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Evaluation of entanglement measures by a single observable
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We present observable lower bounds for several bipartite entanglement measures including entanglement
of formation, geometric measure of entanglement, concurrence, convex-roof extended negativity, and G
concurrence. The lower bounds facilitate estimates of these entanglement measures for arbitrary finite-
dimensional bipartite states. Moreover, these lower bounds can be calculated analytically from the expectation
value of a single observable. Based on our results, we use several real experimental measurement data to get
lower bounds of entanglement measures for these experimentally realized states. In addition, we also study the

relations between entanglement measures.
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I. INTRODUCTION

Quantum entanglement is widely recognized as a valuable
resource in quantum information processing. However, it is far
from simple to fully determine entanglement. Therefore, the
characterization and quantification of entanglement become
fundamental problems in quantum information theory. Lots
of entanglement measures have been proposed, such as en-
tanglement of formation, geometric measure of entanglement,
concurrence, and convex-roof extended negativity.

Consider a finite dimensional bipartite system; one is
subsystem A and the other one is subsystem B. The en-
tanglement of formation (EOF) is the first entanglement
measure built by the convex roof construction [1,2]. For
a pure state |y), it is defined by Er(|Y)) = S(04), where
S(0) = —Tr(o log, o) stands for the von Neumann entropy
and o4 = Trp(|Y)(¥]) is the reduced density matrix of
subsystem A. For a mixed state o, the EOF is defined by the
convex roof, Er(0) = inf(p, y,)) >_; pi EF(|¥;)) for all possi-
ble ensemble realizations 0 = ), p;|¥:) (|, where p; > 0
and ), p; = 1. The infimum represents the minimal possible
average entanglement over all pure-state decompositions of .
The geometric measure of entanglement (GME) is another
kind of convex-roof entanglement measures [3,4]. For an
arbitrary bipartite pure state [1/) = Uy @ Up Y, \/it;ii) with
J/1i being its Schmidt coefficients, the GME is defined
by E¢(|¥)) = 1 — max{u;}. Similarly, the GME is extended
to mixed states by the convex roof. The concurrence was
first introduced for two-qubit states by Ref. [1], and based
on it Wootters and co-workers derived computable formulas
for concurrence and EOF in the two-qubit case [5,6]. After
that, Refs. [7-9] extended it to bipartite higher-dimensional
systems, i.e., C(|¢)) =vV2(1 — Trg%) for pure states, and
its convex roof for mixed states. The convex roof extended
negativity (CREN) is generalized from the negativity, which
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is strongly related with the partial transpose [10]. For a
bipartite state g, its negativity reads N(o) = ||| — 1 [11]
(for simplicity we ignore the coefficient 1/2), where | - ||
stands for the trace norm and Tp is partial transpose with
respect to subsystem B. The positive negativity is a necessary
and sufficient condition of entanglement for pure states,
2 x 2 and 2 x 3 mixed states, but only a sufficient condition
for higher-dimensional mixed states [10]. To overcome this
drawback, Lee et al. proposed the CREN [12]. For a pure state
[¥), CREN is defined by the negativity N (|¥)) = N(|¢)) =
1) (y|"#| — 1. For mixed states, CREN is defined by the
convex roof. Last but not least, the G concurrence can be
defined by the determinant of the reduced density matrix:
Cs(|¥)) = m(det 04)"/™ foran m ® n (m < n) pure state |/)
[3,13,14], and for mixed states, the G concurrence is defined
by the convex roof as well [15].

Although many entanglement measures have been pro-
posed [1-15], there are only a few explicit expressions of these
measures for two-qubit states and some special kinds of higher-
dimensional mixed states [4,6,12,16—18]. Furthermore, for a
general state it is proved that computing many entanglement
measures including the entanglement of formation is NP hard
[19,20], which implies that we could only derive bounds
on (rather than compute exact values of) these entanglement
measures. Thus, in order to evaluate entanglement measures,
lower and upper bounds of entanglement measures for general
higher-dimensional states and multipartite states have been
proposed [21-38]. Besides, the lower bounds of entanglement
measures can serve as a valuable tool for optimal control
[39]. However, if the proposed bound cannot be directly
measured in experiments, quantum state tomography has to
be performed which leads to rapidly growing experimental
resources as system size increases. Therefore, experimentally
observable lower and upper bounds of entanglement measures
have attracted much interest recently [40—49].

In this paper, we shall propose observable lower bounds
for EOF, GME, concurrence, CREN, and G concurrence in
finite-dimensional bipartite systems. These lower bounds can

©2016 American Physical Society


https://doi.org/10.1103/PhysRevA.94.042325

ZHANG, YU, CHEN, YUAN, AND OH

be obtained from the expectation value of a single observable.
Based on our results, we will present several examples
using real experimental measurement data. Furthermore, the
relations between entanglement measures will be studied.

