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Boson sampling is the problem of generating a multiphoton state whose counting probability is the permanent
of an n × n matrix. This is created as the output n-photon coincidence rate of a prototype quantum computing
device with n input photons. It is a fundamental challenge to verify boson sampling, and therefore the question
of how output count rates scale with matrix size n is crucial. Here we apply results from random matrix theory as
well as the characteristic function approach from quantum optics to establish analytical scaling laws for average
count rates. We treat boson sampling experiments with arbitrary inputs, outputs, and losses. Using the scaling
laws we analyze grouping of channel outputs and the count rates for this case.
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I. INTRODUCTION

Much recent attention has been given to the application
of multichannel linear photonic networks to solving com-
putational tasks thought to be inaccessible to any classical
computer. Such devices are in the vanguard of a new generation
of problem-specific quantum computers [1,2] and novel
metrology devices [3,4]. As the prototypes of novel forms of
quantum computer, these have many potential applications [5].

In particular, boson sampling is the problem of generating
photon counts with a probability distribution equal to the
modulus squared of the permanent of unitary submatrix. The
result is created as the output n-photon coincidence rate
from a single photon input to each of n distinct channels.
Generating a random sequence of this type is conjectured to
be exponentially hard at large n, while being relatively simple
to implement physically. This could become the first example
of a quantum solution to a classically inaccessible problem,
and new applications are already appearing.

It is widely appreciated that to verify the solution is correct
is a significant challenge [6–13]. The task is to measure the
coincidence rate of counting one photon in each of n output
channels and to confirm that this corresponds to the modulus
squared of an n × n permanent of a unitary submatrix. The
matrices are under experimental control [14–17], and a random
ensemble of them is tested to verify the experiments. A number
of strategies have been suggested [6–8,10–12,18,19].

Since permanents are known to be exponentially hard to
compute [20], it is nontrivial to verify the output is correct [2,6]
at large n values. A verification strategy requires that both
calculating the criterion and making the measurement take a
finite time, and the criterion should not be easily forgeable
with a classical computer. As a result, understanding scaling
is essential because count rates can decline exponentially fast
with n. Yet, the computational hardness of permanents makes
it extremely difficult to estimate count rates for n > 50 [21].
These fundamental scaling relations are the central issue that
this paper addresses.

Even though individual permanents are effectively uncom-
putable, the tools of random matrix theory can be used to tell

us analytically how the average count rates scale on averaging
over all unitary matrices. It is known that large random
unitaries are similar to their unitary averages, apart from a
small measure of extreme cases. This gives us a quantitative
prediction of what scaling to expect at large matrix size, which
cannot be obtained through numerics, owing to computational
complexity.

Here we solve the average scaling problem, including
losses, for arbitrary inputs and outputs. Previous work
has considered specific input states, for example Fock
states [7,11,14,15] or Gaussian states [22,23]. Importantly,
we obtain the maximum scaling of the average improvements
that are possible with recent channel grouping strategies [7].
While the average count rate on its own is not a complete
verification—it is too nonspecific for this—we show in another
work how these limits can be applied to give analytic tests for
boson sampling for single unitary transformations [24].

To obtain scaling laws, we combine the characteristic
function of the generalized P representation with methods
from random matrix theory to obtain averages over unitary
transformations. Random matrix theory methods have also
been recently used in order to study mesoscopic chaotic
scattering [25]. The present approach allow us to describe the
scaling of realistic bosonic experiments, with arbitrary inputs,
outputs, and losses. Losses in boson sampling have also been
investigated elsewhere [26,27].

Scaling issues like this arising in random matrix theory are
widespread [28], as averages over unitaries are fundamental
to quantum physics. We note an unexpected analogy with
the statistics of a well-known classical device for generating
random counts. On averaging over all unitaries, the probability
of n single-photon counts in n preselected channels—a
quantum Galton’s board [29]—is identical to a type of classical
photonic Galton’s board.

The only difference is that there are now n − 1 additional
virtual channels, which describe multiphoton events in an
output mode. These extra channels can be thought of as
nonclassical communication channels. Such channel capacity
improvements [30] are closely related to Arkhipov and
Kuperberg’s “birthday paradox” for bosons [31].
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We show, in particular, that while typical individual perma-
nents give extremely low count rates, the scaling improvement
with channel grouping strategies for verification depends on
the channel occupation ratio, k = m/n, reaching well over
a hundred orders of magnitude at k = 10, n = 100. This
matrix size is beyond any current exact computation of
matrix permanents. As a result, our calculations indicate that
boson sampling verification with such large n values is not
impossible, provided one has fast, high-efficiency detectors.

