photon pairs [34]
and multimode squeezed light [35]. More interesting is the con-
stant amount of improvement possible, unlike the fixed peak
energy scenario [10] where the improvement scales linearly
with the number of parameters. While the limited quantum
information processing capabilities of Gaussian states have
long been recognized in computation and communication
[36–39], ours is a possible instance in quantum metrology.
It is interesting to note that this facet of quantum metrology
only appears at the multiple phase level, since Gaussian states
are known to achieve the full potential of quantum-enhanced
single phase estimation [40].

The paper is organized as follows. In Sec. II we define the
phase shifting, the simultaneous and the individual estimation
scenarios. In Sec. III we discuss the Cramér-Rao bound and
its attainability. In Sec. IV we calculate analytically, under the
assumptions we do later on, the QFIM and the trace of its
inverse and in Sec. V we proceed with the comparison of the
simultaneous and individual scenarios. Finally, in Sec. VI we
wrap up and discuss our findings.
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FIG. 1. A d + 1 mode interferometer with the most general pure
Gaussian input, produced from a general pure and separable Gaussian
state followed by a passive element. The resultant state undergoes the
phase shifts to be estimated.

II. PHASE ESTIMATION SETUP

We study the quantum-limited estimation of d phases φ ∈
Rd using a d + 1-mode pure quantum probe state |�〉, as
shown in Fig. 1. The state |�〉 picks up the phases φ via |�〉 =
Ûφ|�〉 [41]. The parameters to be estimated are encapsulated
in

Ûφ = Û ′
φ exp(−iϕn̂0)

= exp[iφ1(n̂1 − n̂0) + · · · + iφd (n̂d − n̂0)]

= exp

(
i

d∑
i=1

φi(n̂i − n̂0)

)
= exp(iφ ĝ), (1)

FIG. 2. A two-mode interferometer with the most general pure
Gaussian input, produced from a general pure and separable Gaussian
state followed by a passive element. The resultant state undergoes
the phase shift to be estimated. This is repeated d times, i.e., for
the number of phases to be estimated or it can be viewed as d

parallel, individual estimations. The total energy for simultaneous
and individual estimation is the same.

where the unitary operator Û ′
φ = exp(iφ0n̂0 + iφ1n̂1 + · · · +

iφd n̂d ),ϕ = φ0 + · · · + φd captures an unmeasurable overall
phase, φ ≡ (φ1, . . . ,φd )T and ĝi = n̂i − n̂0 are the generators.
The ĝi are traceless and Hermitian, as SU(n) generators
ought to be. Indeed, our problem is a special case of SU(n)
interferometry, with the parameters to be estimated restricted
to a diagonal subgroup. The reduction of the phase-encoding
unitary from an element of the unitary group to an element of
the special unitary group is therefore tantamount to accounting
for the unmeasurable (global) phase φ. The nuanced role of
a reference mode in quantum interferometry was recently
addressed in Ref. [42].

The input |�〉 is taken to be a pure Gaussian state—the
outcome of the interaction of d + 1 coherent squeezed states
with a passive multimode quantum optical element Â† via
|�〉 = Â†∏d

k=0 |βk; ξk〉, where the squeezings ξk = |ξk|eiθk ,

and displacements βk are introduced through the correspond-
ing operators as D̂(βk)Ŝ(ξk)|0〉 = |βk; ξk〉. We are able to make
the choice of complex displacements and positive squeezings
without loss of generality [43] to still obtain a general pure
Gaussian state [44].

Such a state has an average energy of |βk|2 + sinh2 |ξk| in
mode k, and our aim is to compare individual and simultaneous
estimation strategies for φ using the same average input energy
totalled over all the modes. The restriction to squeezed states
is primarily motivated by the relative ease of production and
manipulation in the laboratory, and demonstration of their
relevance in studies of, for instance, quantum information
science [45] and gravitational wave astronomy [46]. It also
avoids, for a fixed mean, the possibility of unbounded variance
in particle number. It is not to ease our analytical calculations,
as we explain later.

