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We derive families of optimal and near-optimal probe states for quantum estimation of the coupling constants
of a general two-mode number-conserving bosonic Hamiltonian describing one-body and two-body dynamics.
We find that the optimal states for estimating the dephasing of the modes, the self-interaction strength, and
the contact interaction strength are related to the NOON states, whereas the optimal states for estimation of
the intermode single-particle tunneling amplitude are superpositions of antipodal SU(2) coherent states. For
estimation of the amplitude of pair tunneling and the amplitude of density-dependent single-particle tunneling
processes, respectively, we introduce classes of variational superposition probe states that provide near perfect
saturation of the corresponding quantum Cramér-Rao bounds. We show that the ground state of the pair tunneling
term in the Hamiltonian has a high fidelity with the optimal states for estimation of a single-particle tunneling
amplitude, suggesting that high-performance probes for tunneling amplitude estimation may be produced by
tuning the two-mode system through a quantum phase transition.
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I. INTRODUCTION

Methods for generating nonclassical states of the electro-
magnetic field or atomic ensembles by unitary or dissipative
quantum dynamics are central to atom-field-based quantum
technologies, e.g., estimation of dynamical parameters beyond
the standard quantum limit. In the realm of degenerate massive
bosons (including, e.g., ultracold bosonic gases), studies
on nonclassical states of N interacting bosons distributed
among two orthogonal single-particle states [1–3] have led
to increased understanding of phenomena such as many-body
entanglement [4], Schrödinger cat state formation [5,6], and
coherent pair tunneling [7]. These systems also provide a foun-
dation for the modern atomic clock [8]. Furthermore, systems
of two-mode bosons exhibiting various types of tunneling
dynamics are useful as models of bosonic quantum phase
transitions beyond the well-understood insulator-superfluid
transition of the Bose-Hubbard model. Therefore, it is of
considerable interest to identify and characterize the families
of states that allow us to probe the dynamical parameters of
systems of two-mode bosons near the ultimate quantum limit
imposed by the quantum Cramér-Rao (QCR) bound [9].

The possibility of coherent many-boson processes de-
scribed by monomials a

†m
0 an

1 + H.c. for m,n > 1 complicates
the allowed two-mode dynamics of bosons compared to
fermions. However, by analyzing a weakly interacting Bose
gas we can restrict to generic one-particle and two-particle pro-
cesses. A generic number-conserving Hamiltonian H govern-
ing the motion of N weakly interacting bosons takes the form

H = ϑ(a†
1a1 − a

†
0a0) +

1∑
j,k=0

Vjka
†
kaka

†
j aj

+
2∑

k=1

(
Aka

†k
0 ak

1 + H.c.
) +

1∑
k=0

(Tka
†
kaka

†
0a1 + H.c.), (1)
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where Vjk is a real, symmetric 2 × 2 matrix. H is a two-mode
or two-site version of the extended Bose-Hubbard model,
which has been considered previously in various physical
contexts [10–13].

In this paper, we identify families of pure quantum probe
states that exhibit optimal or near-optimal QCR bounds for
single-parameter estimation of each of the coupling constants
of the Hamiltonian Eq. (1). Identification of novel near-
optimal probe states serves two purposes in the physics
of quantum metrology: (i) it informs the structure of the
optimal measurement of the parameter, and (ii) it allows us to
determine the types of particle correlations that are relevant
for high-precision estimation of the parameter. The latter
information leads to a metrological phase diagram in which
physical characteristics of quantum states are used to indicate
their metrological usefulness (i.e., maximal quantum Fisher
information).

Two important complementary problems are not treated
in the present work: (i) the identification of optimal probe
states for simultaneous estimation of multiple parameters of
Eq. (1) for cases in which the QCR bound is achievable,
and, (ii) specific protocols for experimental generation of the
optimal or near-optimal states. However, Sec. II B contains
a brief discussion of the problem of simultaneous quantum
estimation of two or more coupling constants of Eq. (1). We
note that proposals exist for the experimental generation of the
superpositions of antipodal coherent states [14] and NOON-
type states [15], which we show to be optimal for quantum
estimation of A1 and ϑ respectively. In contrast, experimental
generation of the variational probe states that allow for near-
optimal quantum estimation of the number-weighted tunneling
constants T0, T1, and the pair tunneling constant A2, requires
novel methods for generating entanglement between pairs
of bosons in addition to methods for generating coherent
superposition states of the entire system of particles.

A brief outline of the paper is as follows: Sec. II contains
a derivation of the terms appearing in Eq. (1) from the micro-
scopic theory of the weakly interacting Bose gas and provides
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the basic setting for variational quantum estimation of a real
coupling constant. In Sec. III, we derive the optimal families of
states for estimation of the coupling constants of the terms of
Eq. (1) that are diagonal in the basis of Dicke states. In Sec. IV,
we show that equal weight superpositions of antipodal spin-
N/2 coherent states are optimal probes of the single-particle
tunneling coupling constants. Section V contains a brief
background on coherent pair tunneling and introduces a class
of variational probe states that provides a near-minimal QCR
bound for estimation of A2. We also show that a high-fidelity
variational ground state of the pair tunneling Hamiltonian
a
†2
0 a2

1 + H.c. can be used as a probe for quantum estimation
of the single-particle tunneling amplitude. In Sec. VI, we
derive near-optimal families of variational probe states for
the number-weighted tunneling amplitudes T0, T1 by similar
methods as used in the pair tunneling estimation problem.

II. VARIATIONAL QUANTUM METROLOGY
FOR MASSIVE TWO-MODE BOSONS

A. Optimal and near-optimal families of states

The Hamiltonian in Eq. (1) arises naturally from the
dynamics of the weakly interacting Bose gas. Throughout this
work, we omit projections that restrict H to the symmetric
N boson Hilbert space S(C2)⊗N , where S symmetrizes the
tensor product basis. In practice, this amounts to using
a
†
0|N,0〉 = a

†
1|0,N〉 = 0 or, equivalently, [a0,a

†
0] = I − (N +

1)|N,0〉〈N,0|, [a1,a
†
1] = I − (N + 1)|0,N〉〈0,N |. The energy

difference between the single-particle states |0〉 and |1〉, cor-
responding to single-particle wave functions φ0(x), φ1(x), re-
spectively, is given by 2ϑ . Substitution of a generic two-mode
field operator ψ̂(x) = (1 + |z|2)−1/2[φ0(x)a0 + zφ1(x)a1] in
the weakly interacting Bose gas Hamiltonian HWBG :=∫
�

d3x [−�
2

2m
ψ̂†∇2ψ̂ + V0

2 (ψ̂†ψ̂)2], with � a compact subset
of R3, allows us to make the following identifications with the
underlying parameters in Eq. (1):

V00 = g(|z|)〈|φ0|2,|φ0|2〉2

V11 = |z|4g(|z|)〈|φ1|2,|φ1|2〉2

V01 = 4|z|2g(|z|)〈|φ0|2,|φ1|2〉2
(2)

A2 = z2g(|z|)〈φ2
0 ,φ

2
1

〉
2

T0 = zg(|z|)〈|φ0|2φ0,φ1〉2

T1 = z|z|2g(|z|)〈φ0,φ1|φ1|2〉2,

where g(|z|) := (V0/2)(1 + |z|2)−2 and 〈f,h〉2 := ∫
�

d3x

f (x)h(x) is the inner product on L2(�).1 The phase difference
ϑ and tunneling amplitude A1 are found similarly from the
kinetic energy term of HWBG. Physical interpretations of
the coupling constants of Eq. (2) are as follows: V00 (V11)
represents the interaction energy of particles in the |0〉 (|1〉)