II. CHARACTERISTIC FUNCTION FORMALISM

We start with a result [32,33] from quantum optics: any
bosonic correlation function is obtainable from the normally
ordered quantum characteristic function,

χ (ξ ) = 〈: eξ ·â†−ξ∗·â :〉Q. (1)

Here, 〈Ô〉Q ≡ Tr[ρ̂Ô] is a quantum average, which we
calculate using a generalized P representation [34]. This
approach extends the Glauber P function [35], giving a
distribution P (α,β) over are two m-component complex
vectors, which exists for any m-mode bosonic state ρ̂. The
quantum characteristic function is then obtained from [36]

χ (ξ ) = 〈χ (ξ |α,β)〉P
=

∫
P (α,β)χ (ξ |α,β)dμ(α,β), (2)

where dμ(α,β) is the integration measure, χ (ξ |α,β) ≡
exp (ξ · β − ξ ∗ · α) is the conditional characteristic function
for ξ given a particular quantum phase-space trajectory α,β,
and 〈〉P is a phase-space average.

Transmission through a linear network changes the input
density matrix ρ̂(in) to an output density matrix ρ̂(out). An
amplitude transmission matrix T transforms the coherent
amplitudes [37], so that α(out),β (out) = T α, T ∗β. The output
characteristic χ (out) now depends on the input phase-space
amplitude α,β as:

χ (out)(ξ |α,β) = eξ ·T ∗β−ξ∗·Tα. (3)

To calculate the average scaling behavior, we consider the
case of T = √

tU , in which the unitary mode transformation
U of the photonic network is combined with an absorptive
transmission coefficient t , representing losses and detector
inefficiencies.

Unitary average of the characteristic function

We compute the average output correlations over all
possible unitaries, indicated by 〈〉U , from random matrix
theory [38]. This allows one to evaluate averages over the
unitary matrices in the conditional characteristic function,
χ (out) of Eq. (3). This result is obtained from considering the
identity (5.6) of Ref. [38]. For clarity we write the Fyodorov
identity using the notational conventions of the present paper,
where A∗ is a complex conjugate and A† ≡ AT ∗ is a Hermitian

(transposed) conjugate:

〈e−Tr[U (zA⊗ξ
†
A)+U †(zB⊗ξ

†
B )]〉U

= (m − 1)!
∞∑

j=0

[(ξ ∗
A · zB)(ξ∗

B · zA)]j

j !(m − 1 + j )!
, (4)

The above matrix integral identity allows us to evaluate the
average of the exponentials of the unitary matrices in the
conditional characteristic function, which only involves com-
plex matrices and vectors.

Making the substitutions of: zA ≡ −√
tα, ξA ≡ ξ , we find

that

Tr[U (zA ⊗ ξ
†
A)] = ξ ∗

A · UzA = −ξ ∗ · Tα. (5)

Similarly, with ξ ∗
B ≡ √

tβ, zB ≡ ξ , we have

Tr[U †(zB ⊗ ξ
†
B)] = zB · U ∗ξ ∗

B = ξ · T ∗β. (6)

Hence, we obtain the following conditional characteristic
function averaged over the unitary matrices:

〈χ (out)(ξ |α,β)〉U = 〈eξ ·T ∗β−ξ∗·Tα〉U

= (m − 1)!
∞∑

j=0

[−t |ξ |2β · α]j

j !(m − 1 + j )!
. (7)

The output photon statistics depend on phase-space av-
erages of the inner product β · α, which is the phase-space
equivalent of the total input photon number N̂ . In the
complex-P representation moments in phase-space correspond
to expectations of normally ordered operators. Therefore, on
phase-space averaging one obtains

〈(β · α)j 〉P = 〈: N̂j :〉(in)
Q , (8)

As a result, the characteristic function after unitary and
quantum averaging is

〈χ (out)(ξ )〉U = (m − 1)!
∞∑

j=0

(−t |ξ |2)j 〈: N̂j :〉(in)
Q

j !(m − 1 + j )!
. (9)

Simplifying this expression gives

〈χ (out)(ξ )〉U =
∞∑

j=0

fj |ξ |2j , (10)

where we have defined

fj = (m − 1)!〈: (−tN̂ )j :〉(in)
Q

j !(m − 1 + j )!
. (11)

The effect of unitary averaging is such that all output averages
are obtained solely from the total input photon number

moments, 〈: N̂j :〉(in)
Q , regardless of which input channels are

used.