II. ENTANGLEMENT OF FORMATION

For simplicity, we use the denotation co(g). Here co(g)
denotes the convex hull of the function g, which is the largest
convex function that is bounded above by the given function g.
The denotation has been used to get explicit expressions and
bounds for the EOF [17,18,50-54].

Theorem 1. For any m @ n (m < n) quantum state g, its
entanglement of formation E (o) satisfies

Er(0) = co[R(A)], 6]

where A = max{(glolp}/(sim),1/m}, R(A) = Haly(A)] +
[1—y(M)]logy(m—1),  y(M)=[vA+/m=DA=A)]*/m,
with H(x) = —x log,x — (1 —x)log,(1 — x) being the
standard binary entropy function, and |¢)=V,®
Vg > it /silii) being an arbitrary pure entangled state
in m ® n system (where {,/s;} are its Schmidt coefficients in
decreasing order). The convex hull of R(A) is

Hly(M)]+[1 = y(A)]log,(m — 1),

N [i 4(m:1)]
m_ m= (2)
PR (A — 1) + logy m,

A e [Hms ),

m?

co[R(A)] =

Proof. We first find the minimal admissible H(i1) =
— 3" i log, wi = —Ti(g log, 0) = S(o) for a given % =
I, Jmi)?/m, where w; are eigenvalues of ¢ and /i is
the Schmidt vector {uy,/2, ...,y }. Consider the following
function:

2
_ l m
R(3) = min H(mxznj(Z\/—m) SNE)
i=1

As shown in Ref. [18], the minimal H(i) ver-
sus A corresponds to p in the form {z,(1 —1)/(m —
1),...,(1 —¢t)/(m — 1)} for ¢t € [1/m,1]. Therefore, one can
get R(A) = Ho[y(M)]+ [1 — y()]logy(m — 1) with y (1) =
VA + m = DT = D1*/m.

Suppose that we have already found an optimal decompo-
sition Zj pjlvi) (| for o to achieve the infimum of Er(0);
then Er(o) = Zj p;Er(lY;)) by definition. Since co[R(M)]
is a monotonously increasing convex function and satisfies
co[R(A)] < R(A) < H(j1) for a given A, one thus has

Er@) =Y piEr(iy;) =Y piH(i')
J j

> ) pjcolR(GI)]
J

= co| R ijkj
J

2 co[R(A)],
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where |y;) = Uy ® Ug > i) v/ il |ii) with {~/ !} being its
Schmidt coefficients in decreasing order, and we have used

m Jj\2 m ) Jj\2
M-:( i=1 :“i) 2(21‘:1 St:“i)
m sym
T i
U U | U U
- o BV B U U U)

U, U> sim

where the second inequality holds since the theorem shown
in Ref. [55], and the detailed proof has been given in the
Appendix. Therefore,

S it > s @I ® U2 Y pilv) (Wi 1U) ® UJ|g)
J =
J

U,,U, sim

(plold)

s1m

> (&)

Together with A/ = ()1, \/;{)z/m > 1/m, one can get
> pir = max{(¢lol¢)/(sim),1/m} = A. Since co[R(1)]
is a monotonously increasing function and ) ip j)J > A, one
has co[R(Y_; pjA’)] = co[R(A)].

As introduced above, co(g) is the largest convex function
that is bounded above by the given function g. From the
expression of R(A), the explicit expression of co[R(A)] is
as Eq. (2) [18,50,51]. Actually, the same function has been
obtained for the EOF of isotropic states [18] and the lower

bound of EOF based on partial transpose and realignment
criteria in Refs. [50,51]. |

III. GEOMETRIC MEASURE OF ENTANGLEMENT

Similar to entanglement of formation, we can also find an
observable lower bound for the GME.

Theorem 2. For any m ® n (m < n) quantum state g, its
geometric measure of entanglement Eg (o) satisfies

Eg(0) = co[Q(A)], (6)

where A = max{{(¢|o|p)/(sim),1/m}, Q(A)=1—y(A)
with ¥ (A) = [VA + /(m — (I — A)]?/m, and
co[Q(M)] = O(A). @)

Proof We first find the minimal admissible G(ji)

I — tmax for a given A = (Z:’nzl A/ Mi)z/m’ where  f4max
max{u;}. Consider the following function:

2
- 1 (&
0() = min ) G = — (; W) : ()
As shown in the Appendix, the minimal G(i) versus A
corresponds to ft in the form {r,(1 —¢t)/(m —1),...,(1 —
t)/(m — 1)} for t € [1/m,1]. Therefore, Q(A) =1— y(A)
holds, with y(A) = [vA + +/(m — (I — N)]*/m.