III. BOUNDS ON PRECISION OF ESTIMATION

The performance of any estimation process is captured by
the covariance matrix V(φ), the covariance of the estimators
for unbiased estimators. This is lower bounded as

V(φ) � H−1, (2)

according to the quantum Cramér-Rao bound, where H
is the quantum Fisher information matrix (QFIM) [3,47].
Equation (2) is a matrix inequality, meaning V(φ) − H−1 is
positive semidefinite. The QFIM H is a real, positive definite,
symmetric matrix. The QFIM can be written in terms of the
symmetric logarithmic derivatives (SLDs); L̂i for the phases
φi , are given by

∂ρ̂φ

∂φi

= L̂i ρ̂φ + ρ̂φL̂i

2
. (3)

The QFIM is then Hi,j = Tr[ρ̂φ(L̂iL̂j + L̂j L̂i)]/2.
The saturation of the quantum Cramér-Rao bound is a two

step procedure: equalities in both the classical and quantum
Cramér-Rao bounds are required. The former equality requires
the use of an efficient, unbiased estimator [14]; in the
asymptotic limit maximum likelihood is such an estimator
and a convergence to this limit can typically be obtained in a
reasonable number of trials [48,49].
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The attainability of the latter (quantum) equality is satisfied
if the SLDs commute; this is sufficient to prove the existence
of a saturating positive operator-valued measure (POVM),
the common eigenbasis of the SLDs. In the case of single
parameter estimation the existence of a saturating POVM is
therefore trivial. A looser condition for the attainability of the
latter (quantum) limit with pure states is [50,51]

〈�|[L̂i ,L̂j ]|�〉 = Tr(ρ̂φ[L̂i ,L̂j ]) = 0. (4)

For commuting generators,

∂ρ̂φ

∂φj

= i[ĝj ,ρ̂φ],

we find (with pure state probes) L̂j = 2i[ĝj ,ρ̂φ]. Using the
fact that the generators commute, the cyclicity of the trace
and purity of the probe states |�〉, it is easy to show that the
condition in Eq. (4) is satisfied.

IV. COMPUTATION OF THE QFIM

For any pure state |�〉, the QFIM reads Hi,j =
4Re(〈∂i�|∂j�〉 − 〈∂i�|�〉〈�|∂j�〉), where Re(·) denotes the
real part and |∂i�〉 ≡ (∂/∂φi)|�〉. For d phase parameters and
the corresponding phase-shift generators {ĝi}, the d × d QFIM
reduces to [18]

Hi,j = 4(〈ĝi ĝj 〉 − 〈ĝi〉〈ĝj 〉)
= 4(hi,j − hi,0 − h0,j + h0,0), (5)

with hi,j = 〈n̂i n̂j 〉 − 〈n̂i〉〈n̂j 〉. The expectation values are
calculated for the initial state |�〉. Note that for the matrix
elements Hi,j the indices i,j run from 1 to d, while for
the matrix elements hi,j the indices i,j run from 0 to d.
Note that hi,0, h0,j , and h0,0 give rise to rank-1 matrices,
and therefore the QFIM can be inverted using the Sherman-
Morrison formula.

We use the Husimi Q representation to calculate the
expectation values in Eq. (5). To that end, we begin with the
Q representation [52] for the initial squeezed displaced states∏d

k=0 |βk; ξk〉, which reads

Q0(r) = 1

πd+1

d∏
k=0

|〈αk|βk; ξk〉|2

= F (β,β∗)
exp(−r†M′r + r ′†

b r + r†r ′
b)

(2π )d+1
∏d

k=0 cosh |ξk|
, (6)

where |αk〉 is a coherent state,

r = (α,α∗)T ≡ (α0, . . . ,αd,α
∗
0 , . . . ,α

∗
d )T , (7)

r ′
b = (b′,b′∗)T ≡ (b′

0, . . . ,b
′
d ,b

′∗
0 , . . . ,b′∗

d )T , (8)

where b′
j =∑d

j=0(βk + β∗
k tanh |ξk|),

F (β,β∗) =
d∏

k=0

exp

[
−
(

|βk|2 + tanh |ξk|
2

(
β∗2

k + β2
k

))]
,

M′ = 1

2

(
I D
D I

)
,

and D is a diagonal matrix with Dj,j = tanh |ξj |. The Q

representation of the final probe state |�〉 is then given
by Q(α′) = |〈α′|�〉|2, where α′ = Aα. Our calculation thus
exploits the simplicity of applying Â on the coherent state
basis rather than its conjugate on the squeezed displaced states.
Further simplification is enabled by the passive nature of
the transformation Â which implies |α′|2 = |α|2 and the φ

independence of the QFIM, which can be seen in Eq. (5). The
Q representation of |�〉 is thus (see Appendix Sec. 1)

Q(r) = F (β,β∗)
exp(−r†Mr + r†br + r†rb)

(2π )d+1
∏d

k=0 cosh |ξk|
, (9)

with rb = (b,b∗)T ≡ (b0, . . . ,bd,b
∗
0, . . . ,b

∗
d )T , and bj =∑d

k=0 A∗
kj (βk + β∗

k tanh |ξk|). The 2(d + 1) × 2(d + 1) matrix
M reads

M = 1

2

(
I N

N† I

)
,

with N = A†DA∗. Note that matrix N is symmetric, i.e., N =
NT , a fact to be exploited later.