III. UNITARY AVERAGE OF PHOTON-NUMBER COUNTS

Photon-number correlations, as commonly measured ex-
perimentally, are obtained from taking derivatives of the
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photon-number generating function [39],

G(γ ) ≡ T r

(
ρ̂

∏
i

(1 − γi)
n̂i

)
. (12)

We wish to obtain the expression for Pn|m, which is the
unitary average probability of observing one photon in each
of n specified output channels, given an n-photon input and an
m-mode network. This probability is obtained using photon-
number correlations, which can be calculated from taking
derivatives of the photon-number generating function G(γ )
in the output modes. We first obtain the general expression
for any output photon-number correlation, using the result
of Sec. II. Next, we will compare this with unitary averages
of permanents, which is the well-known result for photon
correlations in a lossless, unitary photonic network.

A. Average photon-number-generating function

The general relationship between photon-number generator
and characteristic function is given by [40]:

G(γ ) =
∫ ∫ ∏

i

[
1

πγi

exp

(−|ξi |2
γi

)]
χ (ξ )d2mξ .

(13)

Next, substituting in the above expression with Eq. (9) we get
for the m-mode case:

〈G(γ )〉U =
∫

〈χ (out)(ξ )〉U exp

(
m∑

i=1

−|ξi |2
γi

)
m∏

i=1

d2ξi

πγi

.

(14)

Changing variables to polar coordinates with Ri = |ξi |2/γi

gives us:

〈G(γ )〉U =
∫

〈χ (out)(ξ )〉U exp

(
−

m∑
i=1

Ri

)
m∏

i=1

dRi. (15)

We now expand the unitary average expression obtained above
for χ (ξ ) as a function of Ri , with the substitution:

〈χ (out)(ξ )〉U =
∞∑

j=0

fj |ξ |2j =
∞∑

j=0

fj

[
m∑

i=1

γiRi

]j

, (16)

and hence obtain the unitary average:

〈G(γ )〉U =
∞∑

j=0

fj

∫ [
m∑

i=1

γiRi

]j

exp

(
−

m∑
i=1

Ri

)
m∏

i=1

dRi.

(17)

This is integrated using the multinomial expansion of the
term in brackets,[

m∑
i=1

γiRi

]j

= j !
∑

p,
∑

pk=j

γ
p1
1 . . . γ

pm
m

(p1!) · · · (pm!)
, (18)

followed by a product of integrals over each radial coordinate
Rj , so that:

〈G(γ )〉U =
∞∑

j=0

fjj !
∑

p,
∑

pk=j

γ
p1
1 . . . γ pm

m . (19)

Therefore we finally obtain:

〈G(γ )〉U = (m − 1)!
∞∑

j=0

(−t2)j 〈: N̂j :〉
(m − 1 + j )!

×
∑

p,
∑

pk=j

γ
p1
1 . . . γ pm

m . (20)

Next we consider a specific case: an n-photon input number
state with

〈: N̂j :〉(in)
Q = n!/(n − j )!, (21)

so the sum in Eq. (9) vanishes for j > n. This is a consequence
of photon-number conservation and the purely absorptive loss
reservoirs, which we assume here for simplicity. In this case
we get the result:

〈G(γ )〉U = (m − 1)!
n∑

j=0

(−t2)jn!

(n − j )!(m − 1 + n)!

×
∑

p,
∑

pk=j

γ
p1
1 . . . γ pn

n . (22)

This is a general expression for unitary averages given an
n-photon input number state. This central result is completely
general, describing any unitarily averaged photon correlation
measured in lossy photonic networks with arbitrary inputs and
outputs.

In the case of most interest for boson sampling, we obtain
the average probability of observing one photon in each of a
set of n specified output modes with an n-photon input and
an m-mode network, Pn|m. This is found on taking n first
derivatives of 〈G(γ )〉U , so that:

Pn|m = tn(m − 1)!n!