Similar to the proof of Theorem 1, suppose that we have al-
ready found an optimal decomposition ) i Pil¥) (¥l foroto
achieve the infimum of E;(p), then Eg(0) = Zj PiEc(v¥;))
by definition. Since co[@(A)] is a monotonously increasing
convex function and satisfies colQ(L)] < Q1) < G(ji) for a
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given A, one thus has

Ec(0) =Y piEc(¥;) =) p;GGi))
J J

> pjcolQ0))]
J

>col Q| D pir
;

= co[Q(A)],

where, similar to the proof of Theorem 1, we have used
> pid = A

From the definition of co, one can see co[Q(A)] = Q(A),
since Q(A) is a convex function. The same function has been
used for the GME of isotropic states [4]. |

IV. CONCURRENCE

In the following, we shall also present an observable lower
bound for the concurrence.

Theorem 3. For any m ® n (m < n) quantum state o, its
concurrence C(p) satisfies

C(o) = co[P(A)], (€))

where  P(A) = 2[1T — y(M)]I[lmy (X)) +m — 2]/(m — D),
with  y(A)=[WA+/im=DA=MNP/m, A=
max{(¢|o|¢)/(sim).1/m}, and

2m 1
— A ——). (10)
m—1 m
Proof. Similarly, we first find the minimal admissible

L) = /21 = Y, u?) for a given A = (Y1, /ii)*/m.

Consider the following function:

co[P(A)] =

2
- 1 [&
P(A):mﬁin L(;UA:Z(Z‘/_/M) . an
i=1

As shown in the Appendix, the minimal L(ji) versus
A corresponds to g still in the form {¢,(1 —1t)/(m —
1),...,(1 —t)/(m — 1)} for t € [1/m,1]. Therefore, P(A) =
J2[1 —yW)]my (X)) +m — 2]/(m — 1) holds, with y (1) =
[VA + /(m = DT = N)I*/m.

Similar to the proofs of Theorems 1 and 2, suppose
that we have already found an optimal decomposition
Zj pilvi) ;| for ¢ to achieve the infimum of C(p),
then C(p) = Zj p;jC(l\j)) by definition. Since co[P(1)]
is a monotonously increasing convex function and satisfies
co[ P(A)] < L(i) for a given A, one thus has

C@) =Y _ p;iCU¥») =Y p;LGi)
J J

> pieolPGI] > co| P| " pj2)
J J

= co[P(A)],
where Zj pjkj > A has been used again.
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From the definition of co, one can get Eq. (10), since
P(A)is amonotonously increasing concave function as shown
in the Appendix. The same function has been obtained for
the concurrence of isotropic states [16], the lower bound
of concurrence based on partial transpose and realignment
criteria in Ref. [56], and the special case of Eq. (9) with
|p) = 1//m Y/, |ii) being the maximally entangled state
[57,58]. |

V. CONVEX-ROOF EXTENDED NEGATIVITY

Similarly, an observable lower bound of CREN has been
presented as follows.

Theorem 4. For any m ® n (m < n) quantum state g, its
convex-roof extended negativity N (o) satisfies

N(e) = mA -1, 12)

where A = max{(¢|e|¢)/(sim),1/m}.

Proof. Similar to the proofs of the theorems above,
suppose that we have already found an optimal decomposition
Zj pjlw;) (¥l for o to achieve the infimum of N(o); then
N(o) =3, piN(y;)) by definition. It is worth noticing that,

for an arbitrary pure state |y/;) = Us @ Ug ), VM{ |ii) with

[,Lij being its Schmidt coefficients in decreasing order, we

have N(|1/f<,~)) =", \/;Tf)z — 1. Thus
m 2
N =) piN(y;) = Zp{(Z\/;;) - 1]
J j i=1
:mzp_,.xf—1>m1\—1,
J

where ) ;P ;A7 > A has been proved in Theorem 1. Actually,
a similar function has been obtained for the CREN of isotropic
states [12]. |

VI. G CONCURRENCE

Last but not least, one can present an observable lower
bound of G concurrence as follows.

Theorem 5. For any m ® n (m < n) quantum state o, its G
concurrence Cg(p) satisfies

Cs(0) = colK(A)], 13)

where  K(A) = m[y(A)BA)*11/",  with  p(A) =
[VA = /i = DT = A))*/m, BA) = [VA +

VA =R)/m =D /m,

and

A = max{(¢lel¢)/(sim),1/m},

co[K(A)] = max{l —m(1 — A),0}. (14)

Proof. Similarly, we first find the minimal admissible

S(i) = m( /L, u)'/™ for a given = Q1 Jmi)*/m.
Consider the following function:

2
R 1 m
K(A):n}lin S(M)AZZ(ZJ_M,») . (5
i=1

As shown in Ref. [59] and the Appendix, the minimal S(ii)
versus A corresponds to ji in the form {¢,(1 —t)/(m — 1), ...,
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(1 —=1)/(m — 1)} fort € [0,1/m]. Therefore, K (L) = m[y(})
BY™=111/" holds, with y (A)=[v/A—+/(m—1)(1—A)]*/m and
BR=IVA + (T =2/ =D /m.