To calculate the QFIM in Eq. (5) using the Q representation
of the probe state |�〉 at hand, we need to recast the
expectation values in terms of antinormally ordered operators.
These are 〈n̂i〉 = 〈âi â

†
i 〉 − 1 and 〈n̂i n̂j 〉 = 1 + 〈âi âj â

†
i â

†
j 〉 −

〈âj â
†
j 〉 − (1 + δij )〈âi â

†
i 〉 and can be obtained via a generating

function G(μ) (see Appendix Sec. 2),

〈n̂i〉 = −1 +
(

∂

∂λi

∂

∂λ∗
i

)
G(μ)

∣∣∣∣
μ=0

, (10)

〈n̂i n̂j 〉 = 1 +
[

∂

∂λi

∂

∂λ∗
i

∂

∂λj

∂

∂λ∗
j

− ∂

∂λj

∂

∂λ∗
j

− (1 + δi,j )
∂

∂λi

∂

∂λ∗
i

]
G(μ)

∣∣∣∣
μ=0

. (11)

The generating function, which is based on the Q representa-
tion in Eq. (9) is given by (see Appendix Sec. 2),

G(μ) = exp

[
r†bM−1μ + μ†M−1rb + μ†M−1μ

4

]
, (12)

where μ = (λ0, . . . ,λd,λ
∗
0, . . . ,λ

∗
d )T . Note that the derivatives

required to calculate the QFIM render the relevant integrals
non-Gaussian. Finally, the inverse of M, obtained using
Schur’s complement, is

M−1 = 2

(
E −NET

−N†E ET

)
, (13)

where E = A†CA with C a diagonal matrix whose nonzero
elements read Cj,j = cosh2 |ξj |. Note that E† = E.

By virtue of Eqs. (10)–(12), the elements hi,j are

hi,j = 4[(EN − γ γ T ) ◦ (EN − γ γ T )∗ − (γ γ T ) ◦ (γ γ T )∗

+ 1
4 (E + E∗) ◦ (E + E∗ + 2γ γ † + 2γ ∗γ T )

− (E + γ γ †) ◦ I]i,j , (14)

where γ = (2E∗ − E∗N∗ − N∗E)b/2,δi,j is the Kronecker δ

and ◦ denotes the Hadamard (entrywise) product.
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Having obtained the general formula for the QFIM,
we make two simplifying assumptions to obtain tractable
analytical expressions, namely equally squeezed inputs in
all the modes (|ξi | = |ξ |, ∀i ∈ {0, . . . ,d}) and an orthogonal
interferometer (A† = OT ∈ SO(d + 1)). What follows in this
work relies on these assumptions. For general displacements
βk = xk + iyk, a straightforward computation leads to a
diagonal plus a rank-1 matrix,

Hi,j = δi,j hi,i + h0,0, (15)

where hi,i = 2 sinh2 2|ξ | + 4e−2|ξ |x ′2
i + 4e2|ξ |y ′2

i and h0,0 =
2 sinh2 2|ξ | + 4e−2|ξ |x ′2

0 + 4e2|ξ |y ′2
0 with x ′

i =∑d
k=0 OT

i,kxk

and y ′
i =∑d

k=0 OT
i,kxk . In matrix notation the QFIM reads

H = H′ + h0,0uuT , (16)

where H ′
i,j = δi,j hi,i and u = (1, . . . ,1)T .

We can now bound the total variance of all the parameters,
given by Tr[V(φ)]. This requires the inverse of the QFIM
which, obtained by the Sherman-Morrison formula, is

H−1 = H′−1 − h0,0

1 + h0,0uT H′−1u
H′−1uuT H′−1, (17)

leading to

Tr(H−1) =
d∑

i=1

1

hi,i

−
(

d∑
i=0

1

hi,i

)−1 d∑
i=1

1

h2
i,i

. (18)

V. SIMULTANEOUS V S INDIVIDUAL PHASE
ESTIMATION

The optimal input for estimating the relative phase in a
balanced two-mode interferometer is a squeezed state [40]. We
extend this result within the aforementioned assumptions and
prove that for any d, all the energy should go to squeezing for
maximal precision in estimation. We do this by first showing
that minimizing Tr(H−1) is akin to maximizing each hi,i

independently. Note that hi,i is actually a monotonic function
of the fraction of the total energy in displacements, and we
show that this quantity is maximum when all the energy is
used in squeezing (see Appendix Sec. 3). This leads to an
optimal QFIM for simultaneous estimation of