(m − 1 + n)!
= tn

[
Cm+n−1

n

]−1
. (23)

B. Averages using the permanent

We can also calculate these results following the route of
calculating unitary averages over permanents. The permanent
is a sum over all permutations σ of the matrix indices of the
product of n terms, in which neither row nor column indices
are repeated. It is an exponentially hard object to compute,
and is one of the fundamental quantities addressed in boson
sampling theory and in linear optical networks [41,42]. We
note that the results in this section are somewhat less general,
as they are restricted to number state inputs and outputs. For a
pure, unitary state evolution, the photon counting probability
is known to be the averaged permanent of a submatrix,
〈|perm(Un|m)|2〉, where Un|m is any n × n submatrix of U [43].

More generally, we can see from the above results that one
can simply replace Un|m → Tn|m, so as to include losses.

We now show that Eq. (23) obtained above can also be
obtained from permanents of T . The permanent of a submatrix
of T is obtainable [44] from the permanental polynomial,
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which has similarities with moment-generating functions. This
is given by:

p(x) = perm(xI − T ) ≡
m∑

n=0

bnx
m−n. (24)

Next, we consider how to compute the unitary average of
products of the permanents. This is achieved through another
elegant result from random matrix theory [38]. The unitary
average of permanental polynomials in Eq. (24) is

〈p(x)p(y)∗〉U = m!(m—1)!
m∑

j=0

t j (xy∗)m−j

(m − j )!(m − 1 + j )!
.

(25)

If ω(n) = (ω1, . . . ωn) where ω1 < ω2 . . . < ωn, we can define
an n × n submatrix Tω ≡ Tωiωj

. The coefficients of this
polynomial are simply the sums over the permanents of all
possible distinct submatrices:

bn = (−1)n
∑
ω(n)

perm(Tω(n) ). (26)

The number of submatrices in the sum has a multiplicity
given by the binomial coefficient Cm

n = m!/[n!(m − n)!],
corresponding to the different ways to choose the distinct
indices ωj . These indices have a straightforward physical
interpretation: they are the channel numbers of the input or
output modes of the photonic device.

The unitary averaged sum over all possible subpermanents
of this size is a ratio of two binomial coefficients, which we
define as Rn|m:∑

ω(n)

〈|perm(Tω(n) )|2〉U = Rn|m = tnm!(m—1)!

(m − n)!(m + n − 1)!
.

(27)

Taking account of the number of different permanents,
the final unitary averaged result is the same as in Eq. (23),
except so that Pn|m = 〈|perm(Tn|m)|2〉

U
. In the lossless limit of

t = 1, this result agrees with the bosonic birthday paradox
of Arkhipov and Kuperberg [31], derived using different
techniques. We note that these unitary averaged scaling
results for the permanents are analytic. This is important
since evaluating permanents of individual large matrices is an
exponentially hard problem; and even if it were feasible, there
are exponentially many submatrices to check for each unitary.

IV. SCALING RESULTS

We turn next to some limiting cases for large n, where
ln Pn|m ≈ nε for a scaling exponent ε. Details of the following
results are given in Appendix A. In all cases the limit is taken
at a fixed ratio of k = m/n, so both m and n are taken as large
integers.

A. Entire matrix

If the matrix is the entire transmission matrix, then n = m.
The scaling exponent is ε = ln (t/4), and

ln Pn|m ∼
n→∞ nε + 1

2 ln[4πn]. (28)

This result generalizes one of Fyodorov [38].

B. Gaussian limit

Next, take n � m, so that k  1. Standard methods for
approximating a binomial coefficient in this limit give the
scaling exponent ε = ln [t/(k + 1/2)] − 1, where k = m/n,
so that:

ln Pn|m ∼
n→∞ nε + 1

2 ln[2πn]. (29)

This is consistent with the fact that for large k, unitary
submatrices reduce to matrices with complex Gaussian random
entries [2,45].

C. General submatrix

For the general case, the scaling exponent is ε = ln t +
k ln k − (1 + k) ln(1 + k), and the asymptotic result is

ln Pn|m ∼
n→∞ nε + 1

2 ln[2πn(1 + 1/k)]. (30)

The exact result is plotted in Fig. 1, with different values of
k = m/n. The power law is so close that it cannot be told apart
from the exact result on this scale. For all numerical results, we
choose t = 1, since results in more realistic cases with losses
are readily obtained by adding ln t to the scaling exponents.