Similar to the proofs of above theorems, suppose
that we have already found an optimal decomposition
Zj pil¥i){¥;| for ¢ to achieve the infimum of Cg(o),
then Cg(0) = Z,’ p;iCc(|¥;)) by definition. Since co[ K (A)]
is a monotonously increasing convex function and satisfies
co[K (1)] < S(f) for a given A, one thus has

Col@) =Y piCally) =Y piSGi))
J J

> ) pjcolKG)] > co| K[ D7 pir!
J i

2 co[K(A)],

where } p;j*A/ > A has been used again.

From the definition of co, one can get Eq. (14), since K (1) is
amonotonously increasing concave functionin [(m — 1)/m, 1]
as shown in Ref. [59]. The same function has been obtained
for the G concurrence of axisymmetric states [59], and the
lower bound of G concurrence for arbitrary states which
is the special case of Eq. (13) with |¢p) = 1//m Y i, ii)
being the maximally entangled state [59]. |

Remark 1. It is worth noticing that when we choose a special
case for |¢), i.e., |¢) = |¢T) where |[y+) = 1//m Y 1", ii)
is the maximally entangled state, then s; becomes 1/m and
A = max{{(yy*|o|¥rT),1/m}. For this special case, our results
shown in all the above theorems can be proved in a different
manner: for an arbitrary m ® m state ¢, one can project it
onto the isotropic states by the twirling operation, i.e., 0'*° =
de(U R U"o(U ® U*)f, which is a local operation and
classical communication (LOCC) operation and therefore can-
not increase entanglement. Moreover, we have (¥ *|o|y 1) =
(¥T|o"°|¥t), since it is invariant under the twirling operation.
The entanglement measures of the isotropic states can be
expressed as a function of (¥ |o"°|y+) [4,12,16,18]. Thus
one can get lower bounds of entanglement measures for o
from the entanglement measures of the isotropic states; this
idea to get a lower bound has been known since the earliest
paper [1]. However, this alternative proof for |¢) = |¢T) is
not valid for a general |¢).

Remark 2. From Theorem 1 to Theorem 5, all the lower
bounds proposed above are the functions of A, which only
depends on the expectation value of a single observable |¢) (¢].
Therefore, it will be much easier to evaluate than tomography
in experiments.

VII. EXAMPLES AND EXPERIMENTAL MEASUREMENTS

The first example is a real experimental state shown
in Ref. [60]. Tonolini ef al. experimentally realized a
high-dimensional two-photon entangled state, with dimen-
sion of each photon being equal to d = 17. They recon-
structed the density matrix gexp, Of the experimental state,
and found the fidelity with the maximally entangled pure
state being Tl‘\/\/Qe_m|I//+)(I/f+|\/Qe_xm = 0.831. Therefore,
our parameter for this experimental state should be A; =
max{ (¥ *|gexp, [¥ ). 1/17} = 0.69. Using Egs. (1), (6), (9),

PHYSICAL REVIEW A 94, 042325 (2016)

and (12), one can arrive at
EF(Qexp]) = 2687 EG(Qexp]) = 0457
C(Qexp]) 2 092, N(Qexpl) 2 1073,

for this real experimental state.
The second example is also from a real experi-
ment [61]. In Ref. [61], the authors experimentally real-

ized a special three-photon pure state: |y) = §|000) +

‘/T§|110) + }1|111) and a four-photon Dicke state with two
excitations |D2) = %QOOII) +10101) 4 |0110) 4+ |1001) +
[1010) 4 |1100)). The square of fidelities for the special state
and the Dicke state are measured to be (| Qexp, |¥s) = 0.9821
and <Di|Qexp3 |D?) = 0.9780, respectively. For simplicity, we
only consider the entanglement under A|BC bipartition for
the three-photon special state and AB|C D bipartition for
the four-photon Dicke state. Other bipartition entanglement
can also be calculated analytically based on our theorems.
Therefore, our parameters for these experimental states should
be Ay = max{{(V|Qexp, |Vs)/(s1m),1/m} = 0.6547 with m =
2ands; =3/4,and A3 = max{(Dflgexp3|Di)/(s1m), 1/m} =
0.3667 with m = 4 and s; = 2/3. Using Eqs. (1), (6), (9), and
(12), one can arrive at

EF(QCXPZ) 2 0‘16617 EG(Qexpz) 2 0.0245,
>

C(exp,) = 0.3094,  N(Qerp,) = 0.3094,
C(Qexp,) = 0.3094,
Er(Qep,) = 0.1437,  EG(0exp,) = 0.0160,
C(exp,) = 0.1905,  N(0exp,) = 0.4668,

for these real experimental states.

