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Quantum error correction against photon loss using multicomponent cat states
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We analyze a generalized quantum error-correction code against photon loss where a logical qubit is encoded
into a subspace of a single oscillator mode that is spanned by distinct multicomponent cat states (coherent-state
superpositions). We present a systematic code construction that includes the extension of an existing one-photon-
loss code to higher numbers of losses. When subject to a photon loss (amplitude damping) channel, the encoded
qubits are shown to exhibit a cyclic behavior where the code and error spaces each correspond to certain multiples
of losses, half of which can be corrected. As another generalization we also discuss how to protect logical qudits
against photon losses, and as an application we consider a one-way quantum communication scheme in which
the encoded qubits are periodically recovered while the coherent-state amplitudes are restored as well at regular
intervals.
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I. INTRODUCTION

Photons are fundamental carriers of quantum information.
Traveling at the speed of light, they are the optimal choice
for quantum communication. In the form of photonic qubits,
each encoded into two orthogonal polarizations, they allow
for a simple way to reach any point on a single qubit’s Bloch
sphere through polarization rotations. Nonetheless, there are
also disadvantages when quantum information is encoded
into single photons. Two-qubit operations acting jointly on
two photons are notoriously hard to achieve and require
nonlinear interactions. The biggest drawback for quantum
communication, however, is that photons get quickly absorbed
along a communication channel such as an optical fiber.
This prevents the immediate use of simple photonic qubits
for long-distance quantum communication (with distances of
500–1000 km or more).

There have been several proposals of quantum error-
correction (QEC) codes to protect photonic qubits against the
effect of photon loss [1–3]. Some of these codes make use of an
extra number of modes, while each mode contains either zero
or one photon [4–6]. Other codes do not require a large number
of modes, but instead include the possibility of having more
than just one photon in every mode [1]. Yet other loss codes are
intermediate in terms of mode and photon number [7]. Among
all these codes, in general, the total mean photon number
determines the loss scaling of the code: The more photons there
are in the encoded states, the more likely some photons will
get lost; i.e., the loss rate goes up. On the other hand, for a fixed
mode number, the inclusion of more photons leads to larger
Hilbert (sub)spaces and the possibility of correcting higher or-
ders of losses. For codewords with a fixed total photon number
N , typically

√
N − 1 photon losses can be exactly corrected

[1,6,7]. In general, however, there are no simple and efficient
schemes to implement such higher-order photonic loss codes.

Another approach to optical, loss-adapted QEC is to encode
a logical qubit into a single oscillator mode [8–10]. Such a
code can make explicit use of the infinite-dimensional Hilbert
space already available with just one optical, physical mode.
By sticking to a finite-dimensional (logical qubit) code space,
such codes also circumvent existing no-go results for efficient
QEC of logical continuous-variable Gaussian states encoded

into physical, multimode Gaussian states [11–15] and subject
to Gaussian error channels [16,17]. The qubit-into-oscillator
codes are approximate codes based on nonorthogonal code-
words that become perfect for infinite squeezing [8] or for
infinitely large coherent-state amplitudes [9,10]. Note that
the GKP code with codewords as superpositions of position
(quadrature) eigenstates [8] is a universal code, whereas
the cat code with codewords as even cat states (that is
superpositions of even photon numbers) [9,10] is specifically
adapted to photon loss errors. Recently, also the concept of an
approximate single-mode bosonic code was introduced whose
codewords are finite superpositions of certain multiples of the
photon number [20].

The possibility of a generalization of the one-loss cat code
[9,10] to higher losses has been briefly mentioned a couple of
times in the literature (see the Conclusions of Ref. [10] and
Sec. 4.2 on page 6 of the Supplementary Information of
Ref. [21]), including a few more detailed hints about the
conceptual character of such an extension in a very recent
publication (Fig. 1 on page 5 and Sec. VI B on page 11
of Ref. [20]). However, as far as we know there is no
detailed analysis of a generalized code that includes a complete
and systematic definition of the codewords as well as a
quantitative performance assessment of the code in a full
amplitude-damping channel. Here we present such an analysis.
We will give a very compact definition of the codewords in
terms of eigenvalue equations, expressed in terms of powers of
the mode annihilation operators, for any loss order. This way
we will also define the canonical codewords for the respective
error spaces which satisfy the same eigenvalue equations, but
differ from the code space codewords and the codewords from
the other error spaces in their (generalized) number parities.
Thus, a certain instance of the cat code (corresponding to
a certain coherent-state amplitude α, a certain loss order L,
and also a certain logical dimension d for general logical
qudits living in the code and error spaces) is defined by two
sets of eigenvalue equations: one to determine the space (and
hence the error syndrome) and another one to define (together
with the former set) the codewords. We will demonstrate that
for the right choice of codewords there is no deformation
of the initial logical qubit (not even for small coherent-state
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amplitudes, in which case, however, the codewords begin to
overlap significantly). This no-deformation property results in
a rather simple and well structured output density matrix when
the encoded state is subject to a complete loss channel. This
feature is also similar to the cyclic behavior of the one-loss
code in the simplified photon-annihilation (“photon-jump”)
error model [9,10], but here extended to higher losses and for
the full, physical amplitude-damping channel.

The paper is structured as follows. In Sec. II, we start
with a discussion of the known one-loss code [9,10] and its
properties when subject to individual photon-loss events as
well as its behavior in a full loss channel. A generalization of
this code to higher numbers of losses is presented in Sec. III,
again including a discussion of its behavior under the two
manifestations of photon loss (single loss events and full
channel). Coherent-state superpositions with sufficiently many
components may also be utilized to encode logical quantum
information beyond qubits in so-called qudits [22], and we
will determine the conditions for such qudit cat codes adapted
to one and more losses of photons in Sec. IV. In Sec. V, as
an example for an application and in order to illustrate how
the loss codes can be used for a quantum information task, we
consider a one-way quantum communication scheme, in which
an encoded qubit is sent along a quantum channel while being
recovered at regular intervals to preserve the qubit information
until the end of the channel. The channel here is assumed to
cover a rather long distance (such as 1000 km as a typical
distance in long-distance quantum communication), and in
addition to the qubit recoveries we also show how the decay
of the coherent-state amplitude can be, in principle, dealt with
as well for such a large total distance. After the Conclusions
we present several appendices that include additional technical
details and explanations.

II. ONE-LOSS CAT CODE

It is rather well known that there is a twofold effect when
a cat state, i.e., a superposition of two distinct coherent
states such as ∝|α〉 + | − α〉 is subject to a full photon-loss
(amplitude-damping) channel. On the one hand, the coherent-
state amplitude α in each term is attenuated depending on
the channel transmission parameter,

√
γα, corresponding to

an exponential amplitude decay with distance. On the other
hand, a random phase flip occurs that incoherently mixes
the initial cat state with its phase-flipped version, such as
∝|α〉 − | − α〉, where the flip probability also depends on
the channel transmission γ and on the initial amplitude α.
In a cat-state qubit encoding [23,24], a loss-induced phase
flip of a logical qubit could be corrected when the qubit is
encoded into an additional layer of a multiqubit repetition
code composed of three or more logical cat qubits (i.e., by
adding two or more physical oscillator modes) [3,25,26]. A
conceptually more innovative approach, however, would stick
to a single oscillator mode and instead exploit more than just
two (near-)orthogonal coherent-state components of that mode
(i.e., exploiting a manifold with dimension larger than two
in the oscillator’s phase space). While it is obvious that this
approach enables one to reach higher dimensions, it is not
immediately clear how this can provide protection against
photon losses. In Refs. [9,10], however, it was shown that

by constructing two (near-)orthogonal codewords, both in the
form of even cat states (those with only even photon-number
terms), a logical qubit can be encoded that remains intact
under the effect of a lost photon, as the qubit is then mapped
onto an orthogonal error space that is spanned by two (near-)
orthogonal codewords, both in the form of odd cat states (those
with only odd photon-number terms).

Formally, for the even cat code given in [9,10], the basic
codewords are certain +1 eigenstates of the number parity
operator (−1)n̂,

|0̄+〉 = 1√
N+

(|α〉 + | − α〉), |1̄+〉= 1√
N+

(|iα〉 + | − iα〉),
(1)

with normalization constant N± = 2 ± 2 exp(−2α2) (N− for
later). Throughout we assume α ∈ R. By writing the coherent
states in the Fock basis, one can easily confirm that both
codewords have only even photon-number terms,

|0̄+〉 = 2e−α2/2

√
N+

(
|0〉 + α2

√
2
|2〉 + α4

2
√

6
|4〉 + · · ·

)
,

|1̄+〉 = 2e−α2/2

√
N+

(
|0〉 − α2

√
2
|2〉 + α4

2
√

6
|4〉 − · · ·

)
. (2)

These two so-called even cat states are, in general, not
orthogonal, but for large α, as e−α2/2αk → 0, an infinite
superposition of nearly equally weighted even-number states is
obtained for each codeword, |0̄+〉 ∝ |0〉 + |2〉 + |4〉 + · · · and
|1̄+〉 ∝ |0〉 − |2〉 + |4〉 − · · · , and thus 〈0̄+|1̄+〉 ≈ 0 (notice
the alternating sign in |1̄+〉). For general α, their overlap is
(see Appendix B)

〈0̄+|1̄+〉 = 1

N+
(〈α|iα〉 + 〈α| − iα〉+〈−α|iα〉+〈−α|−iα〉)

= cos(α2)

cosh(α2)
, (3)

which indeed goes to zero in the limit α → ∞. Instead of the
codewords in Eq. (1), as an alternative qubit basis, we may
also use the two orthogonal states

|0̄+ ± 1̄+〉 = 1√
N ′±

(|α〉 + | − α〉 ± |iα〉 ± | − iα〉), (4)

which span the same (even) code space as {|0̄+〉,|1̄+〉} do
and hence represent the same (even) cat code (N ′

± are some
normalisation constants). Their exact orthogonality (for any
α) can be immediately seen in the Fock basis:

|0̄+ + 1̄+〉 = 4e−α2/2√
N ′+

(
|0〉 + α4

2
√

6
|4〉 + α8

24
√

70
|8〉 + · · ·

)
,

|0̄+ − 1̄+〉 = 4e−α2/2√
N ′−

(
α2

√
2
|2〉 + α6

12
√

5
|6〉

+ α10

720
√

7
|10〉 + · · ·

)
. (5)

Here we refer to the nonorthogonal codewords |0̄+〉 and
|1̄+〉 as the (approximate) logical Pauli-Z̄ basis, and in this
sense, the states |0̄+ ± 1̄+〉 can be thought of as a logical
Pauli-X̄ basis obtained by taking an equally weighted sum or
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difference of the two Z̄ eigenstates. This is similar to the cat-
qubit encoding of Ref. [24] when two nonorthogonal phase-
rotated coherent states {|±α〉} form the computational Z̄ basis,
while the two orthogonal even and odd cat states {|α〉 ± |−α〉}
correspond to the Hadamard-transformed, logical X̄ basis (this
encoding, however, does not represent a loss code that makes it
possible to correct a certain nonzero number of photon losses,
and it corresponds to the 0th order of our family of generalized
cat codes; see next section).

Although {|0̄+〉,|1̄+〉} and {|0̄+ ± 1̄+〉} represent the same
code, we will see that, nonetheless, the choice of codewords,
for example the Z̄ or X̄ basis, does make a difference when
assessing the code’s performance in a physical loss channel.
This is related to the fact that the code is an approximate code,
for which there is not a clear distinction between correctable
errors (exactly satisfying the Knill-Laflamme (KL) conditions
[27]; see Appendix A) and uncorrectable errors (violating the
KL conditions) like for an exact code. For the approximate cat
code, those errors that are, in principle, correctable may still
give violations of the KL conditions; however, these violations
go away in the limit of large amplitudes α. For general α

values, it then depends on the choice of codewords as to what
particular KL conditions are violated and, as a result, what
particular logical errors occur. These logical errors reduce the
(input-state-dependent qubit) fidelity, which is further reduced
by the uncorrectable errors (which remain uncorrectable even
when α → ∞ and which occur more frequently when α is
large; see below).