Hsim = 2(I + uuT ) sinh2 2|ξ |. (19)

The QFIM Hind for individual phase estimation comes from the
above equation with d = 1. We can now compare the quantum
limits for the simultaneous estimation of the d phases with
their individual estimation for the same expense of energy.
The total energy is E =∑d

i=0(x2
i + y2

i ) + (d + 1) sinh2 |ξ | =
2d sinh2 |ξ ′|, where ξ ′ is the squeezing used for individual
estimation. The ratio of the performance of the two estimation
strategies is given by

R = Tr
(
H−1

sim

)
Tr
(
H−1

ind

) = 1 − d − 1

2d
tanh2 |ξ |. (20)

In Fig. 3 the behavior of R as a function of |ξ | and d is
shown. Since R � 1, the simultaneous estimation strategy
is superior to the individual estimation strategy. It is also
easy to see that R � (1 + 1/d)/2. That the ratio R saturates

5 10 15 20
0.0

0.5

1.0

1.5

2.0

d

R

0.65

0.75

0.85

0.95

FIG. 3. R as a function of number of phases and squeezing.

to 1/2 is unlike the fixed photon number scenario [10]
where the limit goes to 0, although in both cases they fall
linearly with d. Possible causes for this are the restriction to
Gaussian systems and our assumptions of equal squeezing and
orthogonal transformations.

In the limit of a large number of phase parameters,

Rlim = lim
d→∞

R = 1 − 1
2 tanh2 |ξ |. (21)

Increasing squeezing is a matter of continuous improvement
with state-of-the-art experimental setups, and in Fig. 4 we
plot Rlim for up to 16 dB squeezing [53], i.e., |ξ | ≈ 1.84
(dB = 10 log10 e2|ξ |). Experimentally, squeezings of 12.7 dB
have been achieved [54] along with multimode squeezings of
3.5 dB [35].

VI. CONCLUSIONS

We have considered the problem of multiple phase es-
timation with Gaussian states and have shown that, under
some assumptions, the simultaneous estimation of d phases is
always superior to the optimum individual estimation strategy.
A tentative cause for this improvement is that the simultaneous

FIG. 4. R for large number of phases as a function of realistic
squeezing. The lower limit is approached quickly for experimentally
feasible squeezing.
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strategy utilizes fewer reference modes, allowing more energy
per mode. Our analyses have shown that the larger the variance
within a mode the better the estimation. The optimal input
states for individual and simultaneous strategies are product
squeezed vacuum states and so the distinction boils down to
the number of modes; as the simultaneous strategy uses fewer
reference modes it allows a larger variance per mode and thus
an improved precision. It may be for related reasons that the
high-energy limit of the performance ratio of the two strategies
coincides with the ratio of the number of modes, (d + 1)/2d.

It can be noted that these quantum enhancements are
obtained from simultaneous estimation without the presence
of any quantum entanglement across the modes in the system.
The latter is a consequence of the two assumptions: equal
magnitude squeezings and an orthogonal transformation,
which we made to obtain analytically tractable expressions.
Nevertheless, this provides—as also claimed in Ref. [13]—a
possible generalization of what was known for single phase

estimation [40,55,56] to multimode interferometry, that modal
entanglement is not a crucial resource for quantum-enhanced
interferometry.

Our analysis has shown that simultaneous multiple phase
estimation is only a factor of 2 better than individual phase
estimation using pure Gaussian states. This is true for any
number d of phases, while with non-Gaussian states the same
scenario offers a factor-of-d improvement [10]. The limit of
a factor-of-2 improvement in multimode Gaussian systems as
opposed to a factor of d with non-Gaussian states seems unique
to the multiparameter aspect of the problem.
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APPENDIX

1. Computation of the Q representations

Initially we consider d + 1 squeezed displaced states, i.e.,
∏d

k=0 |βk; ξk〉, where ξk = |ξk|eiθk . From the definition of the Q

representation Q(r) = 1/πd+1〈α|ρ̂|α〉, with r = (α,α∗)T ≡ (α0, . . . ,αd,α
∗
0 , . . . ,α

∗
d )T , one can immediately write

Q0(r) = 1

πd+1

d∏
k=0

|〈αk|βk; ξk〉|2. (A1)

The amplitude 〈α|β; ξ 〉 can be found as follows:

〈α|β; ξ 〉 = 1√
cosh |ξ | exp

(
−|β|2

2
− β∗

2
eiθ tanh |ξ |

) ∞∑
n=0

1√
n!