1Note that for the three-mode weakly interacting Bose gas in
the Bogoliubov c-number substitution approximation for the lowest
mode (i.e., the atom laser approximation), there arises parametric
amplification and down-conversion terms. We do not consider these
number nonconserving processes here.

state, V01 represents the intermode interaction energy (e.g., if
|0〉 and |1〉 are spatially localized modes, then it represents
the energy of the contact interaction), A2 is the tunneling
amplitude for coherent tunneling of pairs of particles between
the |0〉 and |1〉 modes, and T0 and T1 are the density-dependent
single-particle tunneling amplitudes. In the weakly interacting
lattice Bose gas in the nearest-neighbor approximation, the
coupling constants A2 and V01 are significantly smaller than
the other coupling constants [13]. In contrast, in dipolar lattice
Bose gases, the contact interaction V01 and density-dependent
tunneling amplitudes T0, T1 are non-negligible and can domi-
nate the dynamics [16]. Proposals exist for engineering the pair
tunneling amplitude A2 in the weakly interacting Bose gas by
introducing a time-dependent interaction strength [17]. Keep-
ing an eye toward quantum metrology, Eq. (1) contains a min-
imal set of terms such that the combined information obtained
from optimal estimation of the coupling constant of each term
allows the most precise description of the dynamics possible.

For a time-independent observable A generating a time
evolution U (t) = e−itκA/�, where κ is a real coupling constant,
the QCR bound for the variance of an unbiased estimator κ̂ of
κ is [9]

〈(�κ̂)2〉 � �
2

νT 2F(ρ)
. (3)

In Eq. (3), ν is the number of probe states ρ consumed
in the estimation protocol (i.e., the number of experiments
run), F(ρ) is the quantum Fisher information (QFI) on the
unitary path generated by A, and T is a time resource that
is externally or internally calibrated. In this work, we do not
consider the errors associated with the determination of either
� or T and absorb the factor T/� into the measurement of
the estimator κ̂ . With this convention of units, the maximum
value of the QFI for a self-adjoint A is (λmax − λmin)2, where
λmax(min) is the maximal (minimal) eigenvalue of A. If λmax

and λmin each have geometric multiplicity of 1, then the
maximal QFI is obtained for probe states belonging to the
family of superpositions SA := {1/

√
2(|λmin〉 + eiη|λmax〉) :

η ∈ [0,2π )}. Considered as a set in projective Hilbert space,
SA is stabilized by the time-evolution generated by A, i.e.,
e−itASA = SA. In Secs. V and VI, we consider cases for which
A exhibits a chiral symmetry, i.e., there exists a unitary U

such that UAU † = −A. In this case, λmin = −λmax and the
optimal family of superpositions are those eigenvectors of A2

with eigenvalue λ2
max = λ2

min such that 〈A〉 = 0. We note that
equality in the QCR bound for estimation of the real parameter
θ of the path e−iθA with probe state |�〉 can be achieved by
a projection-valued measurement with measurement elements
consisting of projectors onto the eigenvectors of the symmetric
logarithmic derivative corresponding to A and |�〉 (see
Sec. II B) [18].

When maximal and minimal eigenvectors |λmax(min)〉 of the
generating observable A are not solvable analytically, one may
opt to utilize variational states |ψmax(min)〉 corresponding to
|λmax(min)〉, respectively, in order to approximate elements of
the optimal family SA. Consider variational states |ψmax(min)〉
satisfying 〈ψmin|λmin〉 = 〈ψmax|λmax〉 = √

1 − ε with 0 < ε <

1 and assume the following two conditions: (i) 〈ψmin|λmax〉 =
〈ψmax|λmin〉 = 0, and (ii) 〈ψmin|ψmax〉 = w with 0 � |w| �
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√
ε. The upper bound imposed on |w| is derived by con-

sidering the possibility that the Born probabilities for |ψmin〉
in the subspaces C|λmin〉 and C|ψmax〉 sum to 1. We have
taken 〈ψmin|λmin〉 = 〈ψmax|λmax〉 = √

1 − ε as an assumption
because the coupling constants in the Hamiltonian Eq. (1)
that necessitate use of a variational probe state are associated
to self-adjoint operators that have their spectrum symmetric
about 0. In particular, given |ψmin〉 such that 〈ψmin|λmin〉 =√

1 − ε, application of the symmetry operation to |ψmin〉
generates a variational approximation |ψmax〉 to the highest
eigenvector |λmax〉 such that 〈ψmax|λmax〉 = √

1 − ε. Under
these conditions, an element of SA defined by the relative
phase η exhibits the largest fidelity with the following state
in the two-dimensional Hilbert space spanned by |ψmin〉 and
|ψmax〉:

(1 − weiη)|ψmin〉 + (eiη − w)|ψmax〉√
2(1 − w2)(1 − w cos η)

. (4)

The inner product of this state with its corresponding element
of SA is

√
1 − ε

√
(1 − w cos η)/(1 − w2).

Consider the problem of quantum estimation of the real
parameter θ defining the unitary path e−iθA, where A is
bounded, self-adjoint, and has spectrum symmetric about zero.
A well-defined criterion for a variational superposition state
|ψvar〉 approximating an element of the true optimal family
|ψtrue〉 ∈ SA to be useful is that it satisfies 1 − |〈ψtrue|ψvar〉|2 ∈
O(‖A‖−2). This criterion can be understood by noting that if
〈ψvar|A|ψvar〉 = 0, i.e., the variational probe has energy zero
with respect to Hamiltonian A, the inequality

〈(�A)2〉|ψtrue〉 − 〈(�A)2〉|ψvar〉 � ‖A‖2(1 − |〈ψtrue|ψvar〉|2)

(5)

holds. Equation (5) shows that the requirement 1 −
|〈ψtrue|ψvar〉|2 ∈ O(‖A‖−2) is equivalent to a O(1) maximal
difference in QFI between the variational and optimal families.

B. Achieving the QCR bound

A single-shot quantum metrology protocol [i.e., possessing
a QCR bound with ν = 1 in Eq. (3)] can be divided into the
following four steps: (i) high-fidelity preparation of the probe
system in the desired probe quantum state; (ii) parametrized
dynamics applied to the probe state; (iii) measurement of an
observable corresponding to an estimator of the parameters;
and (iv) classical postprocessing of the measurement results.
When a pure state probe |�〉 is utilized in a protocol for esti-
mation of the single real parameter θ defining a one-parameter
path e−iθA, |�〉 is imprinted with the path parameter via
|�θ 〉 := e−iθA|�〉. Then, the symmetric logarithmic derivative
operator Lθ defined by

∂θ |�θ 〉〈�θ | = (1/2)(Lθ |�θ 〉〈�θ | + |�θ 〉〈�θ |Lθ ) (6)

is given by Lθ = 2i[|�θ 〉〈�θ |,A] = L
†
θ [18]. If |�〉 is not an

eigenvector of A, then Lθ is observable with matrix rank 2.
The two eigenvectors of Lθ=0 define the projection-valued
measurement that saturates the QCR bound for the probe
state |�〉 [19]. Note that an unbiased measurement, which
allows an optimal estimation of θ for a probe state ρ1, can
be a biased measurement of θ if a different probe state ρ2

is used. In the present work, we derive families of optimal
probe states for independent quantum metrology protocols,
where each protocol produces an estimate of a single, real
coupling constant in Eq. (1). The QCR bounds associated to
these protocols are, therefore, separately achievable by optimal
measurements.