As one type of violation of the KL conditions can be avoided
at least in the 0th order (i.e., the orthogonality condition of the
initial codewords) for the basis {|0̄+ ± 1̄+〉}, independently of
α, it appears beneficial to choose this basis. However, for finite
α, these codewords lead to a deformation of the logical qubit;
i.e., the norms of the codewords after an otherwise correctable
error (such as a one-loss error for the one-loss code) change
depending on the specific codeword. This latter effect of
qubit deformation turns out to be highly undesirable when the
full photon-loss channel is considered and so our choice of
codewords will be the nonorthogonal {|0̄+〉,|1̄+〉} basis. These
codewords do not lead to a qubit deformation; i.e., the change
in the norm of either codeword after a one-loss error (or any
other correctable error such as 0,4,8,12, . . . or 5,9,13, . . . losses
of photons, see below) is independent of the codeword for
any α. This no-deformation property of the codewords means
that the nice cyclicity feature of the cat code for a simplified,
unphysical photon-loss error model, as we discuss next, can
be effectively taken over to the physical model of a full loss
channel. The only remaining effects that have to be dealt with
then come from the nonorthogonality of the codewords |0̄+〉
and |1̄+〉 before and after an error (i.e., in the code and the
error spaces, as it becomes manifest through violations of the
corresponding KL conditions). In Appendix B we present a
detailed discussion of the KL criteria for the various error
models.

In order to understand the behavior of the codewords under
photon loss, it is conceptually useful to first model the effects
of the channel by individual photon loss and simply apply
the annihilation operator â to the codewords. Higher losses
are analogously represented by higher powers of â. It also
turns out to be advantageous to look at even and odd powers

separately,

â2k|0̄+〉 = α2k 1√
N+

(|α〉 + | − α〉),

â2k|1̄+〉 = (−1)kα2k 1√
N+

(|iα〉 + | − iα〉),

â2k+1|0̄+〉 = α2k+1 1√
N+

(|α〉 − | − α〉),

â2k+1|1̄+〉 = i(−1)kα2k+1 1√
N+

(|iα〉 − | − iα〉), (6)

where k = 0,1,2, . . . . According to this simplified loss model,
a logical qubit of the (unnormalized) form |ψ̄〉 = a|0̄+〉 +
b|1̄+〉 evolves cyclically into the following four (unnormal-
ized) states [9,10],

|ψ̄〉4k = a|0̄+〉 + b|1̄+〉,
|ψ̄〉4k+1 = a|0̄−〉 + ib|1̄−〉,
|ψ̄〉4k+2 = a|0̄+〉 − b|1̄+〉,
|ψ̄〉4k+3 = a|0̄−〉 − ib|1̄−〉, (7)

depending on whether the number of lost photons is 0,4,8, . . .

or 1,5,9, . . . or 2,6,10, . . . or 3,7,11, . . ., respectively. Here
we defined the nonorthogonal basic codewords for the error
space as

|0̄−〉 = 1√
N−

(|α〉 − | − α〉),

|1̄−〉 = 1√
N−

(|iα〉 − | − iα〉), (8)

which are two so-called odd cat states with only odd photon-
number terms,

|0̄−〉 = 2e−α2/2α√
N−

(
|1〉 + α2

√
6
|3〉 + α4

2
√

30
|5〉 + · · ·

)
,

|1̄−〉 = 2e−α2/2iα√
N−

(
|1〉 − α2

√
6
|3〉 + α4

2
√

30
|5〉 − · · ·

)
. (9)

Again, these two codewords approach an orthogonal qubit
basis, this time in the odd-parity error space, when α is
sufficiently large (notice the alternating sign in |1̄−〉 inherited
from |1̄+〉). In fact, the overlap between |0̄−〉 and |1̄−〉 is

〈0̄−|1̄−〉 = 1

N−
(〈α|iα〉 − 〈α| − iα〉−〈−α|iα〉+〈−α| − iα〉)

= i sin(α2)

sinh(α2)
, (10)

which again can be made arbitrarily small by increasing α.
The code and error spaces can be characterized by their
photon-number parity (even/odd) and thus are perfectly dis-
tinguishable. However, there can be uncorrectable phase-flip
errors of the logical qubit when it is mapped back to the
even code space after half a cycle, |ψ̄〉4k+2 = a|0̄+〉 − b|1̄+〉,
or when it is mapped again onto the odd error space before
the end of a cycle, |ψ̄〉4k+3 = a|0̄−〉 − ib|1̄−〉. Otherwise, the
qubit remains intact either in the code space, |ψ̄〉4k = a|0̄+〉 +
b|1̄+〉, or in the error space, |ψ̄〉4k+1 = a|0̄−〉 + ib|1̄−〉 (in
which case it is transformed by a known and fixed phase gate).
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Once the parity is detected, the qubit is recovered and no
further correction step is needed. The uncorrectable errors lead
to a nonunit fidelity, when the actual physical loss channel is
considered, which we do next.

Photon loss, for example occurring in an optical fiber, is
described by the amplitude-damping (AD) channel [1]. In the
single-mode AD model, the loss of exactly k photons can be
expressed by a nonunitary error operator,

Ak =
∞∑

n=k

√(
n

k

)√
γ

n−k
√

1 − γ
k|n − k〉〈n|

=
√

(1 − γ )k

k!
√

γ
n̂
âk, (11)

∀ k ∈ {0,1, . . . ,∞} and with the number operator n̂ = â†â in√
γ n̂, which describes the amplitude decay. The probability

of losing one photon is 1 − γ , which is, for instance, related
to the length of the path the photon travels through an optical
fiber [28]. Furthermore, note that

∑∞
k=0 A

†
kAk = 1. The action

of AD on an arbitrary input state ρ is

ρ → ρf =
∞∑

k=0

AkρA
†
k. (12)

The full loss channel is now a (complete-positive) trace-
preserving map that incorporates all possible individual
photon-loss events as well as the effect of amplitude decay.

Let us now study the action of AD on the encoding in
Eq. (1). The somewhat lengthy calculations are presented in
Appendix B and the channel evolution of a normalized logical
qubit |ψ̄〉 is found to be

ρ̄ = p̃0

⎡⎣ a |̃0+〉 + b|̃1+〉√
1 + 2 Re(ab∗) cos(γα2)

cosh(γα2)

⎤⎦× H.c.

+p̃1

⎡⎣ a |̃0−〉 + ib|̃1−〉√
1 − 2 Re(ab∗) sin(γα2)

sinh(γα2)

⎤⎦× H.c.

+p̃2

⎡⎣ a |̃0+〉 − b|̃1+〉√
1 − 2 Re(ab∗) cos(γα2)

cosh(γα2)

⎤⎦× H.c.

+p̃3

⎡⎣ a |̃0−〉 − ib|̃1−〉√
1 + 2 Re(ab∗) sin(γα2)

sinh(γα2)

⎤⎦× H.c. (13)

The statistical weights in this mixture are given by

p̃0 =
1 + 2 Re(ab∗) cos(γα2)

cosh(γα2)

1 + 2 Re(ab∗) cos(α2)
cosh(α2)

p0,

p̃1 =
1 − 2 Re(ab∗) sin(γα2)

sinh(γα2)

1 + 2 Re(ab∗) cos(α2)
cosh(α2)

p1,

p̃2 =
1 − 2 Re(ab∗) cos(γα2)

cosh(γα2)

1 + 2 Re(ab∗) cos(α2)
cosh(α2)

p2,

p̃3 =
1 + 2 Re(ab∗) sin(γα2)

sinh(γα2)

1 + 2 Re(ab∗) cos(α2)
cosh(α2)

p3, (14)

where

p0 = cosh(γα2)

2 cosh(α2)
{cos[α2(1 − γ )] + cosh[α2(1 − γ )]},

p1 = sinh(γα2)

2 cosh(α2)
{sin[α2(1 − γ )] + sinh[α2(1 − γ )]},

p2 = cosh(γα2)

2 cosh(α2)
{− cos[α2(1 − γ )] + cosh[α2(1 − γ )]},

p3 = sinh(γα2)

2 cosh(α2)
{− sin[α2(1 − γ )] + sinh[α2(1 − γ )]},

(15)

are the loss probabilities for the individual codewords. The
states in the mixture above are damped compared to the input
states (α → √

γα), which is denoted by the transition |0̄+〉 →
|̃0+〉, etc., throughout. Although the complex coefficients of the
logical input qubit state are normalized as usual, |a|2+|b|2 =1,
note that because of the finite overlap between the codewords
in the code and error spaces, an extra factor depending on
the input qubit state occurs in the statistical weights. This
is also related to the fact that the encoding is not an exact
quantum error-correction code, but only an approximate one
(see Appendix A). The channel output state ρ̄ in Eq. (13)
still reflects the cyclic behavior of the code [29] under
individual photon-loss events owing to the use of the Z̄-basis
codewords for the logical qubit (thus, avoiding its deformation
and a resulting mixture of infinitely many deformed qubits
corresponding to infinitely many different loss events). The
choice of the logical basis becomes irrelevant only when
α → ∞ [30]. Besides the damping of α, an uncorrectable
phase flip occurs whenever 2,6,10, . . . or 3,7,11, . . . photons
are lost. Any other loss errors belong to the correctable set.

The error correction works by a Quantum Non-Demolition
measurement (QND)-type parity measurement which distin-
guishes between even and odd photon numbers. For this
encoding, the probability to correctly identify the error
syndrome is the sum of the statistical weights of the correctable
components in the mixture,

F (a,b) = p̃0(a,b) + p̃1(a,b). (16)

The worst-case fidelity Fwc is then lower bounded as

Fwc � min
a,b

F (a,b) ≡ F. (17)

This bound F is the minimum of the total probability of
correctable errors over all input states. How this lower bound
can be understood is explained in Appendix C.

The bound F for the one-loss cat code [for a balanced
logical qubit minimizing F (a,b), see Appendix C] is shown
in Fig. 2. The actual Fwc is at least as large as plotted there, so
that the minimal performance can be inferred. The statistical
weights from Eq. (14) are shown in Fig. 1, also for a balanced
logical qubit.

III. GENERALIZED CAT CODES

Let us now generalize the one-loss code to include higher
losses and state the defining equations for the codewords |0̄〉
and |1̄〉 of an approximate qubit QEC code that is capable of
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P

FIG. 1. Statistical weights for α = 2 and a = b = 1√
2

(from top
to bottom at γ = 1): p̃0 (red), p̃1 (green), p̃2 (blue), p̃3 (orange) as
functions of the damping parameter γ (no damping means γ = 1).
Thus, the red and the green curves represent the weights of the
correctable errors (0,4,8, . . . and 1,5,9, . . . losses), while the blue
and orange curves correspond to the uncorrectable errors (2,6,10, . . .

and 3,7,11, . . . losses). Note that the a,b dependence can lead to a
different qualitative behavior of the probabilities for different logical
qubits.

correcting L losses:

exp

(
2πin̂

L + 1

)
|0̄〉 = |0̄〉,

exp

(
2πin̂

L + 1

)
|1̄〉 = |1̄〉,

(âL+1 − αL+1)|0̄〉 = 0,

(âL+1 + αL+1)|1̄〉 = 0. (18)

Here n̂ = â†â is again the number operator. We will refer
to the first two equations as the “parity conditions” that
determine the error syndrome and hence the subspace in
which the qubit resides after an error occurred (one code
space and L error spaces). The current choice of eigenvalue
+1 for the two parity conditions in Eq. (18) corresponds
to (the codewords of) the original code space. The error
spaces spanned by two codewords with another parity are
described by parity conditions with other phase factors as
eigenvalues; see below and Appendix D. This is reminiscent
of the stabilizer formalism for QEC in terms of Pauli operators
[31]. The last two equations in Eq. (18) define the codewords
in every subspace and remain unchanged for different parities
(subspaces); i.e., both codewords are always zero eigenstates
of the corresponding (generally nonlinear) expressions for the
mode operator â.