Hn(τ )

(
eiθ tanh |ξ |

2

)n/2

〈α|n〉

= 1√
cosh |ξ | exp

(
−|β|2

2
− β∗

2
eiθ tanh |ξ | − |α|2

2

) ∞∑
n=0

1

n!
Hn(τ )

(
a∗2eiθ tanh |ξ |

2

)n/2

= 1√
cosh |ξ | exp

(
−|α|2

2
− |β|2

2
+ βα∗ − 1

2
eiθ tanh |ξ |(α∗ − β∗)2

)
, (A2)

where Hn(τ ) is the Hermite polynomial of the nth order with τ = (β + β∗eiθ tanh |ξ |)/(2eiθ tanh |ξ |)1/2. We have also used the
expansion of a squeezed state in Fock basis [57] and the Hermite polynomials generating function [58],

∞∑
n=0

1

n!
Hn(τ )

(
u

2

)n

= exp(2τu − u2). (A3)

From Eqs. (A1) and (A2) we write

Q0(r) = 1

πd+1
∏d

k=0 cosh |ξk|
d∏

k=0

∣∣∣∣ exp

[
−|αk|2

2
− |βk|2

2
+ βkα

∗
k − 1

2
eiθk tanh |ξk|(α∗

k − β∗
k )2

]∣∣∣∣
2

= 1

πd+1
∏d

k=0 cosh |ξk|

× exp

[
d∑

k=0

(
−|αk|2 − |βk|2 + βkα

∗
k + β∗

k αk − 1

2
tanh |ξk|[eiθk (α∗

k − β∗
k )2 + e−iθk (αk − βk)2]

)]
. (A4)
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The state
∏d

k=0 |βk; ξk〉 goes through the interferometer denoted as Â† and we take the state |�〉 = Â†∏d
k=0 |βk; ξk〉. The Q

representation of the |�〉 state is

Q(r) = 1

πd+1

∣∣∣∣∣〈α|Â†
d∏

k=0

|βk; ξk〉
∣∣∣∣∣
2

. (A5)

It is apparent that it is a lot easier if we act with Â† on the left, i.e., on 〈a|, that is we consider the transformation α′ = Aα or
α′

k =∑d
j=0 Ak,jαj . Note that since we consider passive transformations the total energy before and after the interferometer is

conserved, i.e.,
∑d

k=0 |α′
k|2 =∑d

k=0 |αk|2. Applying the transformation and working out Eq. (A5) a bit we get,

Q(r) = 1

πd+1
∏d

k=0 cosh |ξk|
exp

[
−

d∑
k=0

(
|βk|2 + 1

2
tanh |ξk|

(
eiθkβ∗2

k + e−iθkβ2
k

))]

× exp

⎡
⎢⎣−

d∑
k=0

⎧⎪⎨
⎪⎩|αk|2 + 1

2
tanh |ξk|

⎡
⎢⎣eiθk

⎛
⎝ d∑

j=0

A∗
k,jα

∗
j

⎞
⎠

2

+ e−iθk

⎛
⎝ d∑

j=0

Ak,jαj

⎞
⎠

2
⎤
⎥⎦
⎫⎪⎬
⎪⎭
⎤
⎥⎦

× exp

⎡
⎣ d∑

k=0

βk

⎛
⎝ d∑

j=0

A∗
k,jα

∗
j + e−iθk tanh |ξk|

d∑
j=0

Ak,jαj

⎞
⎠
⎤
⎦

× exp

⎡
⎣ d∑

k=0

β∗
k

⎛
⎝ d∑

j=0

Ak,jαj + eiθk tanh |ξk|
d∑

j=0

A∗
k,jα

∗
j

⎞
⎠
⎤
⎦. (A6)

By observing Eq. (A6) we can write it in a compact form,

Q(r) = F (β,β∗)
exp(−r†Mr + r†br + r†rb)

(2π )d+1
∏d

k=0 cosh |ξk|
,

where

F (β,β∗) = e−∑d
k=0[|βk |2+(1/2) tanh |ξk |(eiθk β∗2

k +e−iθk β2
k )], (A7)

β = (β0, . . . ,βd ), (A8)

β∗ = (β∗
0 , . . . ,β∗

d ), (A9)

rb = (b0, . . . ,bd,b
∗
0, . . . ,b

∗
d )T = (b,b∗)T (A10)

with

bj =
d∑

k=0

A∗
kj (βk + β∗

k eiθk tanh |ξk|). (A11)

The 2(d + 1) × 2(d + 1) matrix M reads

M = 1

2

(
I N

N† I

)
(A12)

with N = A†DA∗, where D is a diagonal matrix with Dj,j = eiθj tanh |ξj |. Note that matrix N is symmetric, i.e., N = NT . Also
the matrix M is Hermitian. In what follows we will need the matrix M−1; to this end we will use Schur’s complement [59]. We
write