At large k values, one obtains the Gaussian limit of
Eq. (29). This gives an increasingly negative exponent, with
exponentially small count rates.

D. Numerical averages

To confirm and illustrate these scaling laws, in Fig. 2
we show the result of a numerical average over a finite,
random ensemble of unitary matrices, with S = 40000 unitary
samples. For k = m/n = 2 and n � 25 we plot relative
errors in the asymptotic approximation and a numerical
average, compared to the exact solution. To estimate statistical
error bars, we take an ensemble S, and divide it into

√
S

subensembles, giving subensemble means that are approxi-
mately Gaussian from the central limit theorem.

These are averaged, and the error in the mean σm is obtained
using standard techniques. The error bars are given in the
plots as ±σm. The results agree with the exact equation with

FIG. 1. Average subunitary permanent squared Pn|m with t = 1
for k = 1,2,4,6, with k = 1 at the top and k = 6 at the bottom.
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FIG. 2. Relative sampling errors in the subunitary permanent
squared Pn|m with t = 1 for k = 2. Numerical results for 40000
random unitaries (solid lines with error bars) are compared to exact
results (dashed lines) and the asymptotic power law form (dotted line)
for up to n = 25.

a relative error comparable to the sampling error bars. For the
plotted ratio of k = 2, the errors are around ±1% for over
20 orders of magnitude range of values, and we see that the
relative sampling error over unitaries is independent of matrix
size for n � 10.

While the scaling treated here—up to k = 6—is better than
in the Gaussian limit of k  1, it is a problem for boson
sampling verification. Even in the case of perfect efficiency, the
average permanent for a photon number of n = 25 is ∼10−30

with a submatrix ratio of k = 6. This is the probability of a
coincidence count. Hence, one needs 1030 samples to obtain
one count for a typical unitary. At a repetition rate of 109 Hz,
one would require 1021 s of measurement time for each count:
this is still not yet in the domain where classical computers
fail.

The cause here is many-body complexity. There are too
many quantum states possible. Monitoring the coincidence
channels for just one many-body state takes too long, even
though it is these counts that are of interest. This property,
although making verification hard, is also the most interesting
feature of these experiments. They give a uniquely controllable
access to a laboratory system in which one can unravel the
exponential complexity of a many-body system.

V. CHANNEL GROUPING

We now consider what happens when one groups multiple
output channels together, by using logic gate operations on the
detector circuits, as in a recent, pioneering experiment [7].
A large number of randomized sets of channels can be
combined, to obtain a unique distinguishing signature for each
unitary. We analyze particular verification tests using channel
combinations in another work [24]. Here we focus on the
maximum scaling improvement possible.

This has important advantages over many previous propos-
als. It increases count rates by exponentially large factors, and
may allow a test of the unitary output bitstream for permanents
larger than n = 50, beyond the present classical limits with the
fastest known supercomputers [21]. Yet, it is not restricted to
any particular unitary, reducing the chance that the test may

FIG. 3. Upper bound on count rates Rm
n for n photons occurring,

in any n output channels, for k = 2, . . . 6, with k = 6 at the top and
k = 2 at the bottom.

only work in special cases. One can also use the strategy in
edge cases such as Fourier matrices [12].

A. Grouped scaling laws

Our scaling laws predict the upper bound of the count-rate
gain that can be achieved through submatrix multiplicity. The
upper bound from channel grouping is given by Rn|m, in
Eq. (27). This has an exponent of λ = ln t + 2k ln k − (k −
1) ln(k − 1) − (k + 1) ln(k + 1), so that the scaling is (see
Appendix B for details):

ln Rn|m ∼
n→∞ nλ + 1

2
ln

[
k + 1

k − 1

]
. (31)

For the Gaussian limit of n,k  1, one finds that λ →
ln t − 1/k. Unlike the single coincidence case, the grouped
channel count rate is maximized for large k, rather than
minimized as before. The corresponding upper-bound result is
plotted in Fig. 3, for different values of k = m/n, again taking
t = 1 for simplicity. The improvement is greatest for large k

values, which are of most interest.