0.2 0.4 0.6 0.8 1.0
γ

0.2

0.4

0.6

0.8

1.0
F

FIG. 2. Probability F (a,b) with a logical qubit a = b = 1√
2

(red

solid line) and a = −b = 1√
2

(green dashed line) for α = 2 as a
function of the damping parameter γ (no damping means γ = 1).
The actual lower bound on Fwc is given by the minimum of the two
curves for each γ .

As shown in Appendix D, the (unnormalized) solutions for
general L can be written as superpositions of coherent states,

|0̄〉 =
L∑

k=0

∣∣∣∣α exp

(
2kπi

L + 1

)〉
,

|1̄〉 =
L+1∑
k=1

∣∣∣∣α exp

[
(2k − 1)πi

L + 1

]〉
. (19)

For L = 0, one obtains the coherent-state encoding |0̄〉 = |α〉
and |1̄〉 = | − α〉 presented in Refs. [23,24] that provides
no intrinsic loss protection. The L = 1 case corresponds to
the one-loss cat code reviewed in Sec. II. Setting L = 2
corresponds to a two-loss code, for which the unnormalized
codewords become

|0̄〉 = |α〉 +
∣∣∣∣α exp

(
2πi

3

)〉
+
∣∣∣∣α exp

(
−2πi

3

)〉
,

|1̄〉 =
∣∣∣∣α exp

(
πi

3

)〉
+ |α exp (πi)〉 +

∣∣∣∣α exp

(
−πi

3

)〉
.

(20)

These are both superpositions of number terms of multiples
of three (see Appendix E). As can easily be checked using the
defining equations in Eq. (18), a logical qubit |ψ̄〉 = a|0̄〉 +
b|1̄〉 then evolves cyclically under the simplified error model
(similar to Sec. II) as

â3k|0̄〉 = α3k|0̄〉, â3k|1̄〉 = (−1)kα3k|1̄〉,

â3k+1|0̄〉 = α3k+1

[
|α〉 + exp

(
2πi

3

)∣∣∣∣α exp

(
2πi

3

)〉
+ exp

(
−2πi

3

)∣∣∣∣α exp

(
−2πi

3

)〉]
,

â3k+1|1̄〉 = (−1)kα3k+1 exp

(
πi

3

)[∣∣∣∣α exp

(
πi

3

)〉
+ exp

(
2πi

3

)
|α exp (πi)〉 + exp

(
−2πi

3

)∣∣∣∣α exp

(
−πi

3

)〉]
,

â3k+2|0̄〉 = α3k+2

[
|α〉 + exp

(
−2πi

3

)∣∣∣∣α exp

(
2πi

3

)〉
+ exp

(
2πi

3

)∣∣∣∣α exp

(
−2πi

3

)〉]
,

â3k+2|1̄〉 = (−1)kα3k+2 exp

(
2πi

3

)[∣∣∣∣α exp

(
πi

3

)〉
+ exp

(
−2πi

3

)
|α exp (πi)〉 + exp

(
2πi

3

)∣∣∣∣α exp

(
−πi

3

)〉]
, (21)
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where again k = 0,1,2, . . .. Similar to L = 1, we encounter a cyclic behavior. For even k (especially k = 0 corresponding to 0,
1, and 2 losses), there are no k-dependent phase flips [the factors (−1)k in front of the transformed |1̄〉 codewords in lines 1,3,
and 5 on the right-hand side of Eq. (21); see also below] and only fixed, k-independent phase factors (in front of the transformed
|1̄〉 codewords). The parities for the one- and two-loss cases change compared to the zero-loss case from 0,3,6, . . . to 2,5,8, . . .

and 1,4,7, . . ., respectively (see Appendix E).
The calculations for the complete, physical AD channel are presented in Appendix E. Besides the basic codewords in the

initial code space, we define the (unnormalized) codewords in all the three orthogonal subspaces (one code space and two error
spaces for one- and two-photon losses, etc.) as

|0̄0〉2 = |α〉 +
∣∣∣∣α exp

(
2πi

3

)〉
+
∣∣∣∣α exp

(
−2πi

3

)〉
,

|1̄0〉2 =
∣∣∣∣α exp

(
πi

3

)〉
+ |α exp (πi)〉 +

∣∣∣∣α exp

(
−πi

3

)〉
,

|0̄1〉2 = |α〉 + exp

(
2πi

3

)∣∣∣∣α exp

(
2πi

3

)〉
+ exp

(
−2πi

3

)∣∣∣∣α exp

(
−2πi

3

)〉
,

|1̄1〉2 =
∣∣∣∣α exp

(
πi

3

)〉
+ exp

(
2πi

3

)
|α exp (πi)〉 + exp

(
−2πi

3

)∣∣∣∣α exp

(
−πi

3

)〉
,

|0̄2〉2 = |α〉 + exp

(
−2πi

3

)∣∣∣∣α exp

(
2πi

3

)〉
+ exp

(
2πi

3

)∣∣∣∣α exp

(
−2πi

3

)〉
,

|1̄2〉2 =
∣∣∣∣α exp

(
πi

3

)〉
+ exp

(
−2πi

3

)
|α exp (πi)〉 + exp

(
2πi

3

)∣∣∣∣α exp

(
−πi

3

)〉
. (22)

Here we introduced the notation {|0̄q〉L,|1̄q〉L} to specify
the order of the loss code (L) and the corresponding error
space (q) (q = 0 for no loss, q = 1 for one-photon loss, and
q = 2 for two-photon loss, plus cyclic loss events; see below).
With these definitions for the canonical codewords in the code
and error spaces, Eq. (21) simplifies to

â3k|0̄0〉2 = α3k|0̄0〉2, â3k|1̄0〉2 = (−1)kα3k|1̄0〉2,

â3k+1|0̄0〉2 = α3k+1|0̄1〉2,

â3k+1|1̄0〉2 = (−1)kα3k+1 exp

(
πi

3

)
|1̄1〉2,

â3k+2|0̄0〉2 = α3k+2|0̄2〉2,

â3k+2|1̄0〉2 = (−1)kα3k+2 exp

(
2πi

3

)
|1̄2〉2. (23)

As shown in Appendix E, a logical qubit a|0̄0〉2 + b|1̄0〉2

subject to AD becomes a mixture of six components, which
can be cast in the form (omitting proper normalizations of the
qubits)

ρ̄ = p0(a |̃00〉2 + b|̃10〉2) × H.c.

+p1(a |̃01〉2 + e
iπ
3 b|̃11〉2) × H.c.

+p2(a |̃02〉2 + e
2iπ

3 b|̃12〉2) × H.c.

+p3(a |̃00〉2 − b|̃10〉2) × H.c.

+p4(a |̃01〉2 − e
iπ
3 b|̃11〉2) × H.c.

+p5(a |̃02〉2 − e
2iπ

3 b|̃12〉2) × H.c. (24)

Recall again the additional damping of the amplitude due to
the AD channel (α → √

γα) and correspondingly the adapted
notation {|0̄q〉2,|1̄q〉2} → {|̃0q〉2,|̃1q〉2} for q = 0,1,2. Now
the first three terms in Eq. (24) correspond to correctable

logical qubits with, besides some fixed phase gates for
q = 1 and q = 2, photon number parities of 0,3,6, . . . or
2,5,8, . . . or 1,4,7, . . . corresponding to the loss of 0,6,12, . . .

(q = 0) or 1,7,13, . . . (q = 1) or 2,8,14, . . . (q = 2) photons,
respectively. The additional terms each mix in uncorrectable
phase-flip errors for every subspace corresponding to the loss
of 3,9,15, . . . or 4,10,16, . . . or 5,11,17, . . . photons. Again,
like for the one-loss code, the cyclic behavior of the simplified
model is recovered for the full channel (for more details, see
Appendix E). Thus, for the L = 2 case, among the dominating
loss errors, those from one- and two-photon losses can be
corrected (i.e., the qubit is still intact in the corresponding
error space), whereas those from three-, four-, and five-photon
losses cannot (i.e., the qubit is subject to a phase error). For six-
and higher-photon losses, the cycle starts again. In general, an
L code can correct up to L photon losses plus other cycles and
each codeword has (L + 1) coherent-state components living
in a 2(L + 1)-dimensional manifold.

The lowest cat codes L = 0,1,2,3 encoding a logical qubit
are illustrated in Fig. 3. In Figs. 4 and 5, the statistical weights
and the fidelity bound on Fwc, respectively, are shown as
functions of the damping (loss) parameter γ .

IV. EXTENSION TO QUDIT CODES

Another generalization that goes beyond the qubit codes
presented in the last section is to define equations for the
encoding of an arbitrary qudit of d dimensions:

exp

(
2πin̂

L + 1

)
|k̄〉 = |k̄〉,[

âL+1 − exp

(
2πik

d

)
αL+1

]
|k̄〉 = 0 for

k = 0,1, . . . ,d − 1. (25)
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(a) L = 0 (b) L = 1

(c) L = 2 (d) L = 3

FIG. 3. Illustration of the lowest qubit (d = 2) loss codes in phase
space. The binary codewords are represented by green (|0̄〉) and red
(|1̄〉) circles which are to be superimposed.

For d = 2, Eq. (18) for logical qubits is obtained. The
simplest encoding for general d with L = 0 corresponds to
|k̄〉 = |αe

2πik
d 〉 for k = 0,1, . . . ,d − 1, which is referred to as

“coherent states on a ring” in Ref. [22] (see Fig. 6).
For d = 3 and L = 1, i.e., the simplest loss code beyond

d = 2, one finds the (unnormalized) solutions

|0̄〉 ≡ |0̄+〉 = |α〉 + | − α〉,
|1̄〉 ≡ |1̄+〉 = |e iπ

3 α〉 + | − e
iπ
3 α〉,

|2̄〉 ≡ |2̄+〉 = |e− iπ
3 α〉 + | − e− iπ

3 α〉.
(26)

0.2 0.4 0.6 0.8 1.0
γ

0.1

0.2

0.3

0.4

0.5

P

FIG. 4. Statistical weights with α = 3 and a = b = 1√
2

for L = 2
(from top to bottom at γ = 1): p̃0 (red), p̃1 (green), p̃2 (blue), p̃3

(orange), p̃4 (black), p̃5 (brown) as functions of γ . Note that the
a,b dependence can lead to a different qualitative behavior of the
probabilities for different logical qubits.

0.2 0.4 0.6 0.8 1.0
γ

0.2

0.4

0.6

0.8

1.0
F

FIG. 5. Probability F (a,b) as a function of γ for α = 3 with
a = b = 1√

2
(red, solid line) and a = −b = 1√

2
(green, dashed line),

where L = 2. The actual lower bound on Fwc is given by the minimum
of the two curves for each γ .