M−1 = 2

(
(I − NN†)−1 −N(I − N†N)−1

−N†(I − NN†)−1 (I − N†N)−1

)
. (A13)
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From Eqs. (A12) and (A13) it is easy to see that M−1M = I. For the Hermitian matrices NN† and N†N we can readily write
their diagonalization (remember that A is unitary, therefore they diagonalize Hermitian matrices),

NN† = A†DD†A, (A14)

N†N = AT DD†(AT )†. (A15)

Since A†A = I and (AT )†AT = I we have

(I − NN†)−1 = A†(I − DD†)−1A, (A16)

(I − N†N)−1 = AT (I − DD†)−1(AT )†. (A17)

The matrix (I − DD†)−1 ≡ C. Since (I − DD†)−1 is a diagonal matrix, the matrix C is easily found to be the diagonal matrix
whose nonzero elements read Cj,j = cosh2 |ξj |. Therefore from Eqs. (A13), (A16), and (A17) we write

M−1 = 2

(
E −NET

−N†E ET

)
, (A18)

where E = A†CA.
Let us now prove that the matrix M is not only Hermitian but also positive semidefinite and therefore can be used in the next

section as a complex covariance matrix. We will calculate the (real) eigenvalues σ of the (Hermitian) matrix M. The characteristic
polynomial reads

det(M − σ I) = det

((
1
2 − σ

)
I 1

2 N
1
2 N† (

1
2 − σ

)
I

)
= 0. (A19)

Since the blocks in Eq. (A19) are square and N† commutes with ( 1
2 − σ )I, from [60] we can write

det(M − σ I) = det

[(
1

2
− σ

)2

I − 1

4
NN†

]
= 0. (A20)

By virtue of Eq. (A14) and the facts that A is unitary and M − σ I is Hermitian, and by substituting the elements of the diagonal
matrices D and D†, we can write

det(M − σ I) = det

[(
1

2
− σ

)2

I − 1

4
DD†

]

=
d∏

i=0

[(
1

2
− σi

)2

− 1

4
tanh2 |ξi |

]
= 0. (A21)

From Eq. (A21) we readily find

σi = 1
2 (1 ∓ tanh |ξi |) � 0. (A22)

2. Generating function and mean values

We introduce the generating function G(μ),

G(μ) =
∫

drQ(r) exp

⎛
⎝ d∑

j=0

λjα
∗
j +

d∑
j=0

λ∗
jαj

⎞
⎠, (A23)

where μ = (λ0, . . . ,λd,λ
∗
0, . . . ,λ

∗
d )T . The λ’s are the so-called sources [61], nothing else than some helping parameters when it

comes to calculating somewhat difficult integrals [62]. The word sources comes from the fact that some linear terms are added
into the exponential. Sometimes this is referred to as Feynman’s favorite trick. It is not difficult to see that the integral in Eq. (A23)
is just a Gaussian integral and is therefore easy to be calculated. Also observe that when we hit Eq. (A23) with derivatives with
respect to λ’s at μ = 0, we get expectation values of combinations of â, â†, that justifies the name generating function. This
is exactly what we need in order to calculate the QFIM for pure states. Since we use the Q representation formalism we must
calculate expectation values in terms of the mean values of antinormally ordered operators, i.e., all creation operators should be
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on the right,

〈n̂i〉 = 〈âi â
†
i 〉 − 1, (A24)

〈n̂i n̂j 〉 = 〈âi âj â
†
i â

†
j 〉 − 〈âi â

†
i 〉 − 〈âj â

†
j 〉 − 〈âi â

†
i 〉δij + 1,

(A25)

where we have used [â,â†] = 1. From Eqs. (A23)–(A25) it is not difficult to see that

〈n̂i〉 =
(

∂

∂λi

∂

∂λ∗
i

)
G(μ)

∣∣∣∣
μ=0

− 1, (A26)

〈n̂i n̂j 〉 =
[

∂

∂λi

∂

∂λ∗
i

∂

∂λj

∂

∂λ∗
j

− (1 + δij )
∂

∂λi

∂

∂λ∗
i

− ∂

∂λj

∂

∂λ∗
j

]
G(μ)

∣∣∣∣
μ=0

+ 1. (A27)

So, we have transformed the problem of calculating a non-Gaussian integral (when calculating the mean photon number for
example) into one of calculating a Gaussian integral and its derivatives up to fourth order.