In the first example shown above, Tonolini et al. used
compressive sensing to reduce the number of measurements,
and 2506 measurements are needed for state reconstruction.
Actually, the whole state reconstruction is not necessary
for our lower bounds. We only need to perform d? local
measurements (or one global measurement) to obtain the
expectation value of |¢)(¢| for d x d dimensional states. If
the global measurement |¢)(¢| is not easily performed in
experiments, one can use local measurements instead of it.
We recall a complete set of local orthogonal observables
(LOOs) introduced in Ref. [62], i.e., {G} = {|){I]|,(jm){n| +
In)(m|)/~2,(Im)(n| — |n)(m|)/(i~/2)}, where 1 <[ < d and
1<m<n<d The LOOs satisfy the orthogonal con-
dition Tr(G¢Gy) = 8, and the complete condition

~

A= > Tr(GyA)G; for an arbitrary observable A.
Thus [¢) (6] = Y, (@IVaGiV] ® VsGL Vi) VaGiV] ®
Vg GZ Vg, where GZ means transpose of G which is another
complete set of LOOs, and {(¢|VAGkVAT ® VpGT v;|¢)} =
{81, \/SnSm+~/SnSm}. Therefore, only d? local measurements are
required which is much less than the number of measurements
d* required by tomography. For the first example d = 17,
we only need 289 local measurements, much less than 2506
measurements needed by the compressive sensing. When
|¢p) = |¢), the expression of |¢+)(| has been widely
known from Ref. [63]. Moreover, Ref. [64] proposed methods
to get a lower bound of the maximally entangled fraction with
a rather smaller number of local measurements.
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VIII. RELATIONS BETWEEN ENTANGLEMENT
MEASURES

There have been comparative studies of entanglement
measures. Horodecki er al. introduced an axiomatic ap-
proach for entanglement measures [65]. Eltschka et al.
proposed inequalities between the concurrence and CREN for
any m ® n (m < n) quantum state ¢ [58], AN(o) = C(o) >
V2/[m(m — 1)]JN (o). We shall study the relations between
concurrence, geometric measure of entanglement, and CREN.

Theorem 6. For any m @ n (m < n) quantum state g, its
concurrence C(p), geometric measure of entanglement £ (o),
and convex-roof extended negativity N (o) satisfy

N(o) < my[l — Eg(0)] — 1, (16)
N 1

Ego)>1— y(%) (17)

c@’ +I[1—ec@* < 1, (18)

where  y(x) =[x +/(m — DA — x)]z/m with x €
[1/m,1] and the integer m > 2, c(0) = /m/[2(m — 1)]C(o),
and eg(0) = mEg(0)/(m — 1).

Proof. Let {p;,|¥;)} be the optimal ensemble for Es (o)

and ,/u{ be the Schmidt coefficients in decreasing order for
[;). Thus

m - 2
N(o) < ZP]N(W;)) = ZP;(Z\/I{) -1
J J i=l1
< ij(\/;{+\/(m—l)(1—u'{))2—l
J
< mV(ZPm{) — 1=my[l — Eg()] — 1.
J

since y(x) 1is a concave function and we have
used the fact that Y, /i = /i1 + Doy /Hi < /11 +
Vm =D, i) = i+ /m =D = ).

In order to prove Eq. (17), the properties of y (x) are needed:
y(x) is a decreasing function, i.e., y(x) > y(y) if x < y, and
y(y(x)) = x. Therefore, from Eq. (16) we have y [N (0)/m +
1/m] > 1 — Eg(o), which is equivalent to Eq. (17).

It is worth noticing that Y, u?=pl+Y, ,u?>
WA ey w2/ — 1) =1 = 201y +mja}/(m — 1), where
fir =1—p. Thus m(l =Y, u?)/(m —1) < 2mzy/(m —
) —m?a3/(m —1)> =1 —[1 —mji,;/(m — 1)]* holds. To-
gether with i < (m — 1)/m, we have 1 —mji;/(m — 1) <

JU=m( = X, 42)/m — 1). Therefore,

eclo) =Y pi|1-
J

21—

> 1—+/1—c(0)?

holds, and since c(0),ec(0) € [0,1] we get Eq. (18). |
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IX. DISCUSSION AND CONCLUSION

Actually, the method we used to get lower bounds of
EOF, GME, concurrence, CREN, and G concurrence can be
generalized to arbitrary bipartite convex-roof entanglement
measures. Suppose that the entanglement measure onanm ® n
(m < n) pure state |) is E(|Y)) = f(it), where [ is the
Schmidt vector. We first get the minimal admissible f (i)
foragivenr = (3.1, /w:)*/m,ie., F(A) = ming{ f (W)|r =
(X, /mi)?/m}. Thus, for a general m @ n (m < n) state o,
the lower bound of this entanglement measure E(p) is given by
E(0) =2 co[F(A)] with A = max{(¢|o|@)/(sym),1/m]}, if the
final function co[F(A)] is a monotonously increasing convex
function with respect to A.

Our paper actually provided lower bounds on a variety of
bipartite entanglement measures from a well-known entangle-
ment witness [66]:

W =s11—|9) (o], 19)

where [¢p) = VA ® Vg Y im, A/silii) is an arbitrary pure en-
tangled state in m ® n system (with {,/s;} being its Schmidt
coefficients in decreasing order). This entanglement witness
has been measured in many experiments, such as Refs. [66—
73]. Using this entanglement witness (where |¢) can be an
arbitrary pure entangled state rather than only a maximally
entangled state), one can obtain lower bounds on a variety of
bipartite entanglement measures based on our method.