The three-dimensional code space is spanned by three (gen-
erally nonorthogonal) even cat states, similar to the L = 1
qubit code which has two even cat states as codewords. In the
simplified error model, we also find a similar cyclic behavior

(a) d = 8, L = 0

(b) d = 4, L = 1

FIG. 6. Illustration of some qudit codes in phase space real-
ized through coherent-state superpositions (every color indicates
another codeword) with in total eight components (for d = 2,L = 3;
see Fig. 2).
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of the codewords,

â2k|0̄〉 = α2k|0̄+〉,

â2k|1̄〉 = exp

(
iπ

3

)2k

α2k|1̄+〉,

â2k|2̄〉 = exp

(
− iπ

3

)2k

α2k|2̄+〉,

â2k+1|0̄〉 = α2k+1|0̄−〉,

â2k+1|1̄〉 = exp

(
iπ

3

)2k+1

α2k+1|1̄−〉,

â2k+1|2̄〉 = exp

(
− iπ

3

)2k+1

α2k+1|2̄−〉, (27)

where |0̄−〉 = |α〉 − | − α〉, |1̄−〉 = |e iπ
3 α〉 − | − e

iπ
3 α〉, and

|2̄−〉 = |e− iπ
3 α〉 − | − e− iπ

3 α〉. Depending on the number of
lost photons m = 0,1,2,3,4,5, the logical qudit a|0̄〉 + b|1̄〉 +
c|2̄〉 suffers from random relative phases [the phase factors
(e± iπ

3 )2k in front of the transformed codewords |1̄±〉 and |2̄±〉].
In fact, only for k = 0,3,6, . . . no phase errors occur and a
fixed phase gate (the phase factor e± iπ

3 in front of |1̄−〉 and
|2̄−〉) is either applied (1,7,13, . . . losses) or not (0,6,12, . . .

losses). Subject to the full AD channel, the mixed output state
for a logical qutrit a|0̄〉 + b|1̄〉 + c|2̄〉 has six components,

|ψ̄0〉 = a|0̄+〉 + b|1̄+〉 + c|2̄+〉,

|ψ̄1〉 = a|0̄−〉 + b exp

(
iπ

3

)
|1̄−〉 + c exp

(
− iπ

3

)
|2̄−〉,

|ψ̄2〉 = a|0̄+〉 + b exp

(
2iπ

3

)
|1̄+〉 + c exp

(
−2iπ

3

)
|2̄+〉,

|ψ̄3〉 = a|0̄−〉 − b|1̄−〉 − c|2̄−〉,

|ψ̄4〉 = a|0̄+〉 − b exp

(
iπ

3

)
|1̄+〉 − c exp

(
− iπ

3

)
|2̄+〉,

|ψ̄5〉 = a|0̄−〉 − b exp

(
2iπ

3

)
|1̄−〉 − c exp

(
−2iπ

3

)
|2̄−〉,

(28)

with some statistical weights. Here only |ψ̄0〉 and |ψ̄1〉
correspond to correctable qutrits (corresponding to 0,6,12, . . .

and 1,7,13, . . . losses, respectively). All the remaining qutrits
|ψ̄2〉, |ψ̄3〉, |ψ̄4〉, and |ψ̄5〉 have suffered from phase errors
(corresponding to 2,8,14, . . . or 3,9,15, . . . or 4,10,16, . . . or
5,11,17, . . . losses, respectively). With six losses a new cycle
starts.

In general, for a general L code the period of a cycle depends
on the total number of coherent-state components of the code
[that is d(L + 1)], e.g., a four cycle (i.e., four terms in ρ̄) for
d = 2|L = 1 or a six cycle (six terms in ρ̄) for both d = 2|L =
2 and d = 3|L = 1.

V. APPLICATION IN A ONE-WAY QUANTUM
COMMUNICATION SCHEME

Loss-adapted quantum error-correction codes are a key
ingredient for a so-called third-generation quantum repeater
[6]. In such a third-generation quantum repeater, the goal is

to transmit an encoded qubit over a total distance L without
distributing, as an initial step, entangled states over smaller
segments of the entire channel like in a more standard quantum
repeater (i.e., either a first-generation repeater based on
entanglement purification and swapping [32,33] or a second-
generation one that includes quantum error correction of local
errors [34]). Nonetheless, also in a third-generation repeater,
the total distanceL is divided into smaller elementary distances
L0 < L and at each distance L0 a repeater station is placed.
However, at every repeater station, quantum error correction
(especially in order to suppress the photon transmission loss)
is performed on an incoming qubit which has traveled over the
distance L0. The recovered logical qubit is then sent further
to the next station and so on until it reaches the final repeater
station. Thus, in a third-generation repeater, there is no need to
temporarily store entangled states until neighboring entangled
states have been distributed and purified, and there is also no
need to send classical information back and forth between
repeater stations. Such two-way classical communication
slows down the repeater (and hence reduces the rate) and it
also makes good quantum memories a necessity. In contrast,
a third-generation repeater only requires one-way classical
communication and, in principle, no quantum memories are
needed at all. Quantum information is sent directly at rates
that approach, in principle, those achievable in classical
communication. As loss-protected qubits are usually encoded
into multimode states [6], an attractive feature of the cat loss
code would be that only a single optical mode must be sent.

In the case of cat codes, the first step at each repeater
station is a QND-type parity measurement that determines the
corresponding error space. After fixing the parity, the logical
state is recovered to a great extent and the initial logical qubit
resides in some error space with high, but nonunit fidelity.

As mentioned in the former sections, a special problem
that occurs with the transmission of cat-code qubits is the
distance-dependent damping of the amplitude. In addition to
the qubit recovery (QR) at each repeater station, the amplitude
has to be restored as well. A probabilistic scheme for this
amplitude restoration (AR) is presented in Appendix F. In
our AR scheme, we use quantum teleportation and choose to
teleport the qubit back into the code space, while restoring
the amplitude. A schematic is depicted in Fig. 7(a). After each
repeater station, the qubit is recovered as well as the amplitude

(a) old” scheme

(b) improved,  new”scheme

”

”

FIG. 7. Schematic of a one-way quantum repeater with qubit
recovery (QR, red) as well as amplitude restoration (AR, green) at
every repeater station (a) or with QR at every repeater station and AR
only at every second station (b).
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0.2 0.4 0.6 0.8 1.0
L0

0.2

0.4

0.6

0.8

1.0
P

(a) short scale

2 4 6 8 10
L0

0.2

0.4

0.6

0.8

1.0
P

(b) long scale

FIG. 8. Total success probability P of amplitude restoration as
a function of the elementary distance L0 (in km) in an improved
(“new”) one-way scheme over a total distance of 1000 km for L = 4
and various α (from top to bottom): α = 8 (blue), α = 7 (green),
α = 6 (red).

is restored. Figure 7(b) shows an improved scheme in which
the qubit is still recovered at each repeater station, but the
amplitude is restored at every second repeater station only. The
total success probability for this improved scheme is shown in
Fig. 8. One observes that the total success probability initially
increases with the elementary distance L0 before reaching a
maximum and tending to zero again. Indeed, doing AR at
the end of the total channel at distance L corresponds to an
exponentially small success probability, while a scheme in
which AR is performed too frequently also means that the
probabilistic element introduced via AR accumulates over the
total distance. We expect that a further improvement compared
to the results shown in Fig. 8 can be obtained by doing AR
even less frequently than at every second repeater station. Here
we shall only demonstrate an in-principle improvement when
QR and AR are not always performed synchronously, without
intending to find an optimal scheme. The fidelity bound

F = {min
a,b

[p̃0(a,b) + p̃1(a,b) + · · · + p̃L(a,b)]
}L/L0

, (29)

however, is near unity for short elementary distances and
decreases with increasing L0 (see Fig. 9). Note that this bound
does not include those events (occurring with probabilities
p̃L+1, . . . ,p̃2L+1) where the qubit gets “self-corrected” after a
suitable sequence of uncorrectable errors.

To summarize, qubit recovery is necessary after sufficiently
short distances, whereas amplitude restoration seems to be

0.1 0.2 0.3 0.4 0.5
L0

0.2

0.4

0.6

0.8

1.0
F

FIG. 9. Bound F on worst-case fidelity as a function of the
elementary distance L0 (in km) for a one-way scheme over a total
distance of 1000 km with L = 4 for various α (from top to bottom):
α = 6 (red), α = 7 (green), α = 8 (blue).

beneficial after longer but not too-long distances. That the
logical qubits must be recovered frequently after short dis-
tances is also expected, since the loss code does not tolerate
too-large losses for the quantum information to remain intact.
A comparison of the success probabilities and fidelities for the
“old” and the improved “new” scheme with different cat codes
and different amplitudes is shown in Tables I–III. Besides
the significantly higher success probabilities, the improved
scheme also gives slightly better fidelities.

In general, the expected trade-off is recovered: For too-large
amplitudes α, the photon-loss probability goes up (and hence
the fidelity decreases), while the codewords become more
orthogonal [and hence the filter probabilities (see Appendix F)
and thus the AR probabilities increase]. Conversely, for smaller
α, the AR becomes less likely to succeed, while larger fidelities
can be obtained. A nontrivial result is to find a code L and a
protocol, for which an α regime exists that allows for both
reasonable success probabilities (∼1%–10%) and near-unit
fidelities at some elementary distances L0. For L = 3 using
the old scheme such an α regime does not seem to exist
(see Table I). With the new, improved scheme, however, the

TABLE I. Comparison between the “old” and the “new” schemes
for a total distance of L = 1000 km with the L = 3 code, L0 in
km. Color indicates near-feasible regimes. Here, “≈0” corresponds
to �10−100.

α L0 Fnew Pnew Fold Pold

4.0 0.01 0.999 989 00 ≈0 0.999 989 ≈0
4.0 0.10 0.989 446 00 ≈0 0.989 275 10−76

4.0 1.00 0.004 739 19 3 × 10−8 0.002 325 37 10−12

4.5 0.01 0.999 970 00 ≈0 0.999 97 10−42

4.5 0.10 0.973 278 00 0.008 308 84 0.972 789 7 × 10−5

4.5 1.00 9 × 10−6 0.008 806 18 10−6 3 × 10−3

5.0 0.01 0.999 931 00 ≈0 0.999 931 10−67

5.0 0.10 0.940 122 00 5 × 10−4 0.876 04 2 × 10−7

5.0 1.00 ≈0 0.168 942 00 6 × 10−22 0.084 745 3
6.0 0.01 0.999 706 00 5 × 10−4 0.999 705 3 × 10−7

6.0 0.10 0.774 627 00 0.468 715 00 0.771 153 0.221 926
6.0 1.00 ≈0 0.893 489 00 3 × 10−36 0.843 821
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TABLE II. Comparison between the “old” and the “new” schemes
for a total distance of L = 1000 km with the L = 4 code, L0 in km.
Color indicates feasible regimes.

α L0 Fnew Pnew Fold Pold

6 0.01 0.999 999 3 × 10−31 0.999 999 10−61

6 0.1 0.991 757 4 × 10−4 0.991 574 4 × 10−7

6 1.00 10−9 0.078 741 8 4 × 10−11 0.045 532 9
7 0.01 0.999 996 6 × 10−4 0.999 996 3 × 10−7

7 0.1 0.963 915 0.451 687 0.963 14 0.214 877
7 1.00 6 × 10−28 0.755 955 3 × 10−22 0.740854
8 0.01 0.999 983 0.230 988 0.999 983 0.053 100 4
8 0.1 0.876 309 0.867 937 0.873 809 0.749 01
8 1.00 10−66 0.979 637 10−75 0.977 982

L = 3 code may suffice for elementary distances of L0 ∼
100 m. For the L = 4 and L = 5 codes, both schemes can
work at elementary distances of L0 ∼ 10–100 m. A general
observation is that elementary distances as large as ∼1 km
result in very bad fidelities. Thus, a cat-encoded logical qubit
is more sensitive to too-large losses and too-large L0 than, for
instance, a single-photon-based, multimode, quantum parity
code (QPC)-encoded qubit for which L0 ∼ 1 km works [6,35].
However, the fact that a cat-encoded qubit only requires a
single optical mode means that low success probabilities in
a single repeater chain could be efficiently compensated via
(e.g., broadband) parallelization or multiplexing.

VI. CONCLUSIONS

We analysed a generalized quantum error-correction code
that is adapted to correct errors induced from photon losses
and is based on superpositions of coherent states. Our general-
ization includes instances of such a cat code where errors from
more than one-photon loss can be, in principle, approximately
corrected. For the higher-loss codes, however, the overlap
of the codewords increases and must be compensated by
an increasing coherent-state amplitude which results in a
growing error rate. Thus, one encounters the usual trade-

TABLE III. Comparison between the “old” and the “new”
schemes for a total distance of L = 1000 km with the L = 5 code,
L0 in km. Color indicates feasible regimes. Here, “≈0” corresponds
to �10−100.