B. Physical estimates

What kind of count rates can be obtained if we extrapolate
current technologies? Recently developed superconducting
nanowire single-photon detectors have an upper efficiency
limit of 90%, and a bandwidth limit of 109 s−1 [46]. These
parameters give a best case scaling exponent of λ = −0.2
at k = 10, and an upper count rate limit of around 1s−1 at
n = 100. This count rate would be enough to gather good
statistics in a reasonable time, for a device much too large to
classically emulate.

Thus, while boson sampling experiments still require much
progress in state preparation and optical fabrication, we can
see that verification of the quantum properties of these devices
at large n, using channel grouping, does appear achievable as
the technology improves.

At a more fundamental level, it is an intriguing result,
mathematically and physically, that the quantum Galton’s
board has a close relationship with the binomial coefficients
normally found in classical combinatorics. How can we
interpret this result?
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Suppose that we replaced the photonic network, equivalent
to a unitary transformation, by an updated Galton’s board
device, which simply switched the photons from the n input
channels to the n output channels in a random way. This would
not involve interference, and would have a similar behavior to
a mechanical board, apart from an increased number of inputs.

Under these conditions, the average probability of all counts
occurring in a preselected set of n output channels is an inverse
binomial [Cm

n ]−1. We now see a truly remarkable result. Apart
from losses, the quantum Galton’s board has, on averaging
over all unitaries, identical output coincidence probabilities to
a classical Galton’s board with a number of channels given by
m̃ = m + n − 1.

In other words, the fact that photons can bunch—one
channel may carry up to n photons—has a similar effect on
the output statistics as if the device were classical, but with
n − 1 additional channels available. These virtual channels
represent, on average, the additional output possibilities
available owing to the fact that several bosons can occupy
the same mode, and hence occur in the same channel. This is
the large-scale consequence of the Hong-Ou-Mandel effect in
quantum optics [47,48].

It is this additional, virtual channel capacity that allows
more quantum information to be transmitted in a quantum
photonic network than is feasible if each channel was used
separately, with one bit per channel. Such extra capacity is
a fundamental and important property of quantum photonic
networks [30].

VI. CONCLUSIONS

In summary, the unitary average of count-rates in photonic
networks has some interesting properties. Each computation
of a coincidence rate requires knowledge of an exponentially
complex permanent with no simple closed-form expression.
One might imagine that taking an average over all possible
unitaries would only make things harder. Yet the average
over the unitary ensemble is just as simple as the closed-form
expression applicable to a type of classical Galton’s board.

This of course is only true on average. While guiding us
to an understanding of scaling behavior, the knowledge of
unitary averages does not change the underlying exponential
hardness of boson sampling. We use these scaling laws to show
that channel grouping strategies can lead to count rates that
are within the range of current photon-counting technology,
even for photon numbers as large as n = 100, far beyond
current computational limits for exact permanents. We show
in another work [24] how these results can be extended to a
full verification of boson sampling. Our results are applicable
to all linear quantum photonic networks, for any input state.
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APPENDIX A: SCALING RESULTS

In this section we provide the derivation of Eqs. (28)–(30)
of the main text, which give the scaling exponents. Here we

consider limiting cases for large n, of the expression for Pn|m,
where we recall that

Pn|m = tn(m − 1)!n!

(m − 1 + n)!
= tn

[
Cm+n−1

n

]−1
. (A1)

The limit is taken at a fixed ratio of k = m/n, so both m and
n are large integers.

1. Entire matrix

This case corresponds to n = m. Hence, from Eq. (A1)
and using Stirling’s approximation n! ≈ √

2πn(n/e)n as well
as the simple manipulations (n − 1)! = n!/n and (2n − 1)! =
(2n)!/2n we obtain:

Pn|m = tn(n − 1)!n!

(2n − 1)!
= 2tn(n!)2

(2n)!
≈ 2tn

√
πn

4n
. (A2)

On taking natural logarithms and defining ε = ln(t/4):

ln Pn|m ∼
n→∞ nε + 1

2 ln[4πn]. (A3)

This is Eq. (28) of the main text. In the lossless case this result
generalizes Eq. (5.14) of Ref. [38], by giving the logarithmic
correction to the leading exponent.