In conclusion, we present observable lower bounds for
several entanglement measures defined by convex roof, which
include EOF, GME, concurrence, CREN, and G concurrence.
The lower bounds estimate these entanglement measures for
arbitrary finite-dimensional bipartite states. Moreover, these
lower bounds can be easily obtained from the expectation value
of a single observable. Based on our results, we present some
examples using real experimental measurement data. In princi-
ple, our method can be used for arbitrary finite-dimensional bi-
partite convex-roof entanglement measures. Last but not least,
the relations between entanglement measures are studied.
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APPENDIX

Here we provide some details of calculations to get
the expressions of R(X), co[R(})], Q(A), co[Q(A)], P(A),
co[P())], K(A), and co[K()A)]. The main idea is to calculate
lower bounds of entanglement measures as a function of
A for pure states, and then to extend the bounds to mixed
states by convex hull. The details of proving the inequality
> P j)J > A have also been presented.
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1. Calculation of R(A) and co[R())]

In the following, we shall seek the minimal H (i) =

— > wilog, i for a given A = (31, /1i)?/m. We use
R(}) to denote the minimal H (1) for a given A, i.e.,

2
_ 1 m
RG) = min | H (i) 1 = Z(Z m) SVNY
i=1

As shown in Ref. [18], the minimal H (ji) versus A corresponds
to i in the form

- 1—1¢ 1—1 1
n=it fort e | —,1{, (A2)
m

‘m—1"m—-1

with m — 1 copies of (1 —¢)/(m — 1) and one copy of .
Therefore, the minimal H(i1) and corresponding A are

H(t) = —1 log, t — (1 — 1) log, 1=
—

1
Mt) = Z(*/; + /(1 —1)(m — )% (A4)

In order to show the minimal H (i) versus A, we need the
inverse function of A(#). After some algebra, one can arrive at

t() = %(\/X +Vm — DA =), (A5)

with A € [1/m,1]. Substituting Eq. (AS) into Eq. (A3), we can
get the expression for R(A).

We can simulate the lower boundary of the region in H (ji)
versus A plane. 50 000 dots for randomly generated states with
m = 4 aredisplayed in Fig. 1. The lower boundary corresponds
to R(A). It is defined that co(g) is the largest convex function
that is bounded above by the given function g. From the expres-
sion of R(A), the explicit expression of co[ R(A)] is obtained
in Refs. [18,50,51], which is Eq. (2) shown in the main text.

t
T (A3)

2. Calculation of Q(A) and co[ Q(1)]
We first seek the minimal G(i1) = 1 — pmax for a given
=", Jri)?/m, where imax = max{ju;}. We use Q(1)
2.0 T T T T T T T T T T T T T
18]

16]

14}

1.2

1.0

0.8}
0.6

04} , .
02} , ]

OO I n 1 n 1 n 1 n 1 n 1 n 1 n
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

A

FIG. 1. H(z2) vs 1. 50000 red dots represent randomly generated
states with m = 4. The lower boundary is a smooth blue curve, which
corresponds to R(A).
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to denote the minimal G(j1) for a given A, i.e.,

2
. 1 [
0(4) = min G(M)A:Z<§:,/_M,«> . (A6)
i=1

It is interesting that, similar to H (j1), the minimal G(ji) versus
A corresponds to i in the form

- 1—1¢ 1—1¢ 1
n=1t, fort e | —,1{, (A7)
1 m

).
m—1 m —

with m — 1 copies of (1 —¢)/(m — 1) and one copy of .
Therefore, the minimal G(1) and corresponding A are

Git)=1-1, (A8)

1
Mt) = ;(ﬁ + /(1 —t)(m — 1), (A9)

where pmax = ¢, since t > (1 —¢)/(m — 1) with ¢t € [1/m,1].
In order to show the minimal G(ji) versus A, we need the
inverse function of A(z). After some algebra, one can see that

t() = %(\/K-i- Jm — 1)1 = )2,

with A € [1/m,1]. Substituting Eq. (A10) into Eq. (A8), we
can get the expression for Q(R), i.e.,

o) =1- %(JM Vi =D —0))% (Al

From Eq. (A11), we can find that

doO) WES = \/%)(\/X—F V(m —1)(1 - 1)) 0
= =
di m
when A € [1/m,1]. Thus Q(A) is a monotonously increasing
function. Moreover, from the definition of co(), one can see that
co[Q(A)] = Q(1), since Q(X) is a convex function. In order to

prove this, we only need to show that d>Q(*)/dA? > 0. From
Eq. (A11), one can get

2 — —
") _ Vm—DA —4) 0. (A12)

dr2 T 2m(1 — A2 T

(A10)

9

since m is an integer (m > 2) and A € [1/m,1]. Therefore,
co[Q(A)] = Q(A), which is a monotonously increasing convex
function.