In Eq. (A23) by d r we denote integration over all Reα and Imα. However, we find it more convenient to calculate the integral
over α and α∗. To this end we will need the Jacobian for the transformation (Reα, Imα) → (α,α∗), which reads 1/2d+1. By doing
the Gaussian integral of Eq. (A23) we find the generating function,

G(μ) = F (β,β∗)
exp[(r†b + μ†)M−1(rb + μ)]

2d+1 det M
∏d

k=0 cosh |ξk|
, (A28)

where F (β,β∗) was defined in Eq. (A7).
We can simplify the generating function even more by noting that G(μ = 0) = 1 since this is simply the integration of the Q

representation over all phase space, i.e., this is just the normalization to 1 of the Q quasiprobability distribution. Therefore we
get

G(μ) = exp
[

1
4 (r†bM−1μ + μ†M−1rb + μ†M−1μ)

]
. (A29)

Now the job is straightforward, easy, and boring; by carefully performing the derivatives of Eqs. (A26) and (A27) one finds
the matrix elements hi,j and therefore the QFIM found in the main body of the text.

3. Optimization

We have given the expression for Tr(H−1) in terms of the elements hi,i under the assumptions that we have an equal squeezing
in each mode and that the unitary transform is an orthogonal transform as

Tr(H−1) =
d∑

i=1

1

hi,i

−
(

d∑
i=0

1

hi,i

)−1 d∑
i=1

1

h2
i,i

. (A30)

We can rewrite hi,i = 2 sinh2 2|ξ | + 4e−2|ξ |x ′2
i + 4e2|ξ |y ′2

i in terms of some Ej = sinh2 |ξ | + x ′2
j + y ′2

j , and Eγj
= x ′2

j + y ′2
j and

θγj
= cos−1 (

x ′
j√
Eγj

). Under this parametrization the energy constraint becomes
∑d

j=0 Ej = ETot [63]. We thus write hj,j =
hj,j (Ej ,Eγj

,θγj
) and can now extremize Tr(H−1) over Eγj

and θγj
without needing to construct a Lagrangian problem (as the

only constraint on Eγj
and θγj

is 0 � Eγj
� Ej ). We now consider what we need to solve in order to extremize Tr(H−1) with

respect to mj = Eγj
,θγj

for j �= 0 [64],

∂Tr(H−1)

∂mj

= ∂hj,j

∂mj

⎡
⎣− 1

h2
j,j

+ 2

h3
j,j

(
d∑

i=0

1

hi,i

)−1

− 1

h2
j,j

(
d∑

i=0

1

hi,i

)−2 d∑
i=1

1

h2
i,i

⎤
⎦

= −∂hj,j

∂mj

1

h2
j,j

(
d∑

i=0

1

hi,i

)−2
⎡
⎣( d∑

i=0

1

hi,i

)2

− 2

hj,j

d∑
i=0

1

hi,i

+
d∑

i=1

1

h2
i,i

⎤
⎦. (A31)

We first note that the terms in the square brackets can be rewritten (for j �= 0) as

⎛
⎝ d∑

i=0,i �=j

1

hi,i

⎞
⎠

2

+ 2

hj,j

d∑
i=0

1

hi,i

− 2

hj,j

d∑
i=0

1

hi,i

+
d∑

i=1,i �=j

1

h2
i,i

. (A32)
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The middle two terms cancel and the remaining terms are clearly positive. Thus we may freely conclude that

∂Tr(H−1)

∂mj

= −κ
∂hj,j

∂mj

, κ > 0. (A33)

Namely, to extremize hj,j with respect to mj is to extremize Tr(H−1) with respect to mj ; furthermore as κ > 0 if a change in
mj increases hj,j then it necessarily decreases Tr(H−1). We now therefore turn our attention to the maximization of hj,j with
respect to Eγj

and θγj
,

hj,j =4
[−Eγj

+ 2Ej

(
1 + Ej − Eγj

)]+ 8Eγj

√(
Ej − Eγj

)(
1 + Ej − Eγj

)
cos 2θγj

. (A34)

=10 No further mathematics is required to see that hj,j is maximized with respect to θγj
by θγj

= 0, which reduces the problem
to

hj,j = 4
[−Eγj

+ 2Ej

(
1 + Ej − Eγj

)]+ 8Eγj

√(
Ej − Eγj

)(
1 + Ej − Eγj

)
, (A35)

∂hj,j

∂Eγj

=−4 − 8Ej + 8
√(

Ej − Eγj

)(
1 + Ej − Eγj

)+ 4Eγj

−1 − 2Ej + 2Eγj√(
Ej − Eγj

)(
1 + Ej − Eγj

) = 0. (A36)