In a more general setting, a multiparameter quantum
metrology problem for the two-mode weakly interacting Bose
gas model in Eq. (1) involves simultaneous estimation of s

real parameters, where 1 < s � 12. The 12 real parameters
that must be estimated in a full quantum metrology protocol
are comprised of: three real parameters corresponding to
the su(2) generators, one real parameter defining the contact
interaction, two real parameters defining the intraspecies
scattering, one complex parameter for pair tunneling, and
two complex parameters corresponding to the two types of
number-weighted tunneling. In order to achieve equality in
the multiparameter QCR bound [9] for estimation of the
n-tuple of parameters θ = (θ1, . . . ,θn) when a pure state
|�〉 is used as a probe, it is necessary and sufficient that
the Gram matrix of the set of vectors {|�j 〉 := Lθj

|�〉}
have real entries [20]. When the parametrized dynamics are
defined by |�θ 〉 = exp(−i

∑n
j=1 θjAj ), with Aj = A

†
j , this

condition is equivalent to 〈�|[Ai,Aj ]|�〉 = 0 for each (i,j )
pair. Pure probe states that saturate the QCR bound for
simultaneous estimation of three real parameters {αj }j=1,2,3

of the Hamiltonian Hspin := ∑3
j=1 αjJj , where {Jj }j=1,2,3 are

the generators of a spin-N/2 representation of SU(2), were
produced in Ref. [21]. These results are directly applicable
to the problem of simultaneous estimation of ϑ and A1 in
Eq. (1). In the setting of simultaneous estimation of the
coupling constants of quartic interactions of the two-mode
weakly interacting Bose gas, we are not aware of a general
method for construction of pure probe states that satisfy the
following conditions: 1) allow one to achieve equality in the
multiparameter QCR bound, and 2) exhibit O(N4) scaling of
the diagonal elements of the corresponding QFI matrix.

III. SELF-INTERACTIONS AND CONTACT
INTERACTIONS

Because the self-interaction and contact interaction terms
of H are diagonal in the Dicke state basis {|N − k,k〉}k=0,...,N ,
it is a straightforward task to derive the family of states that
maximizes the variance of each of these terms. For example,
the observables (a†

j aj )2, j = 1,2, exhibit maximal variance of
N2 in the family of states given by the superpositions

|�V 〉 := |0,N〉 + eiφ|N,0〉√
2

(7)

with φ ∈ [0,2π ), i.e., |�V 〉 are the well-known NOON states
that appear in the context of attractive ultracold Bose gases
(e.g., 7Li) confined in a double-well potential [22,23].

The observable a
†
1a1a

†
0a0 has, for N even, maximal

eigenvalue N2/4 corresponding to state |N
2 ,N

2 〉 and, for
N odd, maximal eigenvalue (N2 − 1)/4 corresponding to
the two-dimensional subspace spanned by the Dicke states
|(N − 1)/2,(N + 1)/2〉 and |(N + 1)/2,(N − 1)/2〉. For both
even and odd N , the minimal eigenvalue is 0 corresponding to
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the family of states |�φ,θ 〉 given by

|�θ,φ〉 := cos
(

θ
2

)|0,N〉 + sin
(

θ
2

)
eiφ|N,0〉√

2
. (8)

Therefore, for N even, the family of states exhibiting max-
imal variance of a

†
1a1a

†
0a0 are the following states |�V01〉

parametrized by S2 × S1:

|�V01〉 := 1√
2

(∣∣∣∣N2 ,
N

2

〉
+ eiη|�θ,φ〉

)
. (9)

For N odd, the analogous states are parametrized by S2 ×
S2 × S1.

Whereas the optimal states for estimation of the self-
interaction and contact interaction strengths are entangled, it
is known that product states of distinguishable particles can
exhibit QCR bounds that scale as O(1/Nk) with k > 1/2, i.e.,
below the standard quantum limit, for estimation of nonlinear
coupling strengths [24,25]. For indistinguishable bosons, it
has been shown that states exhibiting vanishing mode entan-
glement are useful for achieving subshot noise sensitivities
for estimation of matter wave beam splitter parameters [26].
Therefore, if one aims only to surpass classical metrological
limits, it is not necessary to generate the large entanglement
and coherence exhibited by the optimal families of states.

IV. SINGLE-PARTICLE TUNNELING AND PHASE
ESTIMATION

The Schwinger boson mapping Jx = 1
2 (a†

0a1 + a
†
1a0), Jy =

1
2 (ia†

0a1 − ia
†
1a0), Jz = 1

2 (a†
1a1 − a

†
0a0) of the su(2) Lie alge-

bra specified by [Jj ,Jk] = iεjk�J� allows for a simplification
of the problem of finding optimal states for estimation of
the coupling constants ϑ and A1 of the single-particle terms
in Eq. (1). In particular, by restricting Jk to S(C2)⊗N , the
task becomes equivalent to the optimal estimation of rotation
angles for a single spin-N/2 particle. In this section, we
show that the optimal states for estimating a rotation about
unit vector 	n = (sin θ cos ϕ, sin θ sin ϕ, cos θ ) generated by
	n · 	J are given by equal weight superpositions of antipodal
spin-N/2 coherent states. Generation of superpositions of
orthogonal spin coherent states by one-axis twisting of a
spin coherent state (e.g., by the Bose-Hubbard interaction

between bosons in a double-well potential) were considered
in Ref. [27]. Superpositions of spin coherent states generated
by the interaction of a single qubit and a spin-1/2 ensemble
for a specific time interval t0 were shown in Ref. [28] to allow
magnetometry below the standard quantum limit.

The optimal states for estimation of the real parameters
ϑ and A1 appearing in H (representing, respectively, the de-
phasing parameter and the single-particle tunneling amplitude)
can be calculated directly from the lowest- and highest-energy
eigenvectors of Jz and Jx , respectively. To derive these optimal
states we make use of the spin-N/2 coherent state [29,30]

|ζ (	n)〉 :=
(

cos
(

θ
2

)
a
†
0 + sin

(
θ
2

)
eiϕa

†
1

)N

√
N !

|0,0〉

= (1 + |ζ (	n)|2)−N/2 (a†
0 + ζ (	n)a†

1)N√
N !

|0,0〉
= (1 + |ζ (	n)|2)−N/2eζ (	n)J+|N,0〉, (10)

where |N − j,j 〉 denotes the Dicke state of N bosons
with j bosons occupying single-particle state |1〉, ζ (	n) =
tan(θ/2)eiϕ ∈ C is the stereographic projection (from the south
pole of S2) of 	n, and J+ := Jx + iJy = a

†
1a0 is the raising

operator. Note that |N,0〉 is the ground state of Jz and that
J+ annihilates |0,N〉. |0,N〉 corresponds to 	n = (0,0, − 1)
and |N,0〉 corresponds to 	n = (0,0,1). The state in Eq. (10)
parametrizes all possible true Bose-Einstein condensed states
of the two-mode system, i.e., states in which all N particles
occupy the quantum state cos( θ

2 )|0〉 + sin( θ
2 )eiϕ|1〉.