α L0 Fnew Pnew Fold Pold

6 0.01 1 ≈0 1 ≈0
6 0.1 0.999 781 4 × 10−24 0.999 776 10−47

6 1.00 0.006 392 87 3 × 10−5 3 × 10−3 6 × 10−6

7 0.01 1 3 × 10−50 1 ≈0
7 0.1 0.998 659 10−5 0.998 624 10−10

7 1.00 2 × 10−9 0.066 15 4 · 10−11 0.075 974 7
8 0.01 1 10−7 1 2 × 10−14

8 0,1 0.993 71 0.194 448 0.993 546 0.041 740 6
8 1.00 4 × 10−27 0.691 036 10−31 0.659 869
9 0.01 1 4 × 10−3 1 1.75 × 10−5

9 0.1 0.975 983 0.578 119 0.975 37 0.334 447
9 1.00 5 × 10−64 0.963 224 4 × 10−74 0.891 03

offs when a continuous-variable encoding is employed. We
illustrate such an effect for the example of a one-way quantum
communication scheme for large distances based on cat codes.

The nonorthogonality of the codewords could be entirely
avoided by choosing a particular logical basis in the code
space (the X̄ instead of the Z̄ basis); however, this would
be at the expense of a deformation of the logical qubits for
finite coherent-state amplitudes leading to a complicated and
undesirable output density matrix. Our choice of the Z̄ basis
circumvents this deformation at the expense of nonzero code-
word overlap.

Another generalization that we discussed for cat codes is
for a higher-dimensional code space beyond logical qubits,
i.e., qudits. Future work will aim at potential optical imple-
mentations of these codes, including practical ways to encode,
to do the measurements (parity detections), and to achieve
the coherent-state amplitude restorations (either by creating
the encoded, entangled ancilla states, as proposed here, or by
employing an alternative method).
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APPENDIX A: KNILL-LAFLAMME
CONDITIONS FOR QEC

Decoherence is a usually undesired quantum effect that
prevents a quantum system from a purely unitary evolution.
One method to overcome decoherence is the usage of a
quantum error-correction code. A quantum error-correction
code is a d-dimensional subspace of some higher-dimensional
Hilbert space. The d basis vectors {|c1〉,|c2〉, . . . ,|cd〉} are
referred to as codewords and any normalized superposition
corresponds to a logical or an encoded qudit.

Given an explicit error model with error operators Ei , it
can be shown that the action of certain error operators from
the so-called correctable set can be reversed by means of a
recovery operation, if and only if the following two sets of
conditions are fulfilled. The first set of condition states that
corrupted codewords are orthogonal

〈ck|E†
i Ej |cl〉 = 0 if k �= l, (A1)

which partially incorporates the quantum mechanical re-
quirement for distinguishability of the different code and
error spaces. The second one includes the nondeformability
condition, i.e.,

〈cl|E†
i Ei |cl〉 = gi, ∀ l, (A2)

which states that the norm of corrupted state only depends on
the error and not on the codeword. These two sets of conditions
are referred to as the Knill-Laflamme conditions. An encoding
that exactly fulfills the KL conditions for a set of errors is called
an exact code and the corresponding set is the correctable error
set.

In optical quantum information, the main mechanism of
decoherence is photon loss, as described in Sec. II. In this
context, the notion of approximate quantum error-correction
codes has been introduced [4]. In an approximate QEC for AD,
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the KL conditions are only fulfilled up to a certain order in the loss parameter 1 − γ ; thus, orthogonality and nondeformability
are not strictly fulfilled. In the context of the present cat codes, it also depends on the amplitude α whether the KL conditions are
fulfilled or not.

APPENDIX B: FULL LOSS CHANNEL AND KL CONDITIONS FOR THE ONE-LOSS CAT CODE

Let us first consider the simplified set of errors E = {â4k,â4k+1,k ∈ N0}. For the even-cat codewords of Eq. (1) (i.e., the “Z̄
basis”), we have the following KL conditions:

〈0̄+|(â4k)†â4k|1̄+〉 = i4k(α2)4k 1√
N+

(〈α| + 〈−α|) 1√
N+

(|iα〉 + | − iα〉)

= (α2)4k

N+
(〈α|iα〉 + 〈α| − iα〉 + 〈−α|iα〉 + 〈−α| − iα〉)

= (α2)4k

N+
[exp(−α2) exp(iα2) + exp(−α2) exp(−iα2) + exp(−α2) exp(−iα2) + exp(−α2) exp(iα2)]

= 2(α2)4k exp(−α2)

N+
[exp(iα2) + exp(−iα2)]

= 4(α2)4k exp(−α2)

N+
cos(α2)

= 4(α2)4k exp(−α2)

4 exp(−α2) cosh(α2)
cos(α2) = (α2)4k cos(α2)

cosh(α2)
, (B1)

〈0̄+|(â4k)†â4k|0̄+〉 = 〈1̄+|(â4k)†â4k|1̄+〉 = (α2)4k, (B2)

〈0̄+|(â4k)†â4k+1|0̄+〉 = 〈0̄+|(â4k)†â4k+1|1̄+〉 = 〈1̄+|(â4k)†â4k+1|1̄+〉 = 〈1̄+|(â4k)†â4k+1|0̄+〉 = 0, (B3)

〈0̄+|(â4k+1)†â4k+1|1̄+〉 = 1

N+
(〈α| + 〈−α|)(â4k+1)†â4k+1(|iα〉 + | − iα〉) = i(α2)4k+1

N+
(〈α| − 〈−α|)(|iα〉 − | − iα〉)

= i(α2)4k+1

N+
[exp(−α2) exp(iα2) − exp(−α2) exp(−iα2) − exp(−α2) exp(−iα2) + exp(−α2) exp(iα2)]

= 2i(α2)4k+1 exp(−α2)

N+
[exp(iα2) − exp(−iα2)] = −4(α2)4k+1 exp(−α2)

N+
sin(α2)

= − (α2)4k+1 sin(α2)

cosh(α2)
, (B4)

〈0̄+|(â4k+1)†â4k+1|0̄+〉 = 〈1̄+|(â4k+1)†â4k+1|1̄+〉 = (α2)4k+1N−
N+

. (B5)

Written in the Fock basis, the basic codewords read

|0̄+〉 = 1√
cosh(α2)

∞∑
n=0

α2n

√
(2n)!

|2n〉,

|1̄+〉 = 1√
cosh(α2)

∞∑
n=0

(−1)nα2n

√
(2n)!

|2n〉. (B6)

Like in the annihilation operator model, it is useful to study even and odd losses on the codewords separately:

A2m|0̄+〉 = 1√
cosh(α2)

∞∑
n=m

α2n

√
(2n)!

√
γ

2n−2m
√

1 − γ
2m

√
(2n)!

(2n − 2m)!(2m)!
|2n − 2m〉

= 1√
cosh(α2)

∞∑
n=m

α2n

√
(2n − 2m)!(2m)!

√
γ

2n−2m
√

1 − γ
2m|2n − 2m〉

= 1√
(2m)!

√
cosh(α2)

√
1 − γ

2m
α2m

∞∑
l=0

α2l

√
(2l)!

√
γ

2l|2l〉 =
√

cosh(α2γ )

cosh(α2)

√
1 − γ

2m
α2m

√
(2m)!

|̃0+〉, (B7)
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A2m|1̄+〉 = 1√
cosh(α2)

∞∑
n=m

i2nα2n

√
(2n)!

√
γ

2n−2m
√

1 − γ
2m

√
(2n)!

(2n − 2m)!(2m)!
|2n − 2m〉

= 1√
cosh(α2)

∞∑
n=m

i2nα2n

√
(2n − 2m)!(2m)!

√
γ

2n−2m
√

1 − γ
2m|2n − 2m〉

= 1√
(2m)!

√
cosh(α2)

√
1 − γ

2m
α2mi2m

∞∑
l=0

(−1)l
α2l

√
(2l)!

√
γ

2l|2l〉 =
√

cosh(α2γ )

cosh(α2)

√
1 − γ

2m
α2mi2m

√
(2m)!

|̃1+〉, (B8)

A2m+1|0̄+〉 = 1√
cosh(α2)

∞∑
n=m

α2n

√
(2n)!

√
γ

2n−2m−1
√

1 − γ
2m+1

√
(2n)!

(2n − 2m − 1)!(2m + 1)!
|2n − 2m − 1〉

= 1√
cosh(α2)

∞∑
n=m

α2n

√
(2n − 2m − 1)!(2m + 1)!

√
γ

2n−2m−1
√

1 − γ
2m+1|2n − 2m − 1〉

= 1√
(2m)!

√
cosh(α2)

√
1 − γ

2m+1
α2m+1

∞∑
l=0

α2l+1

√
(2l + 1)!

√
γ

2l+1|2l + 1〉 =
√

sinh(α2γ )

cosh(α2)

√
1 − γ

2m+1
α2m+1

√
(2m + 1)!

|̃0−〉,

(B9)

A2m+1|1̄+〉 = 1√
cosh(α2)

∞∑
n=m

i2nα2n

√
(2n)!

√
γ

2n−2m−1
√

1 − γ
2m+1

√
(2n)!

(2n − 2m − 1)!(2m + 1)!
|2n − 2m − 1〉

= 1√
cosh(α2)

∞∑
n=m

i2nα2n

√
(2n − 2m − 1)!(2m + 1)!

√
γ

2n−2m−1
√

1 − γ
2m+1|2n − 2m − 1〉

= 1√
(2m)!

√
cosh(α2)

√
1 − γ

2m+1
α2m+1i2m+1

∞∑
l=0

(−1)l
α2l+1

√
(2l + 1)!

√
γ

2l|2l + 1〉

=
√

sinh(α2γ )

cosh(α2)

√
1 − γ

2m+1
α2m+1i2m+1

√
(2m + 1)!

|̃1−〉. (B10)

One can easily verify that the norms of corrupted codewords are identical; i.e., the logical qubits are not deformed after loss.
Qualitatively, we find the same cyclic behavior as in the simplified loss model. Note, however, that the logical codewords in the
different error spaces are not orthogonal for finite α. The encoding presented here is therefore not an exact QEC code but can be
regarded as an approximate QEC code, provided α is taken sufficiently large to ensure near orthogonality.

From the expressions above, the probabilities for individual losses on the codewords can easily be determined by calculating
the corresponding squared norm:

p0 = cosh(α2γ )

cosh(α2)

∞∑
m=0,2,4,

[(1 − γ )α2]2m

(2m)!
= cosh(γα2)

2 cosh(α2)
{cos[α2(1 − γ )] + cosh[α2(1 − γ )]},

p1 = sinh(α2γ )

cosh(α2)

∞∑
m=0,2,4,

[(1 − γ )α2]2m+1

(2m + 1)!
= sinh(γα2)

2 cosh(α2)
{sin[α2(1 − γ )] + sinh[α2(1 − γ )]},

p2 = cosh(α2γ )

cosh(α2)

∞∑
m=1,3,5,

[(1 − γ )α2]2m

(2m)!
= cosh(γα2)

2 cosh(α2)
{− cos[α2(1 − γ )] + cosh[α2(1 − γ )]},

p3 = sinh(α2γ )

cosh(α2)

∞∑
m=1,3,5,

[(1 − γ )α2]2m+1

(2m + 1)!
= sinh(γα2)

2 cosh(α2)
{− sin[α2(1 − γ )] + sinh[α2(1 − γ )]}. (B11)

Note that p0 contains the probability for no loss, four losses, eight losses and so on.
We are interested in the evolution of a logical qubit subject to photon loss. Taking the finite overlap of the codewords into

account, a properly normalized qubit reads as

|ψ̄〉 = a|0̄+〉 + b|1̄+〉√
1 + 2 Re(ab∗)〈0̄+|1̄+〉

. (B12)
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The codewords are not deformed, such that after a loss, say
one loss and the cyclic equivalents, a global factor p1 arises.
In addition to that, we have to take the nonorthogonality of
the codewords in the error spaces into account; i.e. we have to
properly renormalize the erroneous state. In this example, we
get a relative phase of i which changes the norm of the qubit
as well as the damped amplitude:

A1|ψ̄〉 =
√√√√1 − 2 Re(a∗b) sin(γα2)

sinh(γα2)

1 + 2 Re(ab∗) cos(α2)
cosh(α2)

p1

×
⎡⎣ a |̃0−〉 + ib|̃1−〉√

1 − 2 Re(a∗b) sin(γα2)
sinh(γα2)

⎤⎦. (B13)

The loss probability is therefore

p̃1 =
1 − 2 Re(a∗b) sin(γα2)

sinh(γα2)

1 + 2 Re(ab∗) cos(α2)
cosh(α2)

p1, (B14)

and the normalized state reads⎡⎣ a |̃0−〉 + ib|̃1−〉√
1 − 2 Re(a∗b) sin(γα2)

sinh(γα2)

⎤⎦. (B15)

The analogous results for the loss probabilities and the total
final mixed states are summarised in the main text.