We can then solve Eq. (A36) to find the solutions
√

(Ej − Eγj
)(1 + Ej − Eγj

) = −Eγj
and

√
(Ej − Eγj

)(1 + Ej − Eγj
) =

Ej + Eγj
+ 1

2 . Both of these entail Eγj
to lie outside of 0 � Eγj

� Ej (the former obviously so, the latter solutions requires
the similarly unacceptable Eγj

= − 1
8(1+2Ej ) ). To this end there are no extrema within the allowed values of Eγj

instead hj,j is
monotonic within those values. To this end we consider the extreme cases, Eγj

= 0 and Eγj
= Ej , which yield respectively

hj,j = 8Ej (Ej + 1) and hj,j = 4Ej . Eγj
= 0 could have been expected to yield the superior solution as Eγj

= Ej corresponds to

the use of a coherent state. We are now left to optimize Tr(H−1) over {Ej } subject to
∑d

j=0 Ej = ETot, however as Eγj
= sinh2 |ξj |

we have previously assumed |ξj | = |ξ |,∀j ∈ {0, . . . ,d} which takes us to Ej = ETot
d+1 ; this leads us to the optimal QFIM,

Hsim = 2(I + uuT ) sinh2 2|ξ |

= 8(I + uuT )
ETot(d + 1 + ETot)

(d + 1)2
. (A37)
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[6] G. Tóth and I. Apellaniz, J. Phys. A 47, 424006 (2014).
[7] H. P. Yuen and M. Lax, IEEE Trans. Inf. Theory 19, 740 (1973).
[8] A. Fujiwara, Math. Eng. Tech. Rep 94-9 (1994),

http://www.keisu.t.u-tokyo.ac.jp/research/techrep/data/1994/
METR94-09.pdf.

[9] M. G. Genoni, M. G. A. Paris, G. Adesso, H. Nha, P. L. Knight,
and M. S. Kim, Phys. Rev. A 87, 012107 (2013).

[10] P. C. Humphreys, M. Barbieri, A. Datta, and I. A. Walmsley,
Phys. Rev. Lett. 111, 070403 (2013).

[11] P. J. D. Crowley, A. Datta, M. Barbieri, and I. A. Walmsley,
Phys. Rev. A 89, 023845 (2014).

[12] Y. Yao, L. Ge, X. Xiao, X. Wang, and C. P. Sun, Phys. Rev. A
90, 062113 (2014).

[13] P. Knott, T. Proctor, A. Hayes, J. Ralph, P. Kok, and
J. Dunningham, arXiv:1601.05912.

[14] S. L. Braunstein and C. M. Caves, Phys. Rev. Lett. 72, 3439
(1994).

[15] R. D. Gill and S. Massar, Phys. Rev. A 61, 042312 (2000).
[16] M. D. Vidrighin, G. Donati, M. G. Genoni, X.-M. Jin, W.

S. Kolthammer, M. S. Kim, A. Datta, M. Barbieri, and I. A.
Walmsley, Nat. Commun. 5, 3532 (2014).

[17] D. W. Berry, M. Tsang, M. J. W. Hall, and H. M. Wiseman,
Phys. Rev. X 5, 031018 (2015).

[18] T. Baumgratz and A. Datta, Phys. Rev. Lett. 116, 030801 (2016).
[19] Y. Yao, L. Ge, X. Xiao, X.-g. Wang, and C.-p. Sun, Phys. Rev.

A 90, 022327 (2014).
[20] J.-D. Yue, Y.-R. Zhang, and H. Fan, Sci. Rep. 4, 5933 (2014).
[21] L. Liberman, Y. Israel, E. Poem, and Y. Silberberg, Optica 3,

193 (2016).
[22] A. Monras and F. Illuminati, Phys. Rev. A 81, 062326 (2010).
[23] A. Monras and F. Illuminati, Phys. Rev. A 83, 012315 (2011).
[24] A. Monras, arXiv:1303.3682.
[25] Y. Gao and H. Lee, Europhys. J. D 68, 1 (2014).
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[38] J. Fiurášek, Phys. Rev. Lett. 89, 137904 (2002).
[39] G. Giedke and J. I. Cirac, Phys. Rev. A 66, 032316 (2002).
[40] M. D. Lang and C. M. Caves, Phys. Rev. A 90, 025802 (2014).
[41] In what follows, calligraphic and/or hatted alphabets such as
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gives Ûk(ωk)|γk,|ξk|eiθk 〉 = |γke

−iωk ,|ξk|ei(θk−ωk/2)〉. By choos-
ing ωk = 2θk we get |βk,|ξk|〉, where βk = γke

−2iθk (note that βk

and γk are left to be arbitrary complex numbers). The conjugate
transpose of the local rotations Ûk(2θk) can be considered as part
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