Proposition 1. The states exhibiting maximal variance of
	n · 	J where ‖	n‖ = 1 are superpositions of spin-N/2 coherent
states of the form

1√
2

(|−ζ (	n)〉 + eiη|ζ (	n)−1〉), (11)

where η ∈ [0,2π ).
The Lemma that follows allows for a shorter proof of

Proposition 1. Physically, the Lemma reflects the fact that
the coherent states can be equivalently defined by raising the
lowest spin state or by lowering the highest spin state [31].

Lemma 1. Let |ζ (	n)〉 be defined as in Eq. (10). Then

|ζ (	n)−1〉 = (1 + |ζ (	n)|2)−N/2eζJ−|0,N〉. (12)

Proof of Lemma 1. From Eq. (10), we have

|ζ (	n)−1〉 = [1 + |ζ (	n)|−2]−N/2
N/2∑

j=−N/2

√(
N

N
2 + j

)
ζ (	n)−j− N

2

∣∣∣∣N2 − j,
N

2
+ j

〉

∼= ζ (	n)N [1 + |ζ (	n)|2]−N/2
N/2∑

j=−N/2

√(
N

N
2 + j

)
ζ (	n)−j− N

2

∣∣∣∣N2 − j,
N

2
+ j

〉

= [1 + |ζ (	n)|2]−N/2
N/2∑

j=−N/2

√(
N

N
2 + j

)
ζ (	n)−j+ N

2

∣∣∣∣N2 − j,
N

2
+ j

〉

= [1 + |ζ (	n)|2]−N/2

(
ζ (	n)N

√(
N

0

)
|N,0〉 + ζ (	n)N−1

√(
N

1

)
|N − 1,1〉 + . . . + ζ (	n)0

√(
N

N

)
|0,N〉

)
, (13)
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where in the second line, “∼=” denotes that the states are equal
in the projective Hilbert space. Making use of the power series
expansion of eζJ− , it is clear that

eζJ−|0,N〉 =
N∑

j=0

√(
N

j

)
ζ j |j,N − j 〉. (14)

The Lemma then follows from the symmetry
(
N

j

) = (
N

N−j

)
of

the binomial coefficients. �
Proof of Proposition 1. The largest (smallest) eigenvalue

of Jz is N/2 (−N/2), associated with the eigenvector |0,N〉
(|N,0〉). Therefore, the maximal variance of the observable
Jz is N2, occurs for the family of states |�V 〉 given in
Eq. (7). Also, let 	n := (sin θ cos ϕ, sin θ sin ϕ, cos θ ) and
	w := 	n × (0,0,1)/‖	n × (0,0,1)‖ = (sin ϕ, − cos ϕ,0). The
Baker-Campbell-Hausdorff formula for SU(2) implies
e−iθ 	w· 	J (	n · 	J )eiθ 	w· 	J = Jz. Therefore, eiθ 	w· 	J |N,0〉 is
the eigenvector of 	n · 	J with eigenvalue −N/2. The
Gaussian decomposition in SU(2) [31] implies that
eiθ 	w· 	J |N,0〉 = |−ζ (	n)〉 where ζ (	n) = tan( θ

2 )eiϕ as above.

Therefore, |−ζ (	n)〉 is the eigenvector of 	n · 	J with lowest
eigenvalue.

Similarly, eiθ 	w· 	J |0,N〉 is the eigenvector of 	n · 	J with
eigenvalue N/2. Another Gaussian decomposition allows us
to write eiθ 	w· 	J = eζ (	n)J−elog(1+|ζ (	n)|2)e−ζ (	n)J+ , which implies
eiθ 	w· 	J |0,N〉 = (1 + |ζ (	n)|2)−N/2eζ (	n)J−|0,N〉 = |ζ (n)−1〉 by
Lemma 1. The Proposition now follows from the general
form of the family of states introduced in Sec. II, which
maximizes the variance of a bounded self-adjoint operator.
That 〈−ζ (	n)|ζ (	n)−1〉 = 0 is easily verified. �

The family of optimal states in Eq. (11) can be rewritten
in a way that reveals their Schrödinger cat state structure. For
example, this can be seen by expressing Eq. (11) for 	n =
(1,0,0) in terms of the first quantized description:

|�A1〉 = 1√
2N+1

√
N !

[(a†
0 + a

†
1)N + eiη(a†

0 − a
†
1)N ]|0,0〉

= 1√
2

(|+〉⊗N + eiη|−〉⊗N
)
, (15)

where |±〉 are eigenvectors of the Pauli operator σx with
positive and negative eigenvalues, respectively. We have
labeled this particular family of states |�A1〉 because it is
optimal for estimation of the real constant A1 appearing
in Eq. (1). These states are special cases of hierarchical
Schrödinger cat states [32]; in particular, they are Greenberger-
Horne-Zeilinger (GHZ) states in the eigenbasis of σx . The
Schrödinger cat state structure of the |�A1〉 can also be clearly
visualized by calculating its Husimi Q distribution on the
sphere S2.

Physically, Eq. (11) can be viewed as a superposition of
two Bose-Einstein condensate states, e.g., for |�A1〉, one of the
product states appearing in the superposition is characterized
by all bosons condensed into the state ∝ |0〉 + |1〉 while the
other product state is characterized by all bosons condensed
into ∝ |0〉 − |1〉. However, the presence of the relative phase
eiη between the superposed Bose-Einstein condensates appear-
ing in |�A1〉 obscures the distribution of the bosons among the
states |0〉, |1〉. This distribution can be analyzed by considering

the degree of fragmentation FD of the two-mode system
[33,34], which quantifies the extent to which Bose-Einstein
condensation occurs in the single-particle mode |0〉 or |1〉.
Given a state ρ of N > 1 bosons, distributed among two
single-particle modes |0〉 and |1〉 FD , is defined by

FD := 1 − |λ+ − λ−|
N

, (16)

where λ± are the eigenvalues of the one-particle density
matrix ρ(1)

μν = 〈a†
μaν〉, with μ, ν ∈ {0,1} in the two-mode

approximation. Defining Ntot := a
†
0a0 + a

†
1a1, it is clear that

ρ(1) = 〈Ntot〉ρ
(
I

2
+ 	v · 	σ

2

)
, (17)

where 	σ is the vector of Pauli matrices and 	v :=
(2/〈Ntot〉ρ)(〈Jx〉ρ,〈Jy〉ρ, − 〈Jz〉ρ). Restricting to states ρ such
that 〈Ntot〉ρ = N , one obtains for the degree of fragmentation:

FD = 1 −
2
√

〈Jx〉2
ρ + 〈Jy〉2

ρ + 〈Jz〉2
ρ

N
. (18)

Restricting to the family |�A1〉 that maximizes the variance
of Jx , we find that 〈Jx〉 = 〈Jy〉 = 0. 〈Jz〉 can be found by
expanding the states |�A1〉 in the Dicke state basis

|�A1〉 = 1√
2N+1

N∑
j=0

√(
N

j

)
[1 + e−iη(−1)j ]|N − j,j 〉.

(19)

The result is (for N > 1) 〈�A1 |Jz|�A1〉 =
cos η

2N−1

∑N
j=0

(
N

j

)
(−1)j (j − N

2 ) = 0. Because of the rotational
symmetry, we see that FD = 1 for the states exhibiting
maximal variance of Jx , Jy , Jz. However, there are mixed
states that exhibit the same value of FD as a pure state of the
form |�A1〉. Therefore, a probe state satisfying the condition
FD = 1 is necessary, but not sufficient for optimal estimation
of A1.