We can simulate the lower boundary of the region in
G(ji) versus A plane. In Fig. 2, 50000 dots for randomly
generated states with m = 4 are displayed. The lower boundary
corresponds to Q(A), which coincides with co[ Q())].

3. Calculation of P(1) and co[ P())]

We first seek the minimal L(ji) =,/2(1 — Y/, u?) for

a given A= (}I", /i:)?/m. We use P(L) to denote the
minimal L(ji) for a given A, i.e.,

2
. - 1 [
P(4) = min L(M)k=;<§\/ﬁi> . (A13)

042325-6



EVALUATION OF ENTANGLEMENT MEASURES BY A ...

0.8
o7}
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os}
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0.2 -

0.1}F

0.0

FIG. 2. G(j1) vs A. 50000 red dots represent randomly generated
states with m = 4. The lower boundary is a smooth blue curve, which
corresponds to both Q(X) and co[ Q(A)], since co[ Q(A)] = Q(A).

It is interesting that, similar to H (i) and G(ji), the minimal
L(ji) versus A corresponds to i in the form

- 1—1 1—1¢ 1
w=1t, s fort e |—,11, (A14)
m—1 m—1 m

with m — 1 copies of (1 —¢)/(m — 1) and one copy of .
Therefore, the minimal L(ji) and corresponding A are

L) = \/2(1 - t)r(nmi—il— m — 2)’ (A15)
1
AMt) = Z(ﬁ + /(1 = 1)m — )% (A16)

In order to show the minimal L(ji) versus A, we need the
inverse function of A(#). After some algebra, one can arrive at

1) = %(«/X +Vm — (1 = 1),

with A € [1/m,1]. Substituting Eq. (A17) into Eq. (A15), we
can get the expression for P(), i.e.,

(A17)

PO = \/2(1 —n)(mt +m — 2)’ ALS)
m—1
t = %(\/X +Vm — (1 = )2 (A19)
From Egs. (A18) and (A19), we can find that
dP() _ dP(t)dt()) (A20)
dx ~ dt dr’
where
dP(t) V2(1 — mt) <0 (A2D)
dt — Jim—=DA=-0(m+mi—2)
dt(A)_l(L_l_ 1—-m )
dr  m\Ja Jm—=D{d=»x
x(VA+/m—D(1 =) <0, (A22)

PHYSICAL REVIEW A 94, 042325 (2016)

since m > 2 and t,A € [1/m,1]. Therefore,

dP(}) 50
. 7
which means P(A) is a monotonously increasing function.
Furthermore, in order to show P(A) is a concave function,
we need to prove that d> P(1)/dA*> < 0. One can use

(A23)

d’P(h)  d*P(t) (dt()) AP d*t(n)
d)? — dr? (dk ) LV TRRTE (A24)
and
d*P(t) m—1 02
Tdr? ‘_ﬁ(<1—r)(m+mt—2>> B
d’t() _ Jm =D =)
dr2 T 2m(1— A2 (A26)
Thus
d*P(»)
dx2

_ b4om — 2)[(n — Da — b f
CV2m2(m — 1)52(1 — A2A32(1 = 032(m 4+ mt — 2)3/2

where
a:=/x, (A27)
b=/ (m— 11 —x), (A28)
a
= —, A29
xi=q (A29)
2m —3
fi= —30m — 1)x? 423 — m)x + m—l (A30)
m—
with x € [1/(m — 1), 4+ 00). It is easy to see that
f <0, (A31)
when x € [1/(m — 1), + 00). Thus
d*P()
<0, A32
2 (A32)

when m > 2, t,A €[1/m,1], and x € [1/(m — 1), + 00).
Therefore, the convex hull of P()) will be

2m ( 1 )
— (r=—),
m—1 m
which is a straight line from (1/m,0) to (1,/2(m — 1)/m).
We can simulate the lower boundary of the region in L(j1)
versus A plane. 50 000 dots for randomly generated states with

m = 4 aredisplayed in Fig. 3. The lower boundary corresponds
to P(A), and the dashed black line corresponds to co[ P(A)].

co[P(M)] = (A33)

4. Calculation of K(1) and co[K(1)]

We first seek the minimal S(it) = m([]/L, ui)"/™ for a
given k:(Z;"zl ,//L,-)z/m. We use K(A) to denote the

042325-7
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0.2+ P 4

0.0 2 1 1 1 1 1 1
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

FIG. 3. L(t) vs A. 50000 red dots represent randomly generated
states with m = 4. The lower boundary is a smooth blue curve
which corresponds to P (1), and the dashed black line corresponds to
co[P(A)].

minimal S(ji) for a given A, i.e.,

2
] 1 (&
K(3) = min S(M)A=E<§«/E> . (A34)