For comparison, let us investigate the KL conditions for the
codewords in the X̄ basis [see also the discussion after Eq. (4)
in the main text]:

|0̄+ + 1̄+〉 = 1√
N ′+

(|0̄+〉 + |1̄+〉),

|0̄+ − 1̄+〉 = 1√
N ′−

(|0̄+〉 − |1̄+〉). (B16)

We consider again the error set E = {â4k,â4k+1,k ∈ N0}. The
action on the X̄-basis codewords can be easily calculated based
on the results of the Z̄-basis analysis:

â4k|0̄+ + 1̄+〉 = α4k|0̄+ + 1̄+〉 = α4k√
N ′+

(|0̄+〉 + |1̄+〉),

â4k|0̄+ − 1̄+〉 = α4k|0̄+ − 1̄+〉 = α4k√
N ′−

(|0̄+〉 − |1̄+〉),

â4k+1|0̄+ + 1̄+〉 = α4k+1√
N ′+

(|0̄−〉 + i|1̄−〉),

â4k+1|0̄+ + 1̄+〉 = α4k+1√
N ′−

(|0̄−〉 − i|1̄−〉). (B17)

The orthogonality requirements are fulfilled as

〈0̄+ + 1̄+|(â4k)†â4k|0̄+ − 1̄+〉
= 〈0̄+ + 1̄+|(â4k+1)†â4k+1|0̄+ − 1̄+〉
= 〈0̄+ + 1̄+|(â4k+1)†â4k|0̄+ − 1̄+〉
= 〈0̄+ − 1̄+|(â4k+1)†â4k|0̄+ + 1̄+〉. (B18)

The nondeformation criterion for â4k reads

〈0̄+ + 1̄+|(â4k)†â4k|0̄+ − 1̄+〉 = 〈0̄+ − 1̄+|(â4k)†â4k|0̄+ − 1̄+〉
= (α2)4k. (B19)

However, for â4k+1 we have

〈0̄+ + 1̄+|(â4k+1)†â4k+1|0̄+ + 1̄+〉

= 2(α2)4k+1

N ′+

[
1 − sin(α2)

sinh(α2)

]
,

〈0̄+ − 1̄+|(â4k+1)†â4k+1|0̄+ − 1̄+〉

= 2(α2)4k+1

N ′−

[
1 + sin(α2)

sinh(α2)

]
, (B20)

which shows a violation of the nondeformation criterion. This
can only be overcome with sufficiently large α.

APPENDIX C: ERROR-CORRECTION STEPS
AND LOWER BOUND ON FIDELITY

We discuss the error-correction procedure and the fidelity
as a figure of merit for the example of the one-loss cat code.
An extension to the higher-loss codes is straightforward.

The first step for correcting loss-induced errors on an
incoming logical qubit is to determine its photon-number
parity (even or odd) and hence the subspace in which the qubit
resides (code or error space). After this first error-correction
step, i.e., the number parity measurement that projects ρ̄ either
onto the even space with the normalized conditional density
matrix

ρ(+) = 1

P +

⎧⎨⎩p̃0

⎡⎣ a |̃0+〉 + b|̃1+〉√
1 + 2 Re(ab∗) cos(γα2)

cosh(γα2)

⎤⎦× H.c.

+ p̃2

⎡⎣ a |̃0+〉 − b|̃1+〉√
1 − 2 Re(ab∗) cos(γα2)

cosh(γα2)

⎤⎦× H.c.

⎫⎬⎭ (C1)

or onto the odd space with the corresponding density matrix

ρ(−) = 1

P −

⎧⎨⎩p̃1

⎡⎣ a |̃0−〉 + ib|̃1−〉√
1 − 2 Re(ab∗) sin(γα2)

sinh(γα2)

⎤⎦× H.c.

+ p̃3

⎡⎣ a |̃0−〉 − ib|̃1−〉√
1 + 2 Re(ab∗) sin(γα2)

sinh(γα2)

⎤⎦× H.c.

⎫⎬⎭, (C2)

as a second step, the amplitudes are probabilistically restored,
|̃0+〉 → |0̄+〉, etc., while the odd states are also teleported back
into the even space (see Appendix F). Here P + and P − are the
probabilities for obtaining the error syndromes “even” (code
space) and “odd” (error space), respectively (they correspond
to the trace of the respective expression in squared brackets,
i.e., each unnormalized conditional state). The worst-case
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fidelity is defined as

Fwc = min
a,b

[〈ψ̄ |ρ̂(+)|ψ̄〉P + + 〈ψ̄ ′|ρ̂(−)|ψ̄ ′〉P −] = min
a,b

⎧⎪⎨⎪⎩p̃0(a,b) + p̃2(a,b)

∣∣∣∣∣∣〈ψ̄ |
⎡⎣ a|0̄+〉 − b|1̄+〉√

1 − 2 Re(ab∗) cos(α2)
cosh(α2)

⎤⎦∣∣∣∣∣∣
2

+ p̃1(a,b) + p̃3(a,b)

∣∣∣∣∣∣〈ψ̄ ′|
⎡⎣ a|0̄+〉 − ib|1̄+〉√

1 − 2 Re(iab∗) cos(α2)
cosh(α2)

⎤⎦∣∣∣∣∣∣
2
⎫⎪⎬⎪⎭, (C3)

where |ψ̄ ′〉= a|0̄+〉+ib|1̄+〉√
1−2 Re(iab∗ ) cos(α2)

cosh(α2)

(i.e., the reference input state for the

odd syndrome has a fixed phase gate applied to it compared to
the original qubit input state |ψ̄〉= a|0̄+〉+b|1̄+〉√

1+2 Re(ab∗ ) cos(α2)
cosh(α2)

).

The second term in each of the last two lines of Eq. (C3)
is non-negative. If both terms vanish (i.e., we have α → ∞
and a = 1√

2
= ±b), p̃0 and p̃1 no longer depend on a and

b, and Fwc = p̃0 + p̃1 [more generally: Fwc = p̃0(awc,bwc) +
p̃1(awc,bwc) � mina,b(p̃0 + p̃1)].

For the other case when the two relevant terms in Eq. (C3)
do not vanish, we have

Fwc > p̃0(awc,bwc) + p̃1(awc,bwc) � min
a,b

(p̃0 + p̃1). (C4)

Thus, in general, we obtain the bound on Fwc as expressed by
Eq. (17).

We show in the following that the probability for correct
syndrome identification F (a,b) for L = 1 and a logical qubit
a|0̄+〉 + b|1̄+〉 under the conditions a,b ∈ R is extremal for
|a| = |b| = 1√

2
.

The fidelity can be cast in the following form:

F (a,b) = 1 + 2abc1

1 + 2abc2
p0 + 1 − 2abc3

1 + 2abc2
p1

= 1 + 2a
√

1 − a2c1

1 + 2a
√

1 − a2c2

p0 + 1 − 2a
√

1 − a2c3

1 + 2a
√

1 − a2c2

p1

= p0 + p1 + 2a
√

1 − a2(c1p0 − c3p1)

1 + 2a
√

1 − a2c2

= F (a). (C5)

Here the coefficients are shorthand for the overlaps of the
codewords in the different error spaces; see Eqs. (13)–(15)
and Eqs. (3) and (10). These coefficients are real and bounded
by 1. To find the extremal value of the fidelity, we derive F

with respect to a:

dF

da
=

(1 + 2a
√

1 − a2c2)(c1p0 − c3p1) 2−4a2√
1−a2

(1 + 2a
√

1 − a2c2)2

−
[p0 + p1 + 2a

√
1 − a2(c1p0 − c3p1)]c2

2−4a2√
1−a2

(1 + 2a
√

1 − a2c2)2

∝ 2 − 4a2. (C6)

This vanishes for a2 = 1
2 and therefore we find the two

solutions a = ± 1√
2
. One solution corresponds to a maximum

and the other to a minimum. The second derivative can resolve
this and the solution depends on the signs of the coefficients ci .

To be safe and to avoid complicated formulas, one can clearly
set

fmin(a) := min

{
F

(
a = 1√

2

)
, F

(
a = − 1√

2

)}
, (C7)

which then corresponds to the lower bound F on the worst-case
fidelity Fwc, as shown in Eq. (17).

APPENDIX D: DERIVATION OF CODEWORDS
IN THE FOCK BASIS

To solve the system of equations (18), we set |0̄〉 =∑∞
n=0 cn|n〉. We have

âL+1|0̄〉 =
∞∑

n=L+1

cn

√
n
√

n − 1 · · · √n − L|n − L − 1〉

=
∞∑

k=0

ck+L+1

√
k + L + 1

√
k + L · · · √k + 1|k〉

= αL+1
∞∑

k=0

ck|k〉. (D1)

One obtains a recursive definition of the coefficients:

ck+L+1 = αL+1ck√
k + L + 1

√
k + L · · · √k + 1

. (D2)

To solve the series, one of the first parameters, c0 or c1, has
to be fixed.

Before determining the general solution, let us examine the
easiest example, L = 0. Here the parity condition is trivial
and the other two equations are just the defining equations for
coherent states. Therefore, the system of equations leads to
|0̄〉 = |α〉 and |1̄〉 = | − α〉.

As another illustrative example, we choose L = 1. Then we
find the series:

ck+2 = α2ck√
k + 2

√
k + 1

. (D3)

If we set c0 as given, this series is resolved by

c2k = α2kc0√
(2k)!

. (D4)

However, c0 is not arbitrary, because it follows from the
normalization constraint

∞∑
k=0

|c2k|2 =
∞∑

k=0

(α2)2k

(2k)!
|c0|2 = 1 ⇒ |c0|. (D5)
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The coefficient c0 is then determined up to a irrelevant
phase which leads to a global phase because of (D4). The
corresponding recursion formula for |1̄〉 is given by

c2k = (−1)kα2kc0√
(2k)!

, (D6)

where c0 can be determined through normalization. Therefore,
in the Fock basis, the basis codewords read

|0̄〉 = 1√
cosh(α2)

∞∑
n=0

α2n

√
(2n)!

|2n〉,

|1̄〉 = 1√
cosh(α2)

∞∑
n=0

(−1)n
α2n

√
(2n)!

|2n〉. (D7)

This can be expressed in terms of coherent states

|0̄〉 = 1√
N+

(|α〉 + | − α〉),

|1̄〉 = 1√
N+

(|iα〉 + | − iα〉), (D8)

as given in Sec. II.
If we fix c1, a completely analogous calculation leads to

|0̄〉 = 1√
sinh(α2)

∞∑
n=0

α2n+1

√
(2n + 1)!

|2n + 1〉,

|1̄〉 = 1√
sinh(α2)

∞∑
n=0

(−1)n
α2n+1

√
(2n + 1)!

|2n + 1〉. (D9)

Since the parity condition for L = 1 reads as (−1)n̂|ψ̄〉 = |ψ̄〉,
the first pair of codewords is the solution of the determining
system of equations.