2. Gaussian limit

This case corresponds to n � m, k  1, and m = kn. Here
we use the following identity for approximating the binomial
coefficient in the limit of p  n:(

p

n

)
≈ (p/n − 0.5)nen

√
2πn

. (A4)

On simplifying and taking natural logarithms we get Eq. (29)
of the main text:

ln Pn|m ∼
n→∞ n

(
ln

[
t

k + 0.5

]
− 1

)
+ 1

2
ln[2πn]. (A5)

3. General submatrix

This case corresponds to m = kn and n  1, so that we
get:

Pn|m = tn(m − 1)!n!

(m − 1 + n)!

∼
n→∞ tn

√
2πn(m − 1)

m − 1 + n

nn(m − 1)m−1

(m + n − 1)m+n−1
. (A6)

On taking natural logarithms we get:

ln Pn|m ∼
n→∞ n ln t + 1

2
ln

[
2πn(m − 1)

m − 1 + n

]

+ n ln n + (m − 1) ln[m − 1]

− (m + n − 1) ln[m + n − 1]. (A7)

Next we use the following identity ln [x ± 1] = ln x + ln(1 ±
1/x). On dropping terms of the form 1/n and 1/m we get:

ln Pn|m ∼
n→∞ n ln t + 1

2 ln[2πnm(m + n)] + n ln n

+ (m − 1) ln[m] − (m + n) ln[m + n]. (A8)
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Simplifying this, and using that m = kn:

ln Pn|m ∼
n→∞ = n[ln t + k ln k − (1 + k) ln(1 + k)]

+ 1
2 ln[2πn(1 + 1/k)]. (A9)

This is Eq. (30) of the main text.

APPENDIX B: CHANNEL GROUPING SCALING

In this section we provide the derivation of Eq. (31) of
the main text, in the limiting case for large n, of Rn|m. For
reference, this expression is given below:

Rn|m = tnm!(m—1)!

(m − n)!(m + n − 1)!
. (B1)

We wish to obtain an expression in the limit of n  1
and m = kn. We start by using Stirling’s approximation
n! ≈ √

2πn(n/e)n, which gives:

Rn|m = tnm!(m—1)!

(m − n)!(m + n − 1)!

∼
n→∞ tn

√
m(m—1)

(m − n)(m + n − 1)

× mm(m—1)(m—1)

(m − n)(m—n)(m + n − 1)(m+n−1)
. (B2)

On taking natural logarithms we obtain:

ln Rn|m ∼
n→∞ n ln t + 1

2
ln

[
m(m—1)

(m − n)(m + n − 1)

]
+m ln m + (m − 1) ln[m − 1]

−(m − n) ln[m − n]

− (m + n − 1) ln[m + n − 1]. (B3)

Using that ln [x ± 1] = ln x + ln(1 ± 1/x) and simplifying
terms, gives:

ln Rn|m ∼
n→∞ n ln t + 1

2
ln

[
(m—1)(m + n − 1)

(m − n)m

]

+ 2m ln m + (m − 1) ln

[
1 − 1

m

]
− (m − n) ln[m − n] − (m + n)

×
(

ln[m + n] + ln

[
1 − 1

m + n

])
. (B4)

On dropping terms of order 1/m and 1/(m + n) and using
that m = kn we get:

ln Rn|m ∼
n→∞ n ln t + 1

2
ln

[
(m—1)(m + n − 1)

(m − n)m

]
+ 2m ln m − (m − n) ln[m − n]

− (m + n) ln[m + n]

= 1

2
ln

[
(kn—1)(kn + n − 1)

(kn − n)kn

]
+ n ln t + n[2k ln k − (k − 1) ln[k − 1]

− (k + 1) ln[k + 1]]. (B5)

The term 1
2 ln [ (kn—1)(kn+n−1)

(kn−n)kn
] can be simplified by using the

identity ln [x ± 1] = ln x + ln(1 ± 1/x) and dropping terms of
the form 1/kn and 1/(k + 1)n; hence, we now obtain

1

2
ln

[
(kn—1)(kn + n − 1)

(kn − n)kn

]
∼

n→∞
1

2
ln

[
k + 1)

k − 1

]
. (B6)

Substituting the above expression in Eq. (B5) gives the final
result:

ln Rn|m ∼
n→∞ n ln t + 1

2
ln

[
k + 1

k − 1

]
+ n[2k ln k

− (k − 1) ln[k − 1] − (k + 1) ln[k + 1]].

(B7)

This corresponds to Eq. (31) of the main text.
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