As shown in Ref. [59], the minimal S(ji) versus A corresponds
to i in the form

. 1—t¢ 1—t¢ 1
nw=1t, e forr € [0,— |, (A35)
m— 1 m— 1 m

with m — 1 copies of (1 —¢)/(m — 1) and one copy of .
Therefore, the minimal S(ji) and corresponding A are

_ (1 _ t)m—l i
St = m(l‘m) s (A36)
1
Mt) = Z(*/; + /(1 —1)(m — )% (A37)

In order to show the minimal S(ji) versus A, we need
the inverse function of A(t). After some algebra, one can
arrive at

1) = %(«/X —Vm—DA =)y, (A38)
with A € [(m — 1)/m,1]. Substituting Eq. (A38) into
Eq. (A36), we can get the expression for K (1), i.e.,

K@) = mlr(1 ="'V, (A39)
t = %(ﬁ — Vm = 1)(1 = W) (A40)

From Ref. [59], one can see that K(A) is a monotonously
increasing concave function in [(m — 1)/m,1]. Therefore, the
convex hull of K (X)) will be

co[K (L)] = max{1 — m(1 — 1),0}. (A41)

PHYSICAL REVIEW A 94, 042325 (2016)

06

0.2

OO 1 L 1

FIG. 4. S(i1) vs A. 50000 red dots represent randomly generated
states with m = 4. The lower boundary is a smooth blue curve
which corresponds to K (A), and the dashed black line corresponds to
co[K(A)].

We can simulate the lower boundary of the region in S(ji)
versus A plane. 50 000 dots for randomly generated states with
m = 4 are displayed in Fig. 4. The lower boundary corresponds
to K (A), and the dashed black line corresponds to co[ K (A)].

5. Proof of the inequality >~; p;3/ > A

Here we give the details of proving ) i Pj A > A. For any
m @ n (m < n) quantum state o, suppose that we have found
an optimal decomposition ) ; Pil¥;) (¥l for o to achieve the
infimum of E(p), where E(p) is one kind of entanglement
measure defined by the convex roof. For each |v;), we have
the expression

V) =Us®@Us Y ullii) =Us®@Us Y Y Sulik),
i=1 =1k

i= i =1

with {\/,u,—{ } being its Schmidt coefficients in decreasing order,
where Uy (Up) is an m X m (n X n) unitary matrix and X is
an m X n matrix defined by X;; = «/;L_{(S,-k. Similarly, for an
arbitrary pure entangled given state |¢) in m ® n system, we
have the expression

m m n
|p) = Va ® Vg Zﬁﬁi) =ViQ Vg Zzsiklik),
i=1 i=1 k=1
(A42)

where {/s;} are its Schmidt coefficients in decreasing order,
V4 (Vg)isanm X m (n X n) unitary matrix, and S is an m X
n matrix defined by Si;x = ,/5;8;. Therefore, the maximum
under all possible U; (which is an m x m unitary matrix) and
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U, (which is an n X n unitary matrix) is

(@1U1 ® Ua ) (¥ 1U ® Ullg)
max

U, Uy sim

| S oy SuSh i VAU UAL (K VU U k)

= max

PHYSICAL REVIEW A 94, 042325 (2016)

| 2

U,,U, sim

. m i\ 2
T SUT SHI? |y @ sUTSH | st eI SHIF (X sind)
ax ————————— < max < =

Uy, U, sim U,,U; sim

,  (A43)
sSim N

where U is an m X m unitary matrix defined by U;;; = (i’|VjU1 Uali), Uy is an n X n unitary matrix defined by Uy =
(k’|V; U,Uglk), and {o;(A)} are singular values of A in decreasing order. The first inequality holds since |TrA| < ), 0:(A) for
arbitrary matrix A, and the second inequality holds since the following theorem [55]:

Theorem. [55]Let A(n x p matrix) and B(p x m matrix) be given, letg = min{n, p,m}, and denote the ordered singular values
of A, B,and AB by 01(A) = - -+ = Ominin,p}(A) 2 0,01(B) = -+ = Omingp,m}(B) = 0, and 61(AB) = - - - = Ominfa,my(AB) = 0.

Then
q q
> 0i(AB) < ) 0i(A)oi(B). (A44)
i=1 i=1
Therefore,
i\ 2 i\ 2
(X Sy sing Uy ® Uslyrj)(¥,1U) ® U}
oo i) (k) @10 © Ul (91U ® Ullg) (A45)
m s1m Uy, Uy S1m
where the first inequality holds since s; = max{s;}. Thus
i i
Uy@Uy ) pilY)(y;lU; @ U
(@IU, 22, Pl (¥;|U; L)1) > (¢|Q|¢). (A46)

J

E piA’ = max
- ! - U,,U,

J

sS1m s1m

Together with A/ = (37, \/u/)*/m > 1/m, one can obtain >, pir = max{(¢lol¢)/(sim),1/m} = A.
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