For general L, it is easy to verify that the (unnormalized) so-
lutions of the defining equations in the Fock basis are given by

|0̄〉 =
∞∑

k=0

α(L+1)k

√
([L + 1]k)!

|(L + 1)k〉,

|1̄〉 =
∞∑

k=0

(−1)kα(L+1)k

√
([L + 1]k)!

|(L + 1)k〉. (D10)

We show in the following these states can be rewritten in
terms of coherent states as presented in the main text:

|0̄〉 =
L∑

k=0

∣∣∣∣α exp

(
2πik

L + 1

)〉
,

|1̄〉 =
L+1∑
k=1

∣∣∣∣α exp

[
(2k − 1)πi

L + 1

]〉
. (D11)

Expressed in the Fock basis, we have

|0̄〉 =
L∑

k=0

∞∑
r=0

αr exp
(

πi2k
L+1

)r
√

r!
|r〉

=
∞∑

r=0

αr

√
r!

|r〉
L∑

k=0

exp

(
πi2r

L + 1

)k

=
∞∑

r=0

αr

√
r!

|r〉1 − exp (πi2r)

1 − exp
(

πi2r
L+1

)

=
∞∑

r,m=0

αr

√
r!

|r〉δ(L+1)m
r

=
∞∑

m=0

α(L+1)m

√
[(L + 1)m]!

|(L + 1)m〉. (D12)

The calculation for the other codeword is similar,

|1̄〉 =
L+1∑
k=1

∞∑
r=0

αr exp
[

πi(2k−1)
L+1

]r
√

r!
|r〉

=
∞∑

r=0

αr

√
r!

|r〉
L+1∑
k=1

exp

(
πir

L + 1

)2k−1

=
∞∑

r=0

αr

√
r!

|r〉 exp

(
− πir

L + 1

) L+1∑
k=1

exp

(
2πir

L + 1

)k

=
∞∑

r=0

αr

√
r!

|r〉 exp

(
πir

L + 1

) L∑
j=0

exp

(
2πir

L + 1

)j

=
∞∑

r=0

αr

√
r!

|r〉 exp

(
πir

L + 1

)
1 − exp (πi2r)

1 − exp
(

πi2r
L+1

)
=

∞∑
r,m=0

αr

√
r!

|r〉 exp

(
πir

L + 1

)
δ(L+1)m
r

=
∞∑

m=0

(−1)mα(L+1)m

√
[(L + 1)m]!

|(L + 1)m〉. (D13)

Up to normalization, the basic codewords in the L + 1 error
spaces in terms of coherent states are defined as

|0̄q〉L :=
L∑

k=0

exp

(
2qkiπ

L + 1

)∣∣∣∣α exp

(
2kiπ

L + 1

)〉
,

|1̄q〉L :=
L+1∑
k=1

exp

[
2q(k − 1)iπ

L + 1

]∣∣∣∣α exp

[
(2k − 1)iπ

L + 1

]〉
(D14)

for q = 0, . . . ,L. In the Fock basis, these can be expressed as

|0̄q〉L :=
∞∑

k=1

α(L+1)k−q

√
[(L + 1)k − q]!

|(L + 1)k − q〉,

|1̄q〉L :=
∞∑

k=1

(e
iπ

L+1 α)(L+1)k−q

√
[(L + 1)k − q]!

|(L + 1)k − q〉. (D15)

The code-defining equations, including both the code space
and all error spaces, then become

exp

(
2πin̂

L + 1

)
|0̄q〉L = exp

(
2πiq

L + 1

)
|0̄q〉L,

exp

(
2πin̂

L + 1

)
|1̄q〉L = exp

(
2πiq

L + 1

)
|1̄q〉L,

(âL+1 − αL+1)|0̄q〉L = 0,

(âL+1 + αL+1)|1̄q〉L = 0, (D16)
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∀ q = 0,1,2, . . . ,L. The evolution of a logical qubit |�̄〉 = a|0̄〉+b|1̄〉√
1+2 Re(ab∗〈0̄|1̄〉)

under AD can then be described as an (unnormalized)

mixture of 2(L + 1) components (we omit the code-defining subscript L outside the ket vectors):

ρ̄ = p0(a |̃00〉 + b|̃10〉) × H.c. + p1(a |̃01〉 + e
iπ

L+1 b|̃11〉) × H.c. + p2(a |̃02〉 + e
2iπ
L+1 b|̃12〉) × H.c.

+p3(a |̃03〉 + e
3iπ
L+1 b|̃13〉) × H.c. + · · · + pL(a |̃0L〉 + e

Liπ
L+1 b|̃1L〉) × H.c.

+pL+1(a |̃00〉 − b|̃10〉) × H.c. + pL+2(a |̃01〉 − e
iπ

L+1 b|̃11〉) × H.c.

+pL+3(a |̃02〉 − e
2iπ
L+1 b|̃12〉) × H.c. + · · · + p2L+1(a|0̃L〉 − e

Liπ
L+1 b|̃1L〉) × H.c. (D17)

APPENDIX E: FULL LOSS CHANNEL AND KL CONDITIONS FOR THE TWO-LOSS CODE

The normalized L = 2 codewords read in the Fock basis as

|0̄〉 = 1√
N

∞∑
k=0

α3k

√
(3k)!

|3k〉, |1̄〉 = 1√
N

∞∑
k=0

(−α)3k

√
(3k)!

|3k〉, (E1)

where N = 1
3 [exp(α2) + 2 exp (−α2

2 ) cos (
√

3α2

2 )]. The code-word overlap is given by

〈1̄|0̄〉 = exp(−α2) + 2 exp
(

α2

2

)
cos
(√

3α2

2

)
exp(α2) + 2 exp

(−α2

2

)
cos
(√

3α2

2

) −−−→
α→∞ 0. (E2)

Based on the results obtained in Sec. III for the simplified error model, we expect a similar cyclic behavior of the code under
the full AD channel. It is therefore advantageous to consider the action of the operators {A3k,A3k+1,A3k+2} on the codewords:

A3k|0̄〉 = 1√
N

√
1 − γ

3k
α3k

√
(3k)!

∞∑
n=0

(α
√

γ )3n

√
(3n)!

|3n〉,

A3k|1̄〉 = (−1)k√
N

√
1 − γ

3k
α3k

√
(3k)!

∞∑
n=0

(−α
√

γ )3n

√
(3n)!

|3n〉,

A3k+1|0̄〉 = 1√
N

√
1 − γ

3k+1
α3k+1

√
(3k + 1)!

∞∑
n=1

(α
√

γ )3n−1

√
(3n − 1)!

|3n − 1〉,

A3k+1|1̄〉 = (−1)k+1

√
N

√
1 − γ

3k+1
α3k+1e

πi
3√

(3k + 1)!

∞∑
n=1

(e
πi
3 α

√
γ )3n−1

√
(3n − 1)!

|3n − 1〉,

A3k+2|0̄〉 = 1√
N

√
1 − γ

3k+2
α3k+2

√
(3k + 2)!

∞∑
n=1

(α
√

γ )3n−2

√
(3n − 2)!

|3n − 2〉,

A3k+2|1̄〉 = (−1)k√
N

√
1 − γ

3k+2
α3k+2e

2πi
3√

(3k + 2)!

∞∑
n=1

(e
πi
3 α

√
γ )3n−2

√
(3n − 2)!

|3n − 2〉. (E3)

Following the notation introduced after Eq. (22), the basic codewords in the three orthogonal error spaces read

|̃00〉2 ∝
∞∑

k=0

(α
√

γ )3k

√
(3k)!

|3k〉, |̃10〉2 ∝
∞∑

k=0

(−α
√

γ )3k

√
(3k)!

|3k〉, |̃01〉2 ∝
∞∑

k=1

(α
√

γ )3k−1

√
(3k − 1)!

|3k − 1〉,

|̃11〉2 ∝
∞∑

k=1

(e
πi
3 α

√
γ )3k−1

√
(3k − 1)!

|3k − 1〉, |̃02〉2 ∝
∞∑

k=1

(α
√

γ )3k−2

√
(3k − 2)!

|3k − 2〉, |̃12〉2 ∝
∞∑

k=1

(e
πi
3 α

√
γ )3k−2

√
(3k − 2)!

|3k − 2〉, (E4)

where ∼ again indicates the damped amplitude. Obviously, the different error spaces are orthogonal and the codewords in each
error space become orthogonal for large α.

Furthermore, we define the following logical states (∼ denotes again damped logical states):

|�̃0〉 ∝ a |̃00〉2 + b|̃10〉2, |�̃1〉 ∝ a |̃01〉2 + e
πi
3 b|̃11〉2, |�̃2〉 ∝ a |̃02〉2 + e

2πi
3 b|̃12〉2,

|�̃3〉 ∝ a |̃00〉2 − b|̃10〉2, |�̃4〉 ∝ a |̃01〉2 − e
πi
3 b|̃11〉2, |�̃5〉 ∝ a |̃02〉2 − e

2πi
3 b|̃12〉2. (E5)
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The final mixture for a logical qubit |�̄〉 = a|0̄〉+b|1̄〉√
1+2 Re(a∗b〈0̄|1̄〉)

can thus be written in the form

ρ̄ = p0

[
1 + 2 Re(a∗b〈̃00 |̃10〉)
1 + 2 Re(a∗b〈0̄0|1̄0〉)

]
|�̃0〉〈�̃0|,

+p1

[
1 + 2 Re(a∗be

πi
3 〈̃01 |̃11〉)

1 + 2 Re(a∗b〈0̄0|1̄0〉)

]
|�̃1〉〈�̃1|,

+p2

[
1 + 2 Re(a∗be

2πi
3 〈̃02 |̃12〉)

1 + 2 Re(a∗b〈0̄0|1̄0〉)

]
|�̃2〉〈�̃2|,

+p3

[
1 − 2 Re(a∗b〈̃00 |̃10〉)
1 + 2 Re(a∗b〈0̄0|1̄0〉)

]
|�̃3〉〈�̃3|,

+p4

[
1 − 2 Re(a∗be

πi
3 〈̃01 |̃11〉)

1 + 2 Re(a∗b〈0̄0|1̄0〉)

]
|�̃4〉〈�̃4|,

+p5

[
1 − 2 Re(a∗be

2πi
3 〈̃02 |̃12〉)

1 + 2 Re(a∗b〈0̄0|1̄0〉)

]
|�̃5〉〈�̃5|, (E6)

where we also omitted the index indicating L = 2 at the state
vectors. For this code, the code-word probabilities pi,i =
0, . . . ,5, are given by

pi = 1√
N

∞∑
m=0

[α2(1 − γ )]6m+i

(6m + i)!
. (E7)

From the mixed final state in Eq. (E6), the nondeformation
of the codewords becomes also manifest. Therefore, the KL
conditions are approximately fulfilled. A recovery is therefore
also approximately possible, provided the amplitudes are
chosen large enough.

APPENDIX F: AMPLITUDE RESTORATION

One effect of the realistic photon-loss channel on the basic
codewords is the damping of their amplitude. Consequently,
the initial amplitude of the incoming logical state has to be
restored.

The first step in our quantum-error correction process is
a parity measurement that determines a certain error space.
We have referred to this step as qubit recovery. For simplicity,
the amplitude-damped codewords in the respective error space
are denoted as |̃0〉 and |̃1〉 in the following. The goal of
amplitude restoration, the second step of our QEC, is to turn
back the damped amplitudes

√
γα to the initial amplitude for

every codeword, |̃0〉 → |0̄〉,|̃1〉 → |1̄〉. Later we will choose to
map the qubit with restored amplitudes from the error space
back into the code space (where this step is not a necessity, but
helpful with respect to our one-way communication scheme).