V. PAIR TUNNELING

A. Variational metrologically useful states

The pair tunneling term a
†2
0 a2

1 + H.c. appearing in Eq. (1)
allows boson pairs to coherently tunnel between the |0〉 and
|1〉 state. For T0 = T1 = 0, the quantum phase transitions
and mean-field dynamics of the Hamiltonian in Eq. (1) were
studied in Ref. [35]. The Schwinger boson mapping used in
Sec. IV implies that the pair tunneling term can be identified
with two-axis twisting of a spin-N/2 particle [36,37] via
the equalities a

†2
0 a2

1 + a
†2
1 a2

0 = J 2
+ + J 2

− = 2(J 2
x − J 2

y ). The
two-axis twisting nonlinearity also appears in the bosonization
of the Lipkin-Meshkov-Glick model [17,38–40]. In the context
of quantum metrology, it was shown that for a two-mode
system that is initialized in a spin coherent state, time
evolution generated by two-axis twisting produces states
that are useful for magnetometry with precision exceeding
the standard quantum limit even in the presence of local
non-Markovian dephasing [41]. Unfortunately, for N > 22,
there is no analytical solution of two-axis twisting dynamics
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FIG. 1. Numerically calculated eigenvaluesEn of the Hamiltonian
a
†2
0 a2

1 + H.c. acting on N = 160 bosons for n = 1, . . . ,161. The inset
shows the gap E2n+1 − E2n between pairs of numerical eigenvalues
for n = 1, . . . ,40.

[42]. In this section, we provide a family of variational probe
states that allows an experimenter to measure the strength of
two-axis twisting with nearly optimal precision.

Just as for the other quartic terms of the Hamiltonian Eq. (1),
the optimal O(N−4) scaling of the QCR bound Eq. (3) for
the mean-square error of an estimator of two-axis twisting
strength arises due to the fact that the spectral radius of
this operator scales at O(N2). Specifically, a O(N2) lower
bound for the spectral radius is established by noting that√

〈ψ4|(J 2+ + J 2−)2|ψ4〉 computed from Eq. (25) is found to

be approximately [N (N − 1)(N − 2)(N − 3)/4]1/2 (exactly
this value for N ≡ ±2 mod 8). An upper bound for the
spectral radius is established by noting that ‖J 2

+ + J 2
−‖ �

2(‖Jx‖2 + ‖Jy‖2) = N2.
Presently, we focus on the case of N even and present data

for the case of N ≡ 0 mod 4. We will briefly consider the
case of odd N at the end of Sec. V B and in the Appendix. For
even N , the eigenvalues of J 2

+ + J 2
− are nondegenerate, but

are closely paired with the interpair gap greatly exceeding
the intrapair gap (see Fig. 1). We consider the following
parametrized states:

|ω±(c)〉 := 1

N
[(

a
†2
0 + 2ica

†
0a

†
1 − a

†2
1

)M

± (
a
†2
0 − 2ica

†
0a

†
1 − a

†2
1

)M]|0,0〉, (20)

where c ∈ R, N is a normalization factor, and M = N/2.
Note that for N even, |ω±(c)〉 maps to (−1)N/2|ω±(c)〉 under
the mode exchange |0〉 ↔ |1〉, i.e., this state is invariant
under mode exchange up to a global phase factor. The state
|ω+(c)〉 [|ω−(c)〉] has nonzero amplitude on Dicke basis
vectors |N − k,k〉 for k even (k odd) only. The normalization
factor N can be computed in terms of the hypergeometric
distribution, but is not relevant to the present discussion.
For N = 4, |ω+(c)〉 is the exact ground state of J 2

+ + J 2
−

when c = (
√

3−1
2 )

1/2
. For large but finite N , the parameter

c maximizing the overlap of |ω±(c)〉 with the ground state
of a

†2
0 a2

1 + H.c. must be computed numerically. By using
the eigenvector consistency conditions Eq. (A1), one can

FIG. 2. (a) Semilog plot of the fidelity of the variational state
|ω+(c̃)〉 with numerical ground state |E�=1〉 (black dots) or numerical
first excited state |E�=2〉 (red dots) for particle number N varying from
8–160 in steps of 4. (b) The same, except with |ω−(c̃)〉.

derive an N th-order polynomial equation for c, the roots of
which correspond to exact eigenvectors. We conjecture that
for each N � 4 there exists a value cN for which |ω+(cN )〉
or |ω−(cN )〉 is the exact ground state. However, a near-perfect
variational ground state can be produced by applying only
the first two eigenvector consistency conditions of Eq. (A1)
to the Dicke state amplitudes of, e.g., |ω+(c)〉. For N even,
these conditions are f0C2 = λC0 and f0C0 + f2C4 = λC2,
where fk := √

(N − k − 1)(N − k)(k + 1)(k + 2) and Ck :=
〈N − k,k|ω+(c)〉. Solving this pair of equations for c and λ

gives the solution pair (c̃,λ̃)

c̃ =
√

N − 3 + √
N2 − 2N + 3

4N − 6

λ̃ = −2N (1 + 2c̃2) − 4N2c̃2. (21)

Note that this solution does not guarantee that |ω+(c̃)〉
satisfies the full list of Eq. (A1) in general and so |ω+(c̃)〉
is not necessarily an eigenvector. The N → ∞ asymptotical
behavior of this solution is c̃ → 1/

√
2 and λ̃ → −N2/2. In

Figs. 2(a) and 2(b), the log fidelity of the variational state
Eq. (20) with either the numerical ground state (black) or
numerical first excited state is shown. From these figures, it is
clear that when |ω+(c̃)〉 [|ω−(c̃)〉] exhibits high overlap with
the ground state, |ω−(c̃)〉 [|ω+(c̃)〉] exhibits high overlap with
the first excited state, which is nearly degenerate with the
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ground state (see Fig. 1). The exceptional agreement with the
numerical ground states indicate that the states |ω±(c̃)〉 capture
quantitatively the physics of the ground state of pair tunneling
dynamics in the thermodynamic limit. A different variational
parameter pair (c̃′,λ̃′) is obtained by applying the eigenvector
consistency conditions f1C3 = λC1 and f1C1 + f3C5 = λC3

to |ω−(c)〉. However, the fidelities of the states |ω±(c̃′)〉 with the
numerical ground state exhibit the same N → ∞ asymptotic
behavior as shown in Fig. 2.

The chiral symmetry of the pair tunneling Hamiltonian
given by ei π

2 Jz (J 2
+ + J 2

−)e−i π
2 Jz = −(J 2

+ + J 2
−) implies the

relation |λmax〉 = e−i π
2 Jz |λmin〉 between the nondegenerate

ground state |λmin〉 and the highest-energy state |λmax〉. A short
calculation shows that

e−i π
2 Jz |ω±(c)〉 = iN

N
[(

a
†2
0 + 2ca

†
0a

†
1 + a

†2
0

)M

± (
a
†2
0 − 2ca

†
0a

†
1 + a

†2
0

)M]|0,0〉. (22)

The family of variational probe states for near-optimal esti-
mation of A2 can now be obtained directly from Eq. (4). For
N ≡ 0 mod 4, the identity 〈ω−(c)|e−i π

2 Jz |ω−(c)〉 = 0 holds.
Consequently, for N such that N ≡ 0 mod 4 and such that
|ω−(c̃)〉 exhibits higher fidelity with the numerical ground state
than does |ω+(c̃)〉, the near-optimal family consists of states
|�A2〉 of the form:

|�A2〉 = 1√
2

[|ω−(c̃)〉 + eiηe−i π
2 Jz |ω−(c̃)〉]. (23)

When |ω+(c̃)〉 exhibits higher fidelity with the numerical
ground state than does |ω−(c̃)〉, the value of w in Eq. (4)
is nonzero and can be taken into account when defining the
family of near-optimal variational probe states.

For the data shown in Fig. 2, the largest difference of QFI
4〈(�A)2〉|ψtrue〉 − 4〈(�A)2〉|ψvar〉 (with |ψvar〉 taken to be the
family of superpositions in Eq. (23) and |ψtrue〉 taken to be
the numerical result for the optimal family of superpositions)
has a value ≈ 9.2258 for N = 160. Using the QCR bound,
one thus finds that in a system of 160 resource particles,
the cost of using the analytically determined family Eq. (23)
instead of the optimal family of states is less than losing a
single resource particle, in the sense that the maximal QFI for
N = 159 is far lower than the submaximal QFI obtained in the
family of states of Eq. (23) for N = 160. However, because of
the nonlinearity of the interaction a

†2
0 a2

1 + H.c. in the bosonic
operators, this is not surprising. In Sec. V B, we discuss the
operational implications of using a lower-fidelity variational
probe for metrology of A2.

B. Superpositions of spin coherent states: even and odd N

It is useful to consider the decrease in metrological
performance incurred by taking c = 1 in Eq. (23). In this limit,
these states become the state in Eq. (11) with 	n = (0,1,0). The
fidelity of the superposition states 1/

√
2(|ζ = i〉 ± |ζ = −i〉)

are shown in Fig. 3. To explicitly calculate the variance of
J 2

+ + J 2
− in the superposition |ψ4〉 ∝ |ζ = i〉 + |ζ = −i〉 +

|ζ = 1〉 + |ζ = −1〉, we make use of the following formulas
for coherent state matrix elements of the raising and lowering

FIG. 3. Semilog plot of the infidelity 1 − F (|A〉,|B〉) = 1 −
|〈A|B〉|2 for |A〉 := 1/

√
2(|ζ = i〉 ± |ζ = −i〉) and |B〉 := |E�=1〉 the

numerical ground state. The black (red) dots correspond to values of
N where the + (−) sign of |A〉 gives better agreement with |E�=1〉.

operators:

〈ζ ′|Jm
− J n

+|ζ 〉 =
∂m

ζ ′ ∂
n
ζ (1 + ζ ′ζ )N

[(1 + |ζ ′|2)(1 + |ζ |2)]
N
2

(24)

〈ζ ′|Jm
+ J n

−|ζ 〉 =
∂m

ζ ′−1∂
n
ζ−1 (1 + (ζ ′ζ )−1)N

[(1 + |ζ ′|2)(1 + |ζ |2)]
N
2

.

The variance of pair tunneling, 〈ψ4|[�(J 2
+ + J 2

−)]2|ψ4〉, is
given by

1

1 + 2− N
2 +1 cos(Nπ/4)

[
N (N − 1)(N − 2)(N − 3)

4

−2− N
2 +1(N − 1)(N − 2)(N − 3) cos

(N − 4)π

4

]
. (25)

Although it is clear from this expression that the quantum
Fisher information scales as O(N4), one expects from com-
paring the fidelity data in Fig. 3 to the data in Fig. 2 that the
state |ψ4〉 is a worse probe for estimation of A2 than the family
of states in Eq. (23). To compare the metrological usefulness
of |ψ4〉 with that of the family of variational probe states
derived in Eq. (23), we first note that the difference in QFI
4〈(�A)2〉|ψtrue〉 − 4〈(�A)2〉|ψvar〉 between the numerical ground
state |ψtrue〉 and the state |ψvar〉 = |ψ4〉 has a value ≈1.3 × 106

when N = 160. This difference still warrants the use of |ψ4〉
as a probe for metrology of A2 before settling for the exactly
optimal state for N = 159 resource particles. The operational
inefficiency of using a poor variational state as a probe in a
quantum metrology protocol can be shown by writing the QCR
bound for a variational probe state |ψA〉 as 1/(νA(Fmax − xA)),
whereFmax − xA is the QFI of |ψA〉 written as a deviation from
the maximum possible QFI and νA symbolizes the number of
runs of an experiment estimating the relevant real parameter.
If another nonoptimal probe state gives a QCR bound of

1/(νB(Fmax − xB)) with xB > xA, then νB/νA = 1− xA
Fmax

1− xB
Fmax

for

the QCR bounds to be equal. For N = 160, we find the ratio
νB/νA ≈ 1.01 for the number of experiments that must be
run by an experimenter using |ψB〉 = |ψ4〉 to the number
of experiments that must be run by an experimenter using
|ψA〉 = |ω−(c̃)〉 + e−iπ/2Jz |ω−(c̃)〉 as the probe state.
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TABLE I. Normalized quantum Fisher information on the path
generated by 2Jx with initial state the numerical ground state |λmin〉
of −2(J 2

x − J 2
y ).

N F(|λmin〉)/N 2

4 0.9330
36 0.9965
68 0.9982
100 0.9988
132 0.9991
160 0.9992

We note that for N odd, the two-axis twisting Hamilto-
nian J 2

+ + J 2
− exhibits twofold degenerate eigenvectors (see

Appendix). This leads to a richer family of near-optimal
variational states. In this case, the ground-state subspace is
spanned by an even state |λ(e)

min〉 and an odd state |λ(o)
min〉

having, respectively, nonzero amplitudes on Dicke states
|N − k,k〉 with k even and odd. The eigenvectors corre-
sponding to the largest eigenvalue are |λ(e)

max〉 := e−i π
2 Jz |λ(e)

min〉
(analogously for |λ(o)

max〉). Defining |�min(max)(θ,ϕ)〉 :=
(1/

√
2)(cos θ

2 |ψ (e)
min〉 + sin θ

2 eiϕ |ψ (o)
min〉), the maximal variance

of J 2
+ + J 2

− is obtained for family of probe states

1√
2

[|�min(θ,ϕ)〉 + eiη|�max(θ ′,ϕ′)〉] (26)

parametrized by S2 × S2 × S1 with coordinates (θ,ϕ), (θ ′,ϕ′),
η.

C. Single-particle tunneling estimation
with a ground-state probe

A natural question that arises with regard to quantum
estimation of the coupling constants of the Hamiltonian Eq. (1)
is whether the ground state is ever near optimal for estimation
of any one of the coupling constants. Recall from Sec. IV
that the optimal states for estimation of a single-particle
tunneling amplitude are superpositions of antipodal coherent
states. The fact that |ω±(c̃)〉 introduced in Sec. V are good
variational ground states for a

†2
0 a2

1 + H.c. and also exhibit a
two-component superposition structure with support on either
even or odd Dicke states suggests that the true ground state of
the two-particle tunneling term may provide a natural resource
for estimation of A1.

To verify this, we display in Table I values of the scaled
QFI, F(|λmin〉)/N2 = 4〈(�H )2〉|λmin〉/N

2, corresponding to
the Hamiltonian H = 2Jx and the numerical ground state
|λmin〉 of A = −2(J 2

x − J 2
y ) for various N . The minus sign

multiplying (J 2
x − J 2

y ) in the definition of A has the physical
consequence that the ground state of A exhibits constructive
interference between amplitudes on Dicke states |N − k,k〉
and |N − (k ± 2),k ± 2〉. This can be achieved in a Bose gas
with negative s-wave scattering length or by engineering a π

2
phase shift between the |0〉 and |1〉 single-particle states so
that z2 = −1 in Eq. (2). Although a magnitude of O(1/N )
separates the observed QFI from the maximal QFI, the results
suggest that by cooling and adiabatically tuning the two-
mode system governed by the tunneling Hamiltonian Htun :=

2A1Jx − 2A2(J 2
x − J 2

y ) through a quantum phase transition
into the parameter regime A1, A2 > 0 and A2 � A1 provides
a method of generating near-optimal states for estimation of
the single-particle tunneling amplitude.

VI. NUMBER-WEIGHTED SINGLE-PARTICLE
TUNNELING

We now consider the number-weighted tunneling term
(T0a

†
0a0 + T1a

†
1a1)a†

0a1 + H.c. in Eq. (1). In the case that
T0 = T1 holds identically, the number-weighted single-particle
tunneling term becomes T0(

∑1
k=0 a

†
kak)(a†

0a1 + a
†
1a0) which,

when restricted to a system of N bosons, simply renormalizes
A1 by A1 �→ A1 + T0N . The single-particle tunneling ampli-
tude can then be estimated using the optimal probe state of
Sec. IV. Because the matrix representation of the number-
weighted tunneling terms is tridiagonal and symmetric, the
spectrum is nondegenerate for all N .

In the case that T0 �= T1, a variational method is again
required for the derivation of near-optimal families of states for
quantum estimation of T0 and T1. In this section we take T1 = 0
and focus on estimation of T0 (the case of T0 = 0, T1 �= 0 can be
treated in the same way). The corresponding number-weighted
tunneling term a

†
0a0a

†
0a1 + H.c. = (N − Jz)J− + J+(N − Jz)

exhibits a chiral symmetry under the rotation eiπJz . Therefore,
a variational probe state of the form appearing in Eq. (4) can be
constructed by taking for |ψmin〉 a variational ground state of
the number-weighted tunneling term and taking for |ψmax〉 the
rotation of |ψmin〉 by eiπJz . As was found for the other quartic
terms in Eq. (1), the maximal QFI appearing in the QCR bound
for estimation of T0 exhibits O(N4) scaling.

Because the ground state of any single-particle tunneling
term is a spin-N/2 coherent state, we first consider the best
coherent state approximation to the ground state of number-
weighted single-particle tunneling. The expected value of the
number-weighted tunneling term in a coherent state |ζ 〉 with
ζ ∈ R is given by

〈ζ |a†
0a0a

†
0a1 + H.c.|ζ 〉 = 2N (N − 1)ζ

(1 + ζ 2)2
+ 2Nζ

1 + ζ 2
, (27)

which is an odd function of ζ . The black circles in Fig. 4
show the infidelity of the best coherent state approximation
to the numerical ground state, i.e., the coherent state |ζ0〉
with ζ0 minimizing Eq. (27). In comparison to Fig. 3, it
is clear that the ground state of a

†
0a0a

†
0a1 + H.c. is better

approximated by a coherent state than the ground state
of a

†2
0 a2

1 + H.c. is approximated by a superposition of two
coherent states. For N → ∞, ζ0 → ±1/

√
3 are the coherent

state parameters extremizing the expectation value. Using the
chiral symmetry eiπJz and Eq. (4), a family of variational
superposition states for estimation of T0 can be obtained. For a
state |�T0〉 of this family, it follows from Eq. (27) and the
fact that 〈−ζ |a†

0a0a
†
0a1 + H.c.|ζ 〉 = 0 that 〈�T0 |a†

0a0a
†
0a1 +

H.c.|�T0〉 = 0, which is a necessary condition on an optimal
probe state. However, by identifying a variational ground state
of a

†
0a0a

†
0a1 + H.c. that exhibits higher fidelity with the true

ground state as compared to any coherent state, Eq. (4) may
be used to construct a class of superposition probe states with
a lower QCR bound for estimation of T0 as compared to |�T0〉.
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FIG. 4. Semilog plot of the infidelity 1 − F (|A〉,|B〉) = 1 −
|〈A|B〉|2 for |A〉 a variational ground state, |B〉 := |E�=1〉 is the
numerical ground state, and N = 8,12, . . . ,160. The black dots
represent |A〉 := |ζ 〉 where ζ extremizes Eq. (27); the red dots rep-

resent |A〉 := |�(w̃,z̃)〉 ∝ (a†2
0 + 2w̃a

†
0a

†
1 + z̃2a

†2
1 )

M |0,0〉 with (w̃,z̃)
determined by the k = 0 and k = 1 equations in Eq. (29); the blue
dots show |A〉 := |�(w0,z0)〉 with (w0,z0) determined by numerical
optimization.

We can improve on the ground-state fidelity achieved by a
spin coherent state by making use of the following bivariational
pair state :

|�(w,z)〉 ∝ (
a
†2
0 + 2wa

†
0a

†
1 + z2a

†2
1

)M |0,0〉, (28)

with M = N/2. A similar variational state was introduced
in Ref. [43] to analyze the dynamical instability of the polar
phase of a spin-1 Bose gas to formation of a gas of Goldstone
magnons. An ansatz for the parameters w and z can be
obtained by using the numerical ground-state energy λ0 in
the following necessary and sufficient condition for a state∑N

k=0 Ck|N − k,k〉 to be an eigenvector with eigenvalue λ:

(N − k)
√

(N − k)(k + 1)Ck+1

+ (N − k + 1)
√

(N − k + 1)kCk−1 = λCk, (29)

where CN+1 and C−1 are defined to be 0.
A solution pair (w̃,z̃) can be obtained from the two

equations corresponding to k = 0 and k = 1 in Eq. (29).
For small and intermediate values of N , a large increase
in the fidelity of |�(w̃,z̃)〉 with the numerical ground state
|λmin〉 (Fig. 4, red circles) is observed as compared to the
fidelity of |ζ0〉 with |λmin〉 (Fig. 4, black circles). However,
unlike the analogous approach in Sec. V, the application of
the eigenvector consistency condition Eq. (29) to the present
variational state results in a state that exhibits monotonically
increasing infidelity with the numerical ground state (red
circles, Fig. 4). To verify that the state |�(w,z)〉 is a variational
ground state for number-weighted tunneling that exhibits
monotonically decreasing infidelity as N increases, we numer-
ically minimize the function log (1 − |〈�(w,z)|λmin〉|2) over
w and z using the FMINSEARCH function in MATLAB (blue
circles, Fig. 4) for N = 8,16, . . . ,160. Calling the minimizing
parameters (w0,z0) and noting that the unitary operator eiπJz

implements the chiral symmetry of a
†
0a0a

†
0a1 + H.c., the states

|�(w0,z0)〉 and eiπJz |�(w0,z0)〉 can be used as the variational

ground state |ψmin〉 and variational highest-energy state |ψmax〉,
respectively, in Eq. (4).

It should be noted that if T0 and T1 in Eq. (2) are real
numbers, the number-weighted tunneling contribution to the
Hamiltonian of the weakly interacting Bose gas takes the
form

∑1
j=0 [Tja

†
j aj (a†

0a1 + a
†
1a0) + H.c.]. Restricting to the

problem of optimal estimation of T0 without loss of generality,
it is clear that one may still utilize the near-optimal probe states
|�(w0,z0)〉 without changing the QCR bound due to the fact
that the operators a

†
0a0a

†
0a1 + H.c. and a

†
0a0a

†
1a0 + H.c. differ

by an element of su(2), which renormalizes the single-particle
tunneling amplitude. This follows from the commutation
relations [a0,a

†
0a0] = a0, [a†

0,a
†
0a0] = −a

†
0 that, unlike the

canonical commutation relations, are valid on S(C2)⊗N as
well as on the Hilbert space of a quantum harmonic oscillator.

VII. CONCLUSION

By expanding the Hamiltonian of the weakly interacting
Bose gas over two orthogonal single-particle states, we have
identified the minimal set of parameters defining the real
dynamics of this system. For interactions diagonal in the
Dicke basis or for single-particle tunneling processes, the
su(2) symmetry allows for simple identification of the optimal
states for (separate) quantum estimation of the real coupling
constants or tunneling amplitudes, respectively. In the case of
tunneling amplitude estimation or relative phase estimation,
the optimal states are superpositions of antipodal coherent
states, which leads to the conclusion that a value of unity for the
degree of fragmentation FD is necessary for an optimal probe
state of these parameters. In the absence of an experimental
method for engineering superpositions of antipodal coherent
states, near-optimal probe states for single-particle tunneling
amplitudes can be naturally obtained by first tuning the
coherent pair tunneling process to energetically dominate over
single-particle tunneling and subsequently allowing relaxation
to the ground state.

For Dicke state nondiagonal interactions that do not possess
analytical solutions for all N , variational methods can be
applied to identify near-optimal probe states for estimation of
the corresponding coupling constants. Interactions that possess
chiral symmetry allow a near-optimal family of variational
probe states to be derived from high-fidelity ground states.
For the case of pair tunneling and number-weighted tunneling
processes, the parametrized variational ground states |ω±(c)〉
and |�(w,z)〉, respectively, allow us [via Eq. (4)] to define near-
optimal variational probe families that outperform families
composed superpositions of few coherent states with the
appropriate symmetry. We have also quantified the reduction
of operational efficiency incurred by using a suboptimal
family of variational probe states in a quantum metrology
protocol.

We expect that the optimal and near-optimal probe states for
quantum estimation of the two-mode weakly interacting Bose
gas will inform quantum technologies that exploit ultracold
atomic Bose gases for quantum metrology at precisions
beyond the limits imposed by the use of product states.
Two pressing problems present challenges for the imple-
mentation of quantum metrology protocols in ultracold Bose
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gases: (i) identification of optimal or near-optimal states for
multiparameter estimation of Eq. (1), and, (ii) experimental
generation of optimal and near-optimal probe states and
measurements.

APPENDIX: DEGENERACY OF EIGENVECTORS OF
J2

+ + J2
− FOR ODD N

Calculation of the spectrum and eigenvectors of J 2
+ + J 2

−
via a traditional method, e.g., extremizing 〈J 2

+ + J 2
−〉 over

pure spin-N/2 states, leads to the second-order difference
equation

f0C2 = λC0

f1C3 = λC1

fk−2Ck−2 + fkCk+2 = λCk, k ∈ {2, . . . ,N − 2}
fN−3CN−3 = λCN−1

fN−2CN−2 = λCN (A1)

for the amplitudes Ck of the state |ψλ〉 = ∑N
k=0 Ck|N − k,k〉

satisfying (J 2
+ + J 2

−)|ψλ〉 = λ|ψλ〉, where fk :=√
(N − k − 1)(N − k)(k + 1)(k + 2). For N even, the

eigenvalues of J 2
+ + J 2

− are nondegenerate while for N

odd, the eigenvalues have multiplicity 2. The proof of the
degeneracy for N odd proceeds by taking {Ck}Nk=0 to be
a solution of Eq. (A1) with eigenvalue λ and noting that
fN−k = fk−2. It follows from Eq. (A1) that

f0CN−2 = λCN

f1CN−3 = λCN−1

fk−2CN−k+2 + fkCN−k−2 = λCN−k, k ∈ {2, . . . ,N − 2}
fN−2C2 = λC0

fN−3C3 = λC1. (A2)

This equation allows us to construct a solution {C ′
k}Nk=0 of

Eq. (A1) with the same value of λ, where C ′
k = CN−k if k is

odd and C ′
k = −CN−k if k is even. The solution defined by

{C ′
k}Nk=0 is orthogonal to the solution {Ck}Nk=0 because

N∑
k=0

CkC
′
k =

(N−1)/2∑
k=0

CkC
′
k + CN−kC

′
N−k

= (−C0 CN + CN C0) + (C1 CN−1 − CN−1 C1) + · · ·
=0. (A3)
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[27] F. Piazza, L. Pezzé, and A. Smerzi, Macroscopic superpositions
of phase states with Bose-Einstein condensates, Phys. Rev. A
78, 051601 (2008).

[28] S. Dooley, F. McCrossan, D. Harland, M. J. Everitt, and T. P.
Spiller, Collapse and revival and cat states with an n-spin system,
Phys. Rev. A 87, 052323 (2013).

[29] F. T. Arecchi, E. Courtens, R. Gilmore, and H. Thomas, Atomic
coherent states in quantum optics, Phys. Rev. A 6, 2211 (1972).

[30] V. P. Karassiov, S. V. Prants, and V. I. Pusyrevsky, Algebraic
methods in the theory of the interaction of radiation with matter,
in Interaction of Electromagnetic Field with Condensed Matter,
edited by N. N. Bogoliubov, A. S. Shumovsky, and V. I. Yukalov
(World Scientific, Singapore, 1990), p. 3.

[31] A. Perelomov, Generalized Coherent States and their
Applications (Springer-Verlag, Berlin, 1985).

[32] T. J. Volkoff, Nonclassical properties and quantum resources of
hierarchical photonic superposition states, J. Exp. Theor. Phys.
121, 770 (2015).

[33] E. J. Mueller, T.-L. Ho, M. Ueda, and G. Baym, Fragmentation
of Bose-Einstein condensates, Phys. Rev. A 74, 033612 (2006).

[34] P. Bader and U. R. Fischer, Fragmented Many-Body Ground
States for Scalar Bosons in a Single Trap, Phys. Rev. Lett. 103,
060402 (2009).

[35] H. Cao and L. B. Fu, Quantum phase transition and dynamics
induced by atom-pair tunneling of Bose-Einstein condensates in
a double-well potential, Eur. Phys. J. D 66, 97 (2012).

[36] M. Kitagawa and M. Ueda, Squeezed spin states, Phys. Rev. A
47, 5138 (1993).

[37] J. Ma, X. Wang, C. P. Sun, and F. Nori, Quantum spin squeezing,
Phys. Rep. 509, 89 (2011).

[38] A. Klein and E. R. Marshalek, Boson realizations of Lie algebras
with applications to nuclear physics, Rev. Mod. Phys. 63, 375
(1991).

[39] G. Salvatori, A. Mandarino, and M. G. A. Paris, Quantum
metrology in Lipkin-Meshkov-Glick critical systems, Phys. Rev.
A 90, 022111 (2014).

[40] W. Muessel, H. Strobel, D. Linnemann, T. Zibold, B. Juliá-
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