Our strategy is to teleport the damped qubit into a
space spanned by undamped codewords using an encoded,
asymmetric Bell state with one half a damped qubit and the
other half an undamped qubit [see Eq. (F10)]. In order to
perform the Bell measurement onto a Bell basis expressed
by nonorthogonal codewords, we propose to first apply a
probabilistic “filter operation” and then do a standard Bell
measurement. Let us now describe this filter [36]. Since
the codewords are not orthogonal for finite α, they are not

perfectly distinguishable. However, they can be written in
some orthonormal basis {|x〉,|y〉} as

|0̄〉 = b0|x〉 + b1|y〉, |1̄〉 = eiφ(b0|x〉 − b1|y〉), (F1)

where b2
0 + b2

1 = 1 and b0,b1 ∈ R with b0 > b1 without loss
of generality. Furthermore, one has 〈0̄|1̄〉 = eiφ(2b2

0 − 1), such
that

b0 =
√

1 + e−iφ〈0̄|1̄〉
2

, b1 =
√

1 − e−iφ〈0̄|1̄〉
2

. (F2)

Furthermore, we define the following operators:

As =
(

b1
b0

0
0 1

)
, Af =

(√
1 − ( b1

b0

)2
0

0 0

)
. (F3)

As can easily be checked, one has A
†
sAs + A

†
f Af = 1 and

we refer to the nonunitary operations expressed by As and Af

as a successful and a failed filter operation, respectively. A
successful filter on the codewords leads to

As |0̄〉 = b1(|x〉 + |y〉),
As |1̄〉 = eiφb1(|x〉 − |y〉);

(F4)

i.e., it maps the nonorthogonal codewords onto orthogonal
states. Because the codewords cannot be perfectly distin-
guished, this cannot be done deterministically. In fact, the
success probability for the filter operation is

Psucc = 〈0̄|A†
sAs |0̄〉 = 〈1̄|A†

sAs |1̄〉 = 2 − 2b2
0 = 1 − |〈0̄|1̄〉|.

(F5)

Before proceeding, we illustrate the idea using the L = 0
cat code, whose codewords are |0̄〉 = |α〉 and |1̄〉 = | − α〉 with
real overlap 〈α| − α〉 = e−2α2

. The corresponding orthogonal
basis is the cat-state basis:

|x〉 = 1√
N+

(|α〉 + | − α〉), |y〉 = 1√
N−

(|α〉 − | − α〉).
(F6)

Since the overlap is real, we have φ = 0 and find

b0 =
√

1 + exp(−2α2)

2
, b1 =

√
1 − exp(−2α2)

2
. (F7)

The probability for successfully distinguishing |0̄〉 and |1̄〉
is therefore Psucc = 1 − exp(−2α2) (so-called unambiguous
state discrimination).

For the teleportation-based amplitude restoration scheme,
we need the Bell states in the (known) error space (note
the normalization factor due to the nonorthogonality of the
codewords):

|φ̃+〉 = 1√
Nφ̃+

|̃0〉|̃0〉 + |̃1〉|̃1〉√
2

,

|φ̃−〉 = 1√
Nφ̃−

|̃0〉|̃0〉 − |̃1〉|̃1〉√
2

,

|ψ̃+〉 = 1√
Nψ̃+

|̃0〉|̃1〉 + |̃1〉|̃0〉√
2

,

|ψ̃−〉 = 1√
Nψ̃−

|̃0〉|̃1〉 − |̃1〉|̃0〉√
2

. (F8)
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For later use for the “Bennett decomposition” in the teleportation step, one rearranges the former equations into

|̃0〉|̃0〉 = 1√
2

(
√

Nφ̃+|φ̃+〉 +
√

Nφ̃−|φ̃−〉),

|̃1〉|̃1〉 = 1√
2

(
√

Nφ̃+|φ̃+〉 −
√

Nφ̃−|φ̃−〉),

|̃0〉|̃1〉 = 1√
2

(
√

Nψ̃+|ψ̃+〉 +
√

Nψ̃−|ψ̃−〉),

|̃1〉|̃0〉 = 1√
2

(
√

Nψ̃+|ψ̃+〉 −
√

Nψ̃−|ψ̃−〉). (F9)

The amplitude restoration works as follows. An encoded qubit is sent through the channel whose output is a mixed state.
As pointed out in the main text, the first step in the error-correction procedure is the parity measurement which determines
the corresponding error space; i.e., the input qubit of our amplitude restoration is of the form |ω〉 = c0 |̃0〉+c1 |̃1〉√

Nω
with unknown

coefficients c0 and c1. According to the result of the parity measurement, the following state must be generated:

|φ̂+〉 = 1√
Nφ̂+

|̃0〉|0̄〉 + |̃1〉|1̄〉√
2

. (F10)

In total, we then have

|ω〉 ⊗ |φ̂+〉 = 1√
NωNφ̂+

1√
2

(c0 |̃0〉|̃0〉|0̄〉 + c0 |̃0〉|̃1〉|1̄〉 + c1 |̃1〉|̃0〉|0̄〉 + c1 |̃1〉|̃1〉|1̄〉)

= 1√
NωNφ̂+

1

2
[c0

√
Nφ̃+|φ̃+〉|0̄〉 + c0

√
Nφ̃−|φ̃−〉|0̄〉 + c0

√
Nψ̃+|ψ̃+〉|1̄〉 + c0

√
Nψ̃−|ψ̃−〉|1̄〉

+ c1

√
Nψ̃+|ψ̃+〉|0̄〉 − c1

√
Nψ̃−|ψ̃−〉|0̄〉 + c1

√
Nφ̃+|φ̃+〉|1̄〉 − c1

√
Nφ̃−|φ̃−〉|0̄〉]

= 1√
NωNφ̂+

1

2
[
√

Nφ̃+|φ̃+〉(c0|0̄〉 + c1|1̄〉) +
√

Nφ̃−|φ̃−〉(c0|0̄〉 − c1|1̄〉)

+
√

Nψ̃+|ψ̃+〉(c0|1̄〉 + c1|0̄〉) +
√

Nψ̃−|ψ̃−〉(c0|1̄〉 − c1|0̄〉)]

=
√

Nχ1√
NωNφ̂+

1

2

√
Nφ̃+|φ̃+〉

(
c0|0̄〉 + c1|1̄〉√

Nχ1

)
+

√
Nχ2√

NωNφ̂+

1

2

√
Nφ̃−|φ̃−〉

(
c0|0̄〉 − c1|1̄〉√

Nχ2

)

+
√

Nχ3√
NωNφ̂+

1

2

√
Nψ̃+|ψ̃+〉

(
c0|1̄〉 + c1|0̄〉√

Nχ3

)
+

√
Nχ4√

NωNφ̂+

1

2

√
Nψ̃−|ψ̃−〉

(
c0|1̄〉 − c1|0̄〉√

Nχ4

)

=
√

Nχ1√
NωNφ̂+

1

2

√
Nφ̃+

( |̃0〉|̃0〉 + |̃1〉|̃1〉√
2

)(
c0|0̄〉 + c1|1̄〉√

Nχ1

)

+
√

Nχ2√
NωNφ̂+

1

2

√
Nφ̃−

( |̃0〉|̃0〉 − |̃1〉|̃1〉√
2

)(
c0|0̄〉 − c1|1̄〉√

Nχ2

)

+
√

Nχ3√
NωNφ̂+

1

2

√
Nψ̃+

( |̃0〉|̃1〉 + |̃1〉|̃0〉√
2

)(
c0|1̄〉 + c1|0̄〉√

Nχ3

)

+
√

Nχ4√
NωNφ̂+

1

2

√
Nψ̃−

( |̃0〉|̃1〉 − |̃1〉|̃0〉√
2

)(
c0|1̄〉 − c1|0̄〉√

Nχ4

)
. (F11)

Note that each of the four different output qubits requires a different normalization factor, which we denote as Nχi
,i = 1,2,3,4.

Like in a usual teleportation scheme, we have a superposition of tensor products of four Bell states and four different output qubits.
Because the codewords |̃0〉 and |̃1〉 are not orthogonal, the Bell measurement in this basis cannot be performed deterministically.
Therefore, we apply the filter operation on the first two modes individually which leads, after an additional Hadamard gate in
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{|x〉,|y〉}, to

|ω〉 ⊗ |φ̂+〉 → b2
1

√
Nχ1

√
Nφ̃+√

NωNφ̂+

(|x〉|x〉 + e2iφ|y〉|y〉√
2

)(
c0|0̄〉 + c1|1̄〉√

Nχ1

)
+ b2

1

√
Nχ2

√
Nφ̃−√

NωNφ̂+

(|x〉|x〉 − e2iφ |y〉|y〉√
2

〉
)(

c0|0̄〉 − c1|1̄〉√
Nχ2

)

+ eiφ
b2

1

√
Nχ3

√
Nψ̃+√

NωNφ̂+

(|x〉|y〉 + |y〉|x〉√
2

)(
c0|1̄〉 + c1|0̄〉√

Nχ3

)
+ eiφ

b2
1

√
Nχ4

√
Nψ̃−√

NωNφ̂+

(|x〉|y〉 − |y〉|x〉√
2

)(
c0|1̄〉 − c1|0̄〉√

Nχ4

)
=: |ν〉. (F12)

Note that compared to Eq. (F1) the {|x〉,|y〉} basis is now that which expresses the damped states |̃0〉 and |̃1〉.
Since |x〉 and |y〉 are orthogonal, the Bell measurement can be performed. Because the filter operation is nondeterministic,

the whole teleportation scheme has a nonunit success probability which corresponds to the norm of the state in Eq. (F12),

Psucc = 〈ν|ν〉 = b4
1

NωNφ̂+
(Nχ1Nφ̃+ + Nχ2Nφ̃− + Nχ3Nψ̃+ + Nχ4Nψ̃−)

=
(
1 − b2

0

)2
NωNφ̂+

(Nχ1Nφ̃+ + Nχ2Nφ̃− + Nχ3Nψ̃+ + Nχ4Nψ̃−)

= (1 − e−iφ 〈̃0|̃1〉)2

4NωNφ̂+
(Nχ1Nφ̃+ + Nχ2Nφ̃− + Nχ3Nψ̃+ + Nχ4Nψ̃−)

= (1 − e−iφ 〈̃0|̃1〉)2

4[1 + 2 Re(c∗
0c1〈̃0|̃1〉)][1 + Re(〈̃0|̃1〉〈0̄|1̄〉)] (Nχ1Nφ̃+ + Nχ2Nφ̃− + Nχ3Nψ̃+ + Nχ4Nψ̃−). (F13)

For an L-encoded qubit with coefficients a and b (i.e., now we replace c0 → a, c1 → b), the total success probability for the
one-way scheme is (see Sec. V)

Pow =
{

2L+1∑
k=0

p̃k(a,b)Psucc

[
a |̃0k〉L + exp

(
kπi

L + 1

)
b|̃1k〉L

]}L/d0

, (F14)

where L is the total distance, d0 is the regular interval at which AR is performed, and the index “k” in the codewords is to be
understood as modulo L + 1 to obtain the corresponding error space codewords (recall q = 0, . . . ,L). Furthermore, Psucc[◦] is to
be understood as Psucc from Eq. (F13) with the respective incoming qubit state ◦. Note that the sum goes over all components in the
incoming mixed state because this probability does not correspond to the success probability of qubit QEC (as our QR is determin-
istic and imperfect, as expressed by the nonunit fidelity of the scheme) but to the probability for the filters (and hence each AR) to
succeed.

Note that at every AR step, we may obtain one of four possible qubit states, as expressed by Eq. (F12). From the Bell
measurement result it is known which one of the four. This “Pauli frame” can be recorded, however, without any additional
operations, we may have an input qubit at the next station that differs from the original qubit at the sending station. For large α,
this will not matter much in Eq. (F14) [see, e.g., p̃k(a,b) in Eq. (14